$K^+ \rightarrow \pi^+ \mu^+ \mu^- AT NA62$

Chris Parkinson, University of Birmingham

INTRODUCTION TO $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ AT NA62 CURRENT STATUS AND PROSPECTS FUTURE AND SUMMARY

Chris Parkinson, K+ to pi+ mu+ mu- at NA62

OUTLINE

PREVIOUS (NA48/2) MEASUREMENT

• The $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay rate is described in terms of the form factor W(z)

$$\frac{d\Gamma}{dz} = \frac{\alpha^2 M_K}{12\pi (4\pi)^4} \lambda^{3/2} (1, z, r_\pi^2) \sqrt{1 - 4\frac{r_\mu^2}{z}} \left(1 + 2\frac{r_\mu^2}{z}\right) |W(z)|^2$$

• The functional form of W(z) in χPT is:

$$W(z) = G_F M_K^2(a_+ + b_+ z) + W^{\pi\pi}(z)$$

- And depends on the observables a_+ and b_+
- These were measured by NA48/2 using O(3000) events

Model (2)	$\rho($	$\rho(a_+, b_+) = -0.976$			$\chi^2/{\rm ndf} = 14.8/15$					
$a_{+} = -0.575$	\pm	$0.038_{\rm stat.}$	\pm	$0.006_{\text{syst.}}$	\pm	$0.002_{\text{ext.}}$	=	-0.575	\pm	0.039
$b_{+} = -0.813$	\pm	$0.142_{\text{stat.}}$	\pm	$0.028_{\text{syst.}}$	\pm	$0.005_{\text{ext.}}$	=	-0.813	\pm	0.145

≥ 30 × 10⁻²⁴ (b) [,]zp/_]p χ^2 /ndf = 12.0/15 20 15 10 0.25 0.3 0.35 0.2 0.4 0.45 0.5

Chris Parkinson, K+ to pi+ mu+ mu- at NA62

MOTIVATION

arxiv:1904.08794

R(D*) 8(D*)

0.35

0.3

0.25

0.2

HFLAV average

LHCb18

Belle17

0.2

3σ

Belle19

0.3

+ Average of SM predictions R(D) = 0.299 ± 0.003 R(D*) = 0.258 ± 0.005

LHCb15

- Considerable interest generated by the "B anomalies"
 - In b $\rightarrow s\ell\ell$ transitions (R_K, R_{K^*}, P_5')

 $\Delta \chi^2 = 1.0$ contours

BaBar12

HFLAV

Spring 2019 $P(\chi^2) = 27\%$

R(D)

0.5

Belle15

• In $b \to c\tau\nu$ transitions $(B \to D^*\tau\nu, B \to D\tau\nu)$

JHEP 02 (2016) 104

5

10

Chris Parkinson, K+ to pi+ mu+ mu- at NA62

0.4

MOTIVATION

 A consistent fit to the anomalies implied a change to WCs C₉ and C₁₀ (until Moriond 2019)

Common explanations include Z', W', LQ

 Can more information be obtained from the kaon sector?

THE KAON PERSPECTIVE

• It is possible to probe LFU (violation), in the "B physics" Wilson coefficients using $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ information

$$C_9^{B,\mu\mu} - C_9^{B,ee} = -\frac{a_+^{\mu\mu} - a_+^{ee}}{\sqrt{2}V_{td}V_{ts}^*} = -19 \pm 79$$

- To probe this WC at a comparable level to the B physics anomalies, which are 0(1), require 0(10) improvement
- This implies O(100) more events (300k) with systematic effects controlled to a similar level (0.5%)

1601.00970

Is this possible at NA62?

THE KAON PERSPECTIVE

1601.00970

• It is possible to probe LFU (violation), in the "B physics" Wilson coefficients using $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ information

$$C_9^{B,\mu\mu} - C_9^{B,ee} = -\frac{a_+^{\mu\mu} - a_+^{ee}}{\sqrt{2}V_{td}V_{ts}^*} = -19 \pm 79$$

- To probe this WC at a comparable level to the B physics anomalies, which are 0(1), require 0(10) improvement
- This implies O(100) more events (300k) with systematic effects controlled to a similar level (0.5%)

- The decay $K^+ \rightarrow \pi^+ e^+ e^-$ hard to acquire at NA62 due to trigger rate, geometry
 - Rely on previous measurement no double ratio to cancel systematics (3)
- In nominal 2 years of NA62 running:
 - Collect $O(10^{13}) K^+$ decays
 - $N_{\pi\mu\mu} = 10^{13} \cdot 10^{-7} \cdot 0.1 = O(100 \text{k})$
- $\frac{1}{2}$ downscale in dimuon trigger means only O(50k) will be collected per run
- Running at 60-80% intensity: 0(35k)
 - Less than 2% stat. uncertainty
- NA62 can improve constraints on parameter space with sample 10x larger than that of NA48/2
 - But very challenging to reach sensitivity to the B anomalies

TWO SOLUTIONS

- When determining the values of a₊ and b₊ there are two possible solutions
- The two are differentiated only by the $W^{\pi\pi}(z)$ term
- The magnitude of (a₊, b₊) are quite different in the two solutions
 - Are theory predictions affected, in a meaningful way, if the (+ve,+ve) solution is used instead?
- NB. existing measurements only quote the (-ve -ve) results

$$W(z) = G_F M_K^2(a_+ + b_+ z) + W^{\pi\pi}(z)$$

THE NA62 EXPERIMENT AT CERN

Chris Parkinson, K+ to pi+ mu+ mu- at NA62

THE NA62 EXPERIMENT AT CERN

THE NA62 EXPERIMENT AT CERN

Beam measurement

• GTK:

- KTAG: L1 trigger
 - Beam intensity measurement
- CHANTI: not used
- Vacuum: fiducial decay volume

Daughter particle measurements:

- **STRAW:**
- (New) CHOD:
- RICH, LKr:
- LAV/LKr/IRC/SAC:
- MUV1,2,3:

spectrometer, $\sigma_p = (0.3 \oplus 0.005 \cdot p)\%$ [GeV] hodoscope(s), L0 trigger L0 trigger, EoP for particle ID photon vetoes not used L0 trigger, dimuon selection

(1)

DATA COLLECTED SO FAR

- 2017 (60% nominal intensity):
 - A: 3560 events, 84k bursts
 - B: 5930 events, 150k bursts
 - O(10k) events this year

- 2018 (80% nominal intensity):
 - E+H: 4870 events, 115k bursts
 - Others: 317k bursts \rightarrow 13500 events
 - O(20k) events this year
- O(30k) events in total

SELECTED DATA SAMPLES

(14

SYSTEMATICS FROM LUBOS (2017A)

- Total systematic from Lubos is at the level of 4%
- Most of the contributions are O(0.1%)
- Largest contribution is from the straw reconstruction efficiency, followed by the effects of pileup tracks in the spectrometer
- A further (correlated?) systematic from spectrometer track pileup, at the 2% level, is missing from this list
- Trigger efficiency systematics largely cancel, giving only a 0.5% effect

	a	b	$\mathcal{B}(K_{\pi\mu\mu}) \times 10^8$
Central values	-0.564	-0.797	9.32
Errors	δa	δb	$\delta \mathcal{B}(K_{\pi\mu\mu}) \times 10^8$
Statistical	0.034	0.118	0.17
Systematic			
Straw reconstruction efficiency	0.020	0.099	0.18
Trigger efficiency	0.003	0.030	0.12
Beam tuning	0.001	0.005	0.05
Straw pileup tracks	0.012	0.047	0.04
MUV3 pileup	< 0.001	0.004	0.03
MUV3 efficiency	0.001	0.002	0.03
LKr cluster corrections	< 0.001	0.001	0.01
Background	0.001	0.004	0.01
Straw track corrections, α	0.001	0.002	< 0.01
Straw track corrections, β	0.001	0.003	< 0.01
Particle identification	0.003	0.008	< 0.01
Error on $N(K_{3\pi})$	< 0.001	< 0.001	< 0.01
Straw resolution	< 0.001	< 0.001	< 0.01
Total systematic	0.024	0.114	0.23
External			
Error on $\mathcal{B}(K_{3\pi})$	0.001	0.003	0.04
TOTAL	0.042	0.164	0.29

STRAW RECONSTRUCTION EFFECTS

- Changing criteria used to select tracks leads to a $\sim 4\%$ difference in a_+
- Changing criteria used to select vertexes leads to another $\sim 2\%$ shift in a_+
- Pileup tracks suspected to be the culprit
- L1STRAW "exotics" algorithm shows inefficiency due to multiple tracks, related to the geometry

All these points only relevant for 3-track events!

CURRENT STATUS

Work progressing to improve Straw reconstruction efficiency for 3T events

• The L1 algorithm results to be available in the simulation

Full implementation of K12 beamline in Geant4 "G4BeamLine"

- To incorporate event pileup in the simulation 'by construction'
- Vital for spectrometer (reco eff.) and trigger emulation
- Organised within 2 new working groups:
 - Precision measurements WG
 - MC Validation WG

(M. Koval) (S. Schuchmann)

FUTURE PROSPECTS

- Running for 3 years (2021-2023) in "2018" conditions, expect O(20k) events per year, meaning O(100k) events in total by 2024.
- Improvements in the trigger (removing the ½ downscale) would make this O(150k)
 And perhaps allow to collect large samples of K⁺ → π⁺e⁺e⁻ ?
- This much larger dataset would give comparable precision to the "factor of 10" needed to probe the B anomalies
 - Assuming systematic effects can be controlled to the same precision!
- If B anomalies persist, is a dedicated run motivated?
 - Consider "simple" modifications to the experimental setup?

CONCLUSIONS

- NA62 has collected $O(30k) K^+ \rightarrow \pi^+ \mu^+ \mu^-$ decays, the worlds largest sample
 - A factor of 10 larger than the NA48/2 sample, and lower background contamination
- Studies on the 2016 and 2017A data sample are "published" in the thesis' of A. Sturgess and L. Bician
- Limiting factor coming from systematic effects in the Straw track reconstruction
 Being attacked on several fronts, work organised by 2 new working groups
- Prospects for worlds best measurement are very good
- Obtaining enough events and systematic control for 'ultimate' measurement, to probe B anomalies via the kaon sector, remains very challenging

COULOMB CORRECTIONS

- Coulomb corrections are taken into account in the generation of the simulated events samples, as well as the fitting procedure(s)
- Red areas: opposite-sign charged particles $(\pi^+\mu^-, \mu^+\mu^-)$ produced at rest, attractive force
- Green area: same-sign charged particles $(\pi^+\mu^+)$ produced at rest, repulsive force
- Model for Ω_C assigned 1% uncertainty in the literature [Eur. Phys. J., C53 (2008), pp. 567-571 arxiv:0709.2439]

