Engineering a non-thermal plasma electrochemical device for decentralized ammonia production at ambient conditions

Marco Francesco Torre ^a, Francesco Tavella ^a & Claudio Ampelli ^a

^a Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm) – University of Messina, ERIC aisbl and CASPE/INSTM, V.le F.Stagno d'Alcontres, 31 – 98166 Messina, Italy

E-mail: marco.torre1@studenti.unime.it

Ammonia (NH₃) plays a vital role in the chemical industry, serving as a key precursor for fertilizers, pharmaceuticals, and various chemical intermediates. However, its conventional synthesis via the Haber-Bosch process is among the most energy-intensive and carbon-emitting industrial operations. Finding sustainable and low-carbon alternatives for NH₃ production is thus a major challenge in chemical engineering. In this study, we present a catalyst-free plasma-electrochemical system capable of producing NH₃ directly from dinitrogen (N₂) and water at ambient conditions, using only electricity, ideally derived from renewable sources. This electrochemical device incorporates a non-thermal N₂ plasma microjet, serving as the cathode, generating reactive radical species at the plasma-liquid interface to drive the reduction of N₂ to NH₃ in aqueous media (Figure 1a). We systematically explored and optimized key design and operational parameters, including gas flow rate, plasma-liquid gap, capillary geometry, and applied current, to enhance the plasma-electrolyte interaction and maximize NH₃ yield. A maximum Faradaic Efficiency (FE) of 70% and an NH₃ production rate of 0.26 mg h⁻¹ were achieved (Figure 1b), demonstrating the potential of non-thermal plasma-driven systems for decentralized, NH₃ production powered by renewable electricity.²

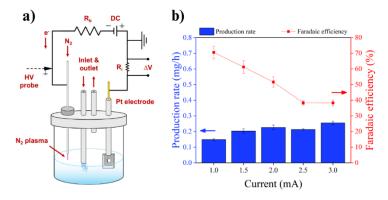


Figure 1) a) Plasma-electrolytic device and b) ammonia production rate (mg h^{-1}) with corresponding FE%.

Acknowledgements: MFT acknowledges CASALE SA for co-funding his PhD grant.

References

- 1. F. Tavella, D. Giusi, C. Ampelli, Curr. Opin. Green Sustainable Chem. 2022, 35, 100604.
- 2. C. Ampelli, M.L. Carreon, Y. Liu, J. Energy Chem. **2024**, *99*, 300-301.

Keywords: Non-thermal plasma, ammonia production, ambient conditions.

