Temperature-Programmed Desorption as a Tool for Kinetic Analysis of NH₃ Decomposition on Ru/Al₂O₃ and Ru/CeO₂ I. Conti^a, Y. Qiu^a, A. Trovarelli^b, A. Beretta^{*a} Dipartimento di Energia, Politecnico di Milano, Milano, Italy Dipartimento Politecnico di Ingegneria e Architettura, Università degli Studi di Udine, Udine, Italy *alessandra.beretta@polimi.it **Background and motivation.** Green NH_3 emerged as a promising H_2 carrier for energy transition¹. Among catalysts used for ammonia decomposition, Ru shows the higher activity². In this work, Ru/CeO_2 and Ru/Al_2O_3 catalysts were synthesized via traditional wet impregnation and tested with steady state and transient response methods. The study focused on assessing how the choice of support material influences the catalytic behaviour and reaction kinetics in NH_3 decomposition. **Materials and methods.** Ru/Al $_2$ O $_3$ and Ru/CeO $_2$ catalysts were prepared by incipient wetness impregnation using Ru(NO)(NO $_3$) $_3$ precursor, characterized by XRD, Raman, DRIFTS, CO chemisorption, and pre-treated with 1% H2 flow in He from 50°C to 450°C before testing. NH $_3$ cracking was performed in micro-fixed bed unit, with diluted NH_3 in He. H_2 and N_2 cofeeding tests were performed. All tests were conducted at 20,000 NI/h/kgcat. The modelling analysis was based on 1D pseudo-homogeneous reactor model. Dynamic N2/H2/NH3 adsorption/desorption experiments are now being performed to measure surface coverage evolution with temperature and support the kinetic investigation. **Results and discussion.** Characterization results show high dispersion of Ru for both catalysts. As shown in Figure 1, Ru/CeO₂ catalysts outperformed Ru/Al₂O₃. The kinetic study suggests that NH₃ cracking over Ru/Al₂O₃ is limited by NH₃ activation and H* surface poisoning across the entire temperature range. By contrast, experiments involving Ru/CeO₂ catalysts are best explained by assuming that N* desorption is rate-limiting at low temperatures, while NH₃ activation and H* poisoning control the rate at higher temperatures. Preliminary results from dynamic Figure 1. Catalytic activity and kinetic model comparison for Ru/CeO_2 and Ru/Al_2O_3 experiments show that N* species prevail below 300 °C, while the surface becomes H*-rich at higher temperatures. Keywords: ammonia cracking, ceria catalysts, temperature-programmed-desorption ## References - [1] Triviño, M.L.T. et al., Chem. Eng. J. **2023**, 476, 146715. - [2] Yamazaki, K. et al., Appl. Catal. B 2023, 325, 122352.