Guidelines for Blockmodeling International Trade: A case study of the first Trump administration

Fabio Ashtar Telarico,¹ Aleš Žiberna,¹ Carl Nordlund²

¹ University of Ljubljana, Faculty of Social Sciences (Ljubljana, Slovenia)

² Linköping University, Institute for Analytical Sociology (Linköping, Sweden)

October 31, 2025

ARS'25 Tenth International Workshop on SNA (Naples, Italy)

Researching int'l trade today

Renegotiated Agreements
Revisit existing trade deals

Cancelled FTAs
Cancel new trade agreements

Trade WarsEngage in trade conflicts

Geo-economic shifts

Trade Deficits

Focus on reducing trade imbalances

Re-shoring

Encouraging domestic production

A need for research methods apt to capture these changes

Why BM and Int'l Trade

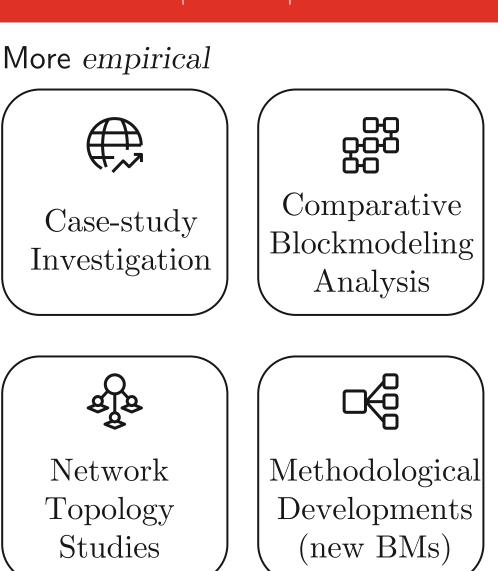
Blockmodeling (BM) and Int'l Trade: A short history

The use of BM to analyse the int'l trade network (ITN) was the first instance of advanced network analysis in int'l economics (e.g., Steiber 1979; Snyder and Kick 1979; Nemeth and Smith 1985)

Its match with World-System Analysis (WSA) was labelled a 'natural wedding' (Breiger 1981, 356).

Nowadays, application is lagging behind

BM analyses of ITN are sporadic and do not use the latest methods (e.g., Smith and Sarabi 2022; Kostoska et al. 2020; Estevez and Nordlund 2025)


2/5

Rediscovering BM for Int'l Trade

The methodological literature at the intersection of int'l trade and network analysis mostly overlooked BM (e.g., Serrano 2003; Garlaschelli 2004; Garlaschelli 2005; Reyes and Fagiolo 2010; Fagiolo 2010; Squartini et al. 2011a; Squartini et al. 2011b; DeBenedictis et al. 2011).

Reviews of existing BMs have generally overlooked the features that characterise the ITN (i.e.: asymmetry, values, unequal relational capacities)

Goals and RQs

GOAL

Providing methodological guidelines and practical suggestions on data gathering, tie-value normalisation, controls for relevant exogenous variables, and unit filtering.

Guidelines showcased on real-world data to answer two RQs.

- 1. Can existing BM approaches identify intelligible groups of countries that exhibit similar tendency in trade intensely and partner choice?
- 2. Does comparing the blockmodels of the ITN in 2015-2016 and 2019-2020 bear evidence of a $'Trump\ effect'$ on trade?

Data Gathering: Available sources

The availability of multiple sources can be disorienting due to the technical nature of the differences between them.

UN Comtrade

(UNDESA 2024).

IMF's IMTS

(IMF 2024).

BACI database

(Gaulier 2010)

Data Gathering: Flow & Products

The choice of the query parameters for data-retrieval from a database significantly affects the final network and should depend on both the RQ and the chosen BM's features.

Imports or Exports

 \rightarrow CIF vs FOB valuation

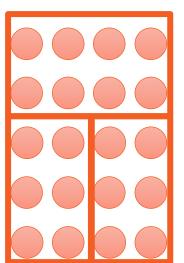
'the trade flows reported by the importing country are more accurate than reports by the exporter' (Feenstra 2005, 1; see Shaar 2019)

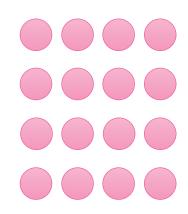
Product disaggregation $\rightarrow HS \ vs \ SITC \ schemes >$

The aggregated ITN's connectivity features cannot be trivially deduced from the product-specific ITNs.(Cepeda-López et al., 2019, 452)

Data Gathering: Flow & Products




Aggregated Flows


Selected Goods

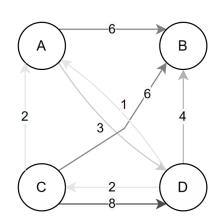
Re-grouped Products

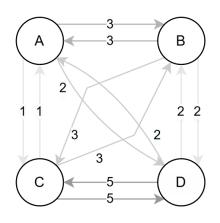
HS/SITC Schemes

(Snyder and Kick 1979; Su 1995, Clark 2009; Telarico 2023) (Steiber 1979; Nordlund 2010; 2014a; 2014b)

(Nemeth and Smith 1985; Smith and Sarabi 2022)

(Mahutga 2006; Kostoska et al. 2020)


Data Preparation: Directionality


A country's exports to a partner rarely equal its imports from that partner (Guo et al 2018; Griswold 2023; and earlier Hilgerdt 1943, 395-403).

This makes the ITN's adjacency matrix inherently asymmetric. Yet, many symmetries the network (e.g., Steiber 1981; Su 1994) prioritising relations' strength over their directionality (Estrada 2011; Zhang 2016; Garlaschelli 2005; Squartini 2011) and masking the zeroinflation due to unequal relational capacities (cf. Duenas 2013, 175).

А		2	1
6	В	6	4
		С	2
3		8	D

А	3	1	2
3	В	3	2
1	3	С	5
2	2	5	D

Data Preparation: Tie values

Node-level heterogeneity

Domestic-policy effects ---

Geographical factors--

Int'l Relations - /

Challenges stemming from the tie-value distribution

Scale-Free Structure

- Frew hubs
- !-- Many smaller players
- `- Manifest inequality

Skewed Distributions

Long-tailed GDP distribution reflects highly-skewed tie-value distributions

⊱ GDP-Weighted Preferential Attachment 👺

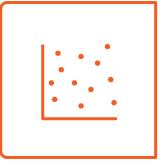
Data Preparation: Skew reduction

Several methods allow to filter-out countries with inconsistent or missing trade data to reduce the skew in the tie distribution.

(e.g. Snyder and Kick 1979; Mahutga 2006; Chung et al. 2020; Kostoska et al. 2020)

Missing-data correction

Remove countries based on missing data


Pruning Units

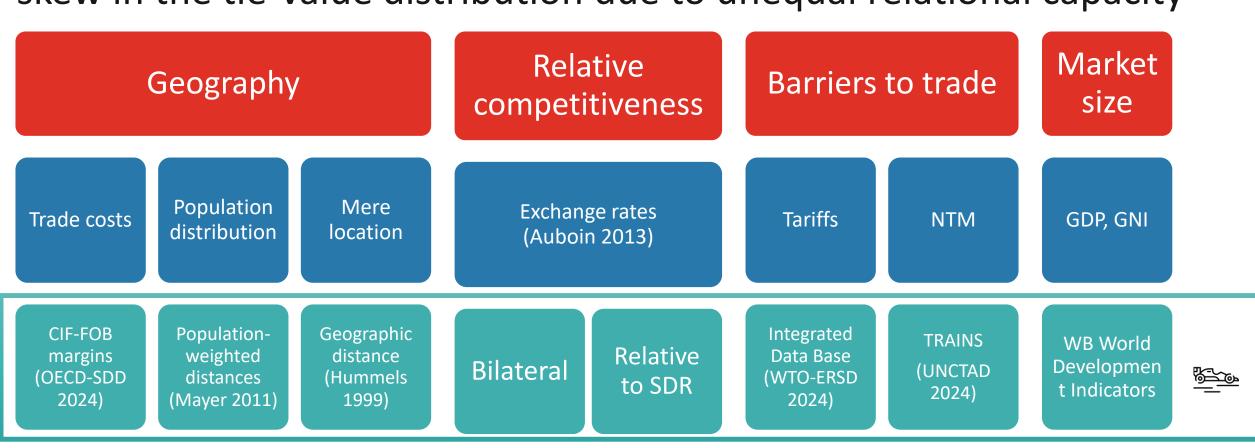
Removes (some) countries based on data or attributes

No Filtering

Risk: introduce biases due to missing data

Salient units

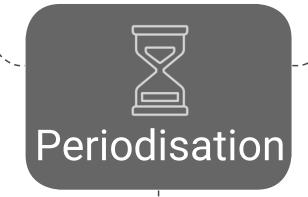
Based on narrow(er) RQs


Binarising ITN

Zeros ties below a threshold

Data Preparation: Exogenous factors FDV

One may control for dyadic and node-level features to reduce the skew in the tie-value distribution due to unequal relational capacity


Data Preparation: Periodisation

Methodological factors

Smoothing fluctuations -

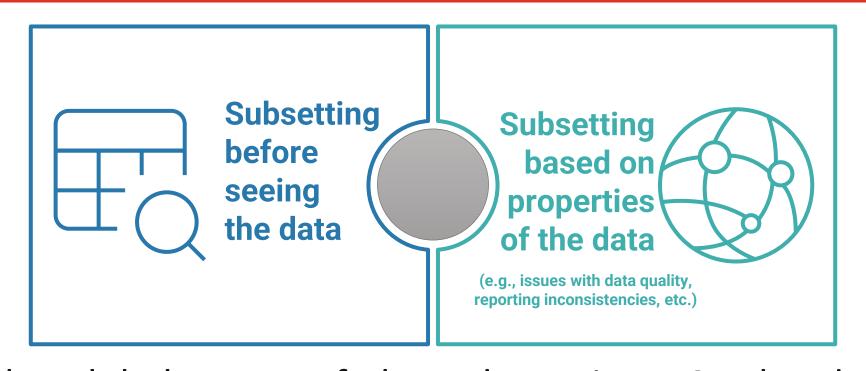
Mitigating Anomalies --

Computational aspects

- UN Comtrade Database 👺

Algorithmic complexity

Substantive considerations



- Obama's Second Term

Trump's First Term

Data Preparation: Unit-filtering

Given the global scope of the substantive RQ, the data was gathered for all countries and two filters are proposed: (\mathfrak{F}_1) removing all LDCs and SIDSs with no reported imports, (\mathfrak{F}_2) removing all countries with no reported imports.

Method selection: What is BM?

Origins

Boorman & White (1976); White (1976)

1980s onwards, WSA -

最 Blockmodeling

Functioning

Profiling (Yousef 2020, 116–117)
Simplifying complex
networks to interpretable
structures

Equivalences

-- Deterministic (Doreian 2005; Žiberna 2007) 😂

Stochastic (Lambiotte et al 2021, 31–32)

Method selection: Chosen BMs

SBM

DC SBM

DSBM

HBSBM

(Leger et al. 2021) (cf. Peixoto 2014)

(Matias & Miele 2017)

(Peixoto 2020)

Equivalence type

Stochastic

Tie Values

Gaussian and Poisson

Degree Correction

No Yes No

Yes

Zero-Tie Handling

As any tie

Through DC

Corrected

Through DC

Covariates

Too slow

No

No

No

Goodness-of-Fit measure

ICL

MDL

ICL

MDL

Estimation

VEM

Bayesian

VEM

Bayesian

Partition-Size Selection

Merge-split

Merge-split

Grid search

MCMC

Implementation

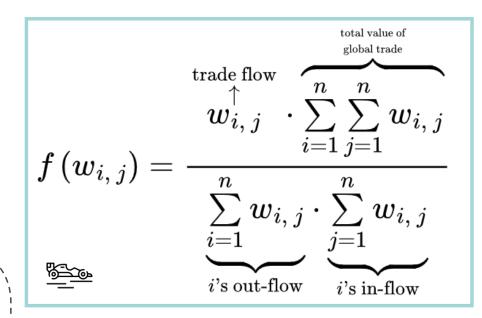
R

R

R

Python

Method selection: Normalisations



Natural Logarithm

Makes the assumption -- of Gaussian tie values with constant variance more realistic (MacDonald et al. 2022)

Data Preprocessing and Normalisation

$w_{i,\,j} \;\;=\;\; \exp\left[eta_0 + eta_1 \ln(\mathrm{GDP}_i) + ight.$

 $+eta_2\ln(\mathrm{GDP}_j)+$

 $+eta_3\ln(\mathrm{Dist}_{i,\,j})$

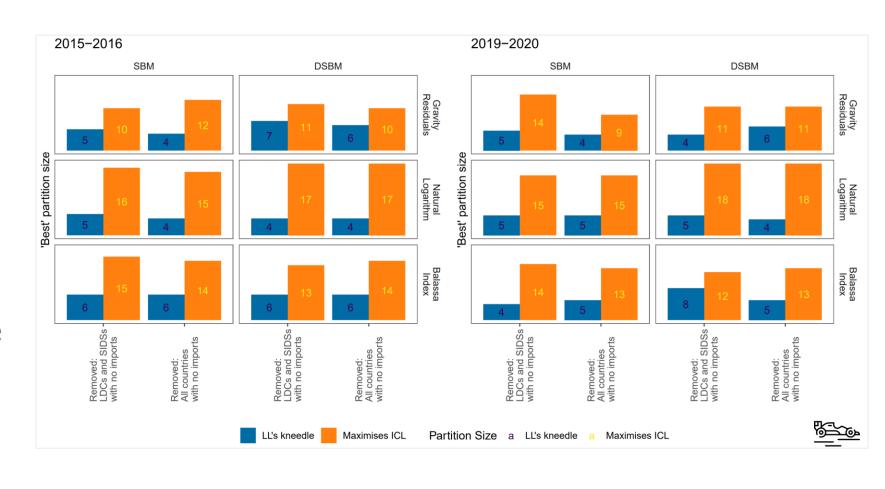
 $+\epsilon_{i,\,j}$

Gravity Model

--- Residuals as Input

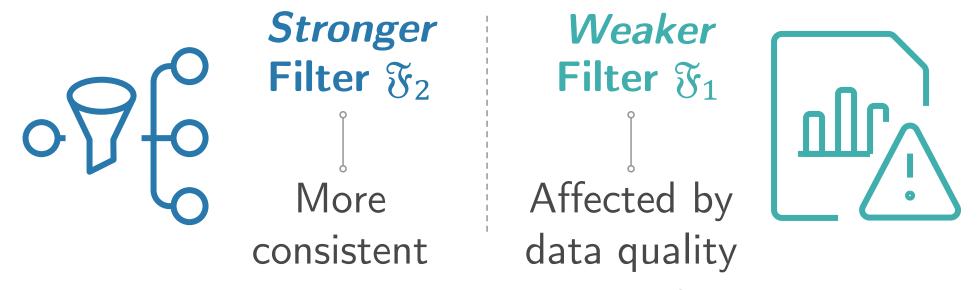
-- Only size and distance

Balassa Normalisation


-- Deviation from expected

Cancels absolute size

Results: Partition-size selection


ICL Maximisation yields larger partitions that capture more local heterogeneity (and noise), but are also less interpretable. The kneedle method yields smaller partitions that capture the general structure (hence, less detail), and are generally more interpretable.

Results: Effect of the filters

Measuring partition stability (adjusted Rand index, ARI) across the two periods, one finds systematically that:

With the ARIs between partitions of the same size under \mathfrak{F}_1 being on average 20 times smaller

Results: HBSBM (Balassa)

Supplier Belts

Hub-and-Spoke structure visible across clusters.

Decoupling cores

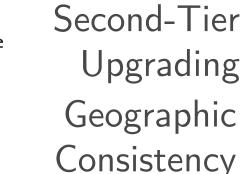
Between the two periods, a US-China split is consumed.

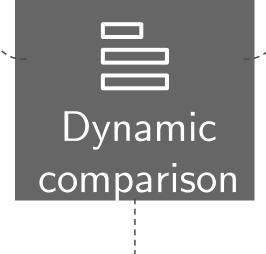
Small Outliers

LDCs and SIDSs.

Second-Tier Upgrading

Especially Vietnam's and Thailand's cases.


Results: Comparison with 2019-2020 FD



HBSBM + DC

SBM

Most sensitive to new ties

Stabilised by the Balassa Index

DSBM

-- Zero Flow Modeling

Less Affected by New Ties

Findings & Next Steps

Methodological Findings

BM can be effective, but attentive data-preparation is required.

Existing methods have limited ability to control for trivial drivers of trade, especially size

Substantive Findings

Slow US-China divergence

Multiplication of redundant routes and diversifying relations

Next Steps

Assess the use of gravity residuals

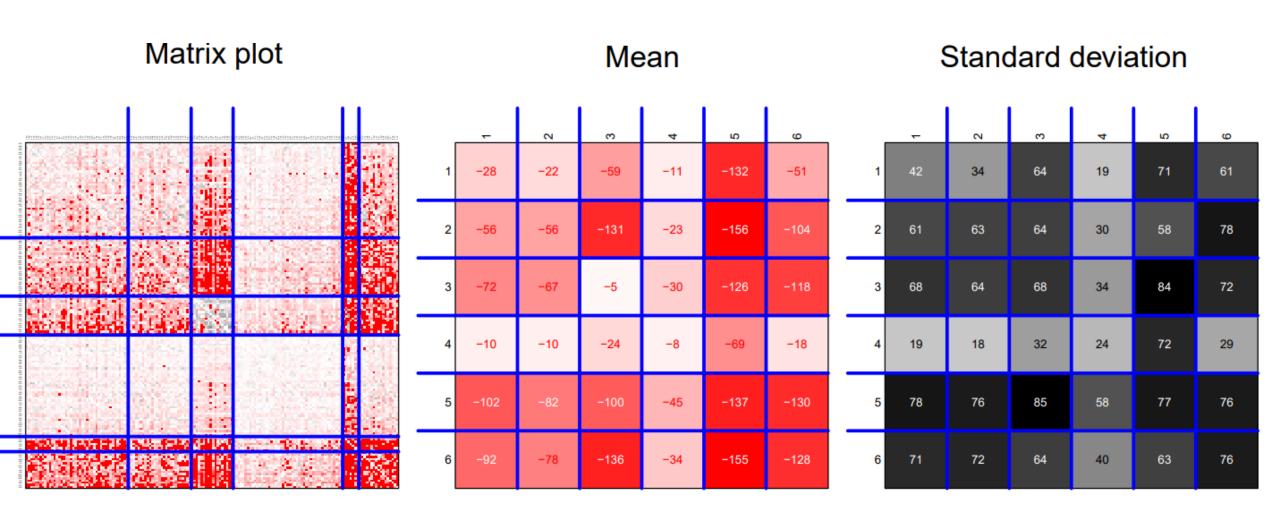
- Auboin, Marc, and Michele Ruta. 2013. "The Relationship Between Exchange Rates and International Trade: A Literature Review." World Trade Review 12 (3): 577–605. https://doi.org/10.1017/S1474745613000025.
- Boorman, Scott A., and Harrison C. White. 1976. "Social Structure from Multiple Networks. II. Role Structures." *American Journal of Sociology* 81 (6): 1384–1446. https://doi.org/10.1086/226228.
- Breiger, Ronald L. 1981. "Structures of Economic Interdependence Among Nations." In *Continuities in Structural Inquiry*, edited by Peter Michael Blau and Robert King Merton, 353–630. London: SAGE Publications.
- Clark, Rob, and Jason Beckfield. 2009. "A New Trichotomous Measure of World-system Position Using the International Trade Network." *International Journal of Comparative Sociology* 50 (1): 5–38. https://doi.org/10.1177/0020715208098615.
- Doreian, Patrick, Vladimir Batagelj, and Anuška Ferligoj. 2005. Generalized Blockmodeling. Cambridge University Press.
- Dueñas, Marco, and Giorgio Fagiolo. 2013. "Modeling the International-Trade Network: A Gravity Approach." Journal of Economic Interaction and Coordination 8 (1): 155–78. https://doi.org/10.1007/s11403-013-0108-y.
- Estévez, José Luis, and Carl Nordlund. 2025. "Revising the Borgatti-Everett Core-Periphery Model: Inter-categorical Density Blocks and Partially Connected Cores." Social Networks 81: 31–51.
- Estrada, Ernesto. 2011. "Community Detection Based on Network Communicability." Chaos: An Interdisciplinary Journal of Nonlinear Science 21 (1): 016103. https://doi.org/10.1063/1.3552144.

- Fagiolo, Giorgio. 2010. "The International-Trade Network: Gravity Equations and Topological Properties." Journal of Economic Interaction and Coordination 5 (1): 1–25. https://doi.org/10.1007/s11403-010-0061-y.
- Feenstra, Robert C., Robert E. Lipsey, Haiyan Deng, Alyson C. Ma, and Hengyong Mo. 2005. "World Trade Flows: 1962-2000." Working {{Paper}} 11040. Washington, DC: National Bureau of Economic Research. https://doi.org/10.3386/w11040.
- Garlaschelli, Diego, and Maria I. Loffredo. 2004. "Patterns of Link Reciprocity in Directed Networks." *Physical Review Letters* 93 (26): 268701. https://doi.org/10.1103/PhysRevLett.93.268701.
- ———. 2005. "Structure and Evolution of the World Trade Network." *Physica A: Statistical Mechanics and Its Applications*, Market Dynamics and Quantitative Economics, 355 (1): 138–44. https://doi.org/10.1016/j.physa.2005.02.075.
- Griswold, Daniel, and Andreas Freytag. 2023. "Balance of Trade, Balance of Power: How the Trade Deficit Reflects U.S. Influence in the World." Policy Paper 944. Washington, DC: Cato Institute.
- Guo, Meixin, Lin Lu, Liugang Sheng, and Miaojie Yu. 2018. "The Day After Tomorrow: Evaluating the Burden of Trump's Trade War*." Asian Economic Papers 17 (1): 101–20. https://doi.org/10.1162/asep_a_00592.
- Hummels, David. 1999. "Have International Transportation Costs Declined?" Research Report. Washington, DC: National Bureau of Economic Research.
- Kostoska, Olivera, Sonja Mitikj, Petar Jovanovski, and Ljupco Kocarev. 2020. "Core-Periphery Structure in Sectoral International Trade Networks: A New Approach to an Old Theory." *PLOS ONE* 15 (4): e0229547. https://doi.org/10.1371/journal.pone.0229547.

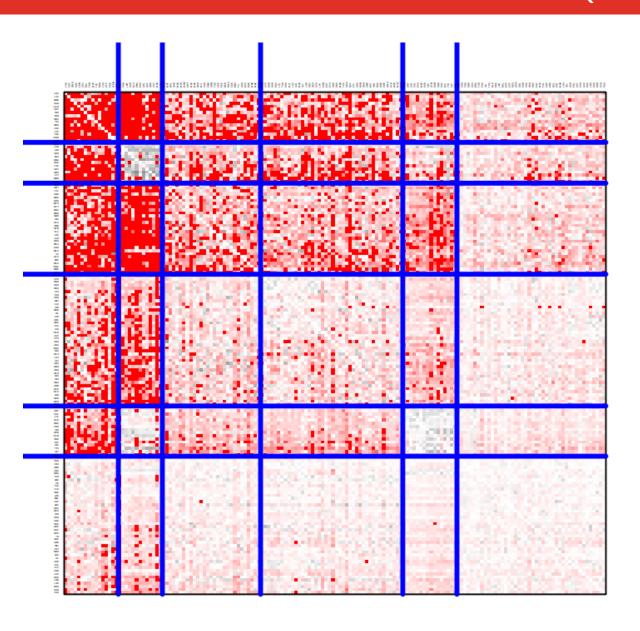
- Lambiotte, Renaud, and Michael T. Schaub. 2021. *Modularity and Dynamics on Complex Networks*. Elements in the Structure and Dynamics of Complex Networks 5. Cambridge (UK): Cambridge University Press.
- Leger, Jean-Benoist, Pierre Barbillon, and Julien Chiquet. 2021. "Blockmodels: Latent and Stochastic Block Model Estimation by a 'V-EM' Algorithm." Paris: AgroParisTech-MIA.
- MacDonald, P. W., E. Levina, and J. Zhu. 2022. "Latent Space Models for Multiplex Networks with Shared Structure." *Biometrika* 109 (3): 683–706. https://doi.org/10.1093/biomet/asab058.
- Mahutga, Matthew C. 2006. "The Persistence of Structural Inequality?: A Network Analysis of International Trade, 1965-2000." Social Forces 84 (4): 1863–89.
- Matias, Catherine, and Vincent Miele. 2017. "Statistical Clustering of Temporal Networks Through a Dynamic Stochastic Block Model." Journal of the Royal Statistical Society. Series B (Statistical Methodology) 79 (4): 1119–41. https://www.jstor.org/stable/26773154.
- Mayer, Thierry, and Soledad Zignago. 2011. "CEPII Documents de Travail Notes on CEPII's Distances Measures: The GeoDist Database." Working {{Paper}} 25. Paris: Centre d'études prospectives et d'informations internationales (CEPII).
- Naglić, Luka, and Lovro Šubelj. 2019. "War Pact Model of Shrinking Networks." *PLOS ONE* 14 (10): e0223480. https://doi.org/10.1371/journal.pone.0223480.
- Nemeth, Roger J., and David A. Smith. 1985. "International Trade and World-System Structure: A Multiple Network Analysis." Review (Fernand Braudel Center) 8 (4): 517–60. https://www.jstor.org/stable/40241006.

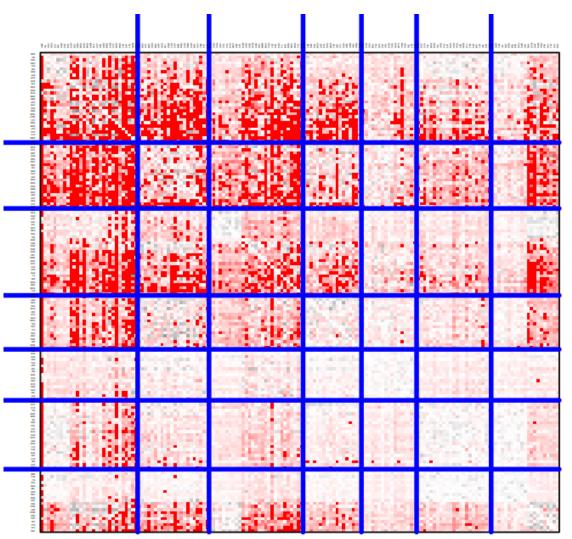
- Nordlund, Carl. 2010. "International Trade in Fuel Commodities: A Network Approach." In *International Trade and Environmental Justice: Toward a Global Political Ecology*, edited by Alf Hornborg, 63–88. Environmental Research Advances. Hauppauge: Nova Science Publishers, Incorporated.
- ———. 2014a. "Patterns of the Semiperiphery: Using Valued Blockmodeling Techniques to Map and Specify the Relational Characteristics of Semiperipheral Countries." In XVIII ISA World Congress of Sociology. Yokohama (JP).
- ———. 2014b. "Preceding and Governing Measurements: An Emmanuelian Conceptualization of Ecological Unequal Exchange." In *Structures of the World Political Economy and the Future Global Conflict and Cooperation*, edited by Christian Suter and Christopher Chase-Dunn, 315–46. Zürich: LIT Verlag.
- OECD SDD. 2024. "International Transport and Insurance Costs of Merchandise Trade (ITIC)." Organisation for Economic Co-operation and Development- Statistics and Data Directorate.
- Peixoto, Tiago P. 2014a. "Efficient Monte Carlo and Greedy Heuristic for the Inference of Stochastic Block Models." *Physical Review E* 89 (1): 012804. https://doi.org/10.1103/PhysRevE.89.012804.
- ——. 2014b. "Hierarchical Block Structures and High-Resolution Model Selection in Large Networks." *Physical Review X* 4 (1): 011047. https://doi.org/10.1103/PhysRevX.4.011047.
- ——. 2020. "Bayesian Stochastic Blockmodeling." In Advances in Network Clustering and Blockmodeling, edited by Patrick Doreian, Vladimir Batagelj, and Anuška Ferligoj, 1st edition, 289–332. Hoboken, NJ: Wiley.

- Reyes, Javier, Stefano Schiavo, and Giorgio Fagiolo. 2010. "Using Complex Networks Analysis to Assess the Evolution of International Economic Integration: The Cases of East Asia and Latin America." The Journal of International Trade & Economic Development 19 (2): 215–39. https://doi.org/10.1080/09638190802521278.
- Serrano, Ma Ángeles, and Marián Boguñá. 2003. "Topology of the World Trade Web." *Physical Review E* 68 (1): 015101. https://doi.org/10.1103/PhysRevE.68.015101.
- Shaar, Karam. 2019. "Reconciling International Trade Data." Working {{Paper}}. Kiel, Hamburg: ZBW Leibniz Information Centre for Economics.
- Smith, Matthew, and Yasaman Sarabi. 2022. "How Does the Behaviour of the Core Differ from the Periphery? An International Trade Network Analysis." Social Networks 70 (July): 1–15. https://doi.org/10.1016/j.socnet.2021.11.001.
- Snyder, David, and Edward L. Kick. 1979. "Structural Position in the World System and Economic Growth, 1955-1970: A Multiple-Network Analysis of Transnational Interactions." American Journal of Sociology 84 (5): 1096–126. https://doi.org/10.1086/226902.
- Squartini, Tiziano, Giorgio Fagiolo, and Diego Garlaschelli. 2011a. "Randomizing World Trade. I. A Binary Network Analysis." *Physical Review E* 84 (4): 046117. https://doi.org/10.1103/PhysRevE.84.046117.
- ———. 2011b. "Randomizing World Trade. II. A Weighted Network Analysis." *Physical Review E* 84 (4): 046118. https://doi.org/10.1103/PhysRevE.84.046118.

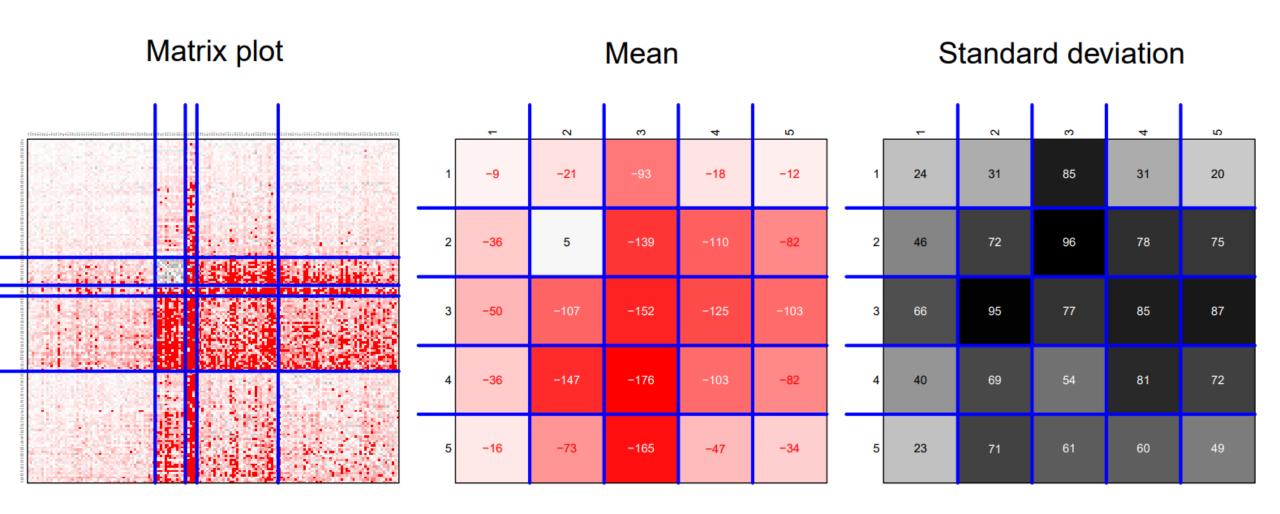

- ———. 2011b. "Randomizing World Trade. II. A Weighted Network Analysis." *Physical Review E* 84 (4): 046118. https://doi.org/10.1103/PhysRevE.84.046118.
- Steiber, Steven R. 1979. "The World System and World Trade: An Empirical Exploration of Conceptual Conflicts." The Sociological Quarterly 20 (1): 23–36. https://doi.org/10.1111/j.1533-8525.1979.tb02182.x.
- ——. 1981. "Building Better Blockmodels: A Non-Hierarchical Extension of CONCOR with Applications to Regression Analysis." *Mid-American Review of Sociology* 6 (1): 17–40. https://www.jstor.org/stable/23252587.
- Su, Tieting. 1995. "Changes in World Trade Networks: 1938, 1960, 1990." Review (Fernand Braudel Center) 18 (3): 431–57. https://www.jstor.org/stable/40241335.
- Su, Tie-ting, and Dan Clawson. 1994. "Trade Networks, Trade Blocs, and Hegemortic Conflict." Sociological Inquiry 64 (4): 415–37. https://doi.org/10.1111/j.1475-682X.1994.tb00400.x.
- Telarico, Fabio Ashtar. 2023. "Are Sanctions for Losers? A Network Study of Trade Sanctions." Novi Ekonomist 17 (33): 4–11. https://doi.org/10.7251/NOEEN2333004T.
- UN DESA, and UN Statistics Division. 2024. "UN Comtrade." UN COMTRADE.
- UNCTAD. 2024. "TRAINS Online." United Nations Conference on Trade and Development.
- White, Harrison C., Scott A. Boorman, and Ronald L. Breiger. 1976. "Social Structure from Multiple Networks. I. Blockmodels of Roles and Positions." *American Journal of Sociology* 81 (4): 730–80. https://doi.org/10.1086/226141.

- WTO ERSD. 2024. "Integrated Database." World Trade Organization Economic Research and Statistics Division.
- Yousefi Nooraie, Reza, Joanna E. M. Sale, Alexandra Marin, and Lori E. Ross. 2020. "Social Network Analysis: An Example of Fusion Between Quantitative and Qualitative Methods." *Journal of Mixed Methods Research* 14 (1): 110–24. https://doi.org/10.1177/1558689818804060.
- Zhang, Shuhong, Lin Wang, Zhixin Liu, and Xiaofan Wang. 2016. "Evolution of International Trade and Investment Networks." *Physica A: Statistical Mechanics and Its Applications* 462: 752–63.
- Žiberna, Aleš. 2007. "Generalized Blockmodeling of Valued Networks." Social Networks 29 (1): 105–26. https://doi.org/10.1016/j.socnet.2006.04.002.


Results: SBM (Balassa, 2015-2016)



Results: DSBM & HSBM(2015-2016) FDV UNIVERSITY OF LIUBLIANA Faculty of Social Sciences



Results: SBM 2019-2020

