Latest results from kaon and hyperon decays at LHCb

Claire Prouve - Universidade de Santiago de Compostela

The LHCb experiment

- 2011: 1fb⁻¹ at √s = 7TeV
- 2012: 2fb⁻¹ at √s =8TeV
- 2016-2018: 5b⁻¹ at √s =13TeV
- Momentum resolution: 1%
- K_s mass resolution for tracks starting in the VELO: 4MeV
- π^0 mass resolution: ~10MeV
- Muon ID ~ 97 % for 1-3 %

 $\pi \!
ightarrow \! \mu$ mis-id probability

Particle identification

LHCb for strange physics

- Forward geometry optimized for *b*-physics
- Length of VELO optimized for *b*-hadron decay length
- Trigger optimized for b-physics → trigger thresholds too high for strange physics
- + Large strange production cross-section: O(10¹³) K_s per fb⁻¹ in LHCb acceptance
- + LHCb designed for precision measurements and rare decays
- → world best result on $K_{_S}$ → $\mu^+\mu^-$ in 2011 LHCb can do strange physics!

Strange physics at LHCb

- Branching ratio limit on $K_{_S}
 ightarrow \mu^+ \mu^-$
- Search for new physics in $\varSigma^+\!
 ightarrow\!p\mu^+\mu^-$
- Sensitivity study of branching ratio of $K_{_S}
 ightarrow \pi^0 \mu^+ \mu^-$

- Feasibility study of $K_{_S} \rightarrow \pi^+ \pi^- e^+ e^-$ evidence / observation

Limit on branching ratio of $K_S \rightarrow \mu^+ \mu^-$ [EPJC, 77 10 (2017) 678]

 $K_{s} \rightarrow \mu^{+} \mu^{-}$

- FCNC = suppressed in the SM
- SM prediction: BR($K_S \rightarrow \mu^+ \mu^-$) = (5.18 ± 1.50_{LD} ± 0.02_{SD}) 10⁻¹² [JHEP05(2018) 024, JHEP 0401 (2004) 009, NPB 366 (1991) 189]
- New physics could lead to contributions of one order of magnitude above SM predictions + be compatible with current measurements from other FCNC processes
- Dominated by long distance contributions as $K_L \rightarrow \mu^+ \mu^- \quad \underline{K^0}$ but *s*-wave component is CP-violating for $K_S \rightarrow \mu^+ \mu^-$
- Previous BR limit from LHCb (1fb⁻¹ 2011 data): BR($K_{S} \rightarrow \mu^{+}\mu^{-}$) < 9 \cdot 10⁻⁹ (90%CL)
 - → much space for physics beyond the SM

Analysis strategy

 10^{6}

 10^{5}

 10^{4}

 10^{3}

 10^{2}

10

420

 $\pi^+\pi^-$ hypothesis

 $\mu^+\mu^-$ hypothesis

լույր կու

440

460

480

Candidates / (1 MeV/ c^2)

1. Event selection:

- a) <u>Trigger:</u> trigger on μ and $\mu^+\mu^-$ of $K_{_S}\!\!\rightarrow \mu^+\mu^-$
- b) <u>Selection / background rejection:</u>
 - Cut based pre-selection
 - BDT_{cb} against combinatorial bkg
 - BDT_{μ} focused on muon-ID

against $K_{_S} \rightarrow \pi^+ \pi^-$

• Vetoes against $\Lambda \!
ightarrow \! p \pi^-$ and $K^{*o} \!
ightarrow \! K^{\!+} \! \pi^-$

2. Division of data sample:

- Trigger categories \rightarrow BDT_{cb} trained for each trigger category
- BDT_{cb} bins \rightarrow cut on BDT_{u} optimized for each BDT_{cb} bin

520

LHCb

500

Invariant mass $[MeV/c^2]$

Analysis strategy

- 3. Extraction of $K_{_S}
 ightarrow \mu^+ \mu^-$ signal yields in each bin with maximum likelihood fit
- 4. Translation of signal yields into branching ratio

$$\mathcal{B}(K_{\rm s}^0 \to \mu^+ \mu^-) = \mathcal{B}(K_{\rm s}^0 \to \pi^+ \pi^-) \cdot \frac{\epsilon^{\pi\pi}}{\epsilon_{ij}^{\mu\mu}} \cdot \frac{N_{ij}^{\mu\mu}}{N^{\pi\pi}}$$

- $K_{s} \rightarrow \pi^{+}\pi^{-}$ decay as normalization
- Ratio of efficiencies from simulation or other decay channels

$$\frac{\epsilon^{\pi\pi}}{\epsilon_{ij}^{\mu\mu}} = \frac{\epsilon_{\rm sel}^{\pi\pi}}{\epsilon_{\rm sel}^{\mu\mu}} \times \frac{\epsilon_{\rm trig}^{\pi\pi}}{\epsilon_{\rm trig;j}^{\mu\mu}} \times \frac{1}{\epsilon_{\rm BDT;ij}^{\mu\mu}} \times \frac{1}{\epsilon_{\mu\rm ID;ij}}$$

5. Branching ratio limit

Limitations to efficiency

K_{s} required to decay in VertexLocator:

Low hardware (L0) trigger efficiency:

~ p(μ) > 5GeV && p_τ(μ)>1.76GeV

 \rightarrow ~1-2% trigger efficiency

Greatest uncertainties

Ratio of trigger efficiencies:

- Trigger efficiencies taken from simulation → trigger response not perfectly described in simulation
- Use proxy with high signal yield to determine trigger efficiency in data: $B^{\pm}
 ightarrow J/\psi(
 ightarrow \mu^{+}\mu^{-})K^{\pm}$
- \rightarrow ~10 % uncertainty on normalization

Kaon p_{τ} spectrum in not well modeled in simulation:

- $K_{S} \rightarrow \pi^{+}\pi^{-}$ data used to obtain correct p_{τ} spectrum
- All efficiencies obtained from $K_S \rightarrow \mu^+ \mu^-$ simulation are reweighted
- \rightarrow 4.3 % uncertainty on normalization

Results

ightarrow Worlds best upper limit on BR($K_{_S}
ightarrow \mu^+\mu^-$)

→ Orders of magnitude away from SM, still room for physics beyond the SM.

Search for new physics in $\Sigma^+ \rightarrow p \mu^+ \mu^-$ [Phys. Rev. Lett. 120, 221803 (2018)]

- Evidence for $\Sigma^+ \rightarrow p \mu^+ \mu^-$ found by HyperCP collaboration: BR = (8.6 $^{+6.6}_{-5.4} \pm 5.5$) · 10⁻⁸
- Consistent with SM: 1.6 10⁻⁸ < BR < 9.0 10⁻⁸
 [X G He et al, PRD 72 (2005) 074003]
- All three observed events had the same dimuon invariant mass M_{inv}(μ⁺μ[−]) = 214 MeV
 → possible new particle X⁰ with X⁰ → μ⁺μ[−]?

Analysis strategy

- **1. Event selection:**
 - a) <u>Trigger:</u> triggered by $\Sigma^+\!
 ightarrow\!p\mu^+\mu^-$ and independently of it
 - b) <u>Selection / background rejection:</u>
 - Cut based pre-selection
 - BDT_{cb} against **combinatorial bkg**
 - Vetoes against $\Lambda \rightarrow p \pi^-$
- 2. Extraction of $\varSigma^+
 ightarrow p \mu^+ \mu^-$ signal yields with maximum likelihood fit
- **3. Translation of signal yields into branching ratio:**

$$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = \frac{\varepsilon_{\Sigma^+ \to p\pi^0}}{\varepsilon_{\Sigma^+ \to p\mu^+\mu^-}} \frac{N_{\Sigma^+ \to p\mu^+\mu^-}}{N_{\Sigma^+ \to p\pi^0}} \mathcal{B}(\Sigma^+ \to p\pi^0)$$

- $\Sigma^+ \!
 ightarrow \! p \pi^{_0}$ decay as normalization
- Ratio of efficiencies from simulation or other decay channels

4. Scan of dimuon invariant mass for possible resonances

Greatest uncertainties

Ratio of trigger efficiencies (similar to $K_{_S} ightarrow \mu^+ \mu^-$):

- Trigger efficiencies taken from simulation \rightarrow trigger response not perfectly described in simulation
- Uncertainty: difference between trigger efficiency from data and simulation
- Use proxy to estimate uncertainty: $\Sigma^+ \!
 ightarrow \! p \pi^o$
- → ~40 % uncertainty on the normalization

Efficiency of particle identification:

- Calculated using simulation and calibrated using dedicated LHCb data samples
- Small size of calibration sample for p introduces big uncertainty
- \rightarrow 28% uncertainty on the normalization

Results

- HyperCP: BR = $(8.6^{+6.6}_{-5.4} \pm 5.5) \cdot 10^{-8}$
- 10.2^{+3.9} $\Sigma^+ \!
 ightarrow \! p \mu^+ \mu^-$ events observed
- Improved branching ratio measurement: BR($\Sigma^+ \rightarrow p \mu^+ \mu^-$) = (2.2^{+1.8} -1.9) \cdot 10⁻⁸
- No evidence of new particle at 124 MeV

Sensitivity study $K_S \rightarrow \pi^0 \mu^+ \mu^-$ [CERN-LHCb-PUB-2016-017]

 $K_{s} \rightarrow \pi^{0} \mu^{+} \mu^{-}$

- Search for physics beyond the SM:
 - $s \rightarrow d$ quark transitions have strongest CKM suppression factor and are particularly sensitive to new sources of flavour violation
 - $K_L \rightarrow \pi^0 \mu^+ \mu^-$ is very sensitive but SM prediction has large uncertainty on BR = {1.4 ± 0.3; 0.9 ± 0.2} 10⁻¹¹
 - \rightarrow Improved measurement on $~K_{_S} \rightarrow ~\pi^{_0} \mu^+ \mu^-$ will reduce uncertainty from SM
- Previous NA48 measurement: BR($K_{S} \rightarrow \pi^{0} \mu^{+} \mu^{-}$) = (2.9^{+1.5}_{-1.2} ± 0.2) 10⁻⁹

Use data collected by LHCb to evaluate the sensitivity on BR expected after the LHCb upgrade.

Strategy

- 1. $K_{_S} \rightarrow \pi^{_0} \mu^+ \mu^-$ reconstruction:
 - a) Fully reconstructed
 - b) Partially reconstructed: π^{0} not reconstructed,

 $\pi^{\scriptscriptstyle 0}$ momentum constrained

- 2. Pseudo-experiments for expected lumi:
 - a) Background yield in 3fb⁻¹ LHCb data extrapolated
 - b) Signal yields extrapolated from $K_S \rightarrow \pi \pi$ signal yield in 3fb⁻¹ LHCb

$$N_{sig} = \frac{\mathcal{B}(K_{\rm S}^0 \to \pi^0 \mu^+ \mu^-)}{\mathcal{B}(K_{\rm S}^0 \to \pi^+ \pi^-)} \frac{\epsilon_{K_{\rm S}^0 \to \pi^0 \mu^+ \mu^-}}{\epsilon_{K_{\rm S}^0 \to \pi^+ \pi^-}} N(K_{\rm S}^0 \to \pi^+ \pi^-) \times \frac{L_{fut}}{L_{curr}}$$

3. Fit to the pseudo-experiments to obtain statistical uncertainty

Results

Claire Prouve

2nd Forum on Rare Kaon decays

Feasibility study $K_{S} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}$ [LHCb-PUB-2016-016]

 $K_{s}
ightarrow \pi^{+}\pi^{-}e^{+}e^{-}$

- Search for light dark-matter states decaying into dileptons
- $\mathcal{B}(K^0_{\rm s} \to e^+ e^- e^+ e^-) \sim 10^{-10}$ $\mathcal{B}(K^0_{\rm s} \to \mu^+ \mu^- e^+ e^-) \sim 10^{-11}$ $\mathcal{B}(K^0_{\rm s} \to \mu^+ \mu^- \mu^+ \mu^-) \sim 10^{-14}$
- → never observed, sensitive to physics beyond the SM
- $K_{_S}
 ightarrow \pi^+ \pi^- e^+ e^-$ is important background
- $K_{_S} \rightarrow \pi^+ \pi^- e^+ e^-$ could be used as normalization
- → Need to understand K_{s} → $\pi^{+}\pi^{-}e^{+}e^{-}$ first!

Study of feasibility of observing $K_{_S} \rightarrow \pi^+\pi^- e^+ e^-$ decays at LHCb.

Strategy

1. Data samples:

- $K_{_S} \rightarrow \pi^+ \pi^- e^+ e^-$ simulated sample
- 2fb⁻¹ LHCb data recorded in 2012

2. Selection:

- a) Trigger
- b) Simple offline pre-selection

3. Expected yields after simple selection:

- Efficiencies for $K_{_S} \rightarrow \pi^+ \pi^- e^+ e^-$ taken from simulation

$$N_{sig}^{exp} = N(K_{\rm s}^0/\,{\rm fb}^{-1}) \cdot \mathcal{B}(K_{\rm s}^0 \to \pi^+\pi^-e^+e^-) \cdot \epsilon^{sig}$$

$$ightarrow K_{S}
ightarrow \pi^{+}\pi^{-}e^{+}e^{-}:120^{+280}_{-100}$$
 / fb⁻¹

Background yield estimated from data
 → Background: ~ 2800 / fb⁻¹

Strategy

4. Pseudo-experiments:

- Further offline selection needed
- Data-sets created for different combinations of signal selection efficiency and background rejection efficiency
- 5. Signal significance determined for each combination

Results

- Signal efficiency vs. background rejection curves for 3σ evidence and 5σ observation
- Both curves achievable with standard MVA selections

 $\rightarrow K_{S} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}$ evidence or

observation possible with only 2011 + 2012 LHCb data!

Summary

- LHCb was build for *b*-physics
 - Trigger thresholds too high for strange physics
- Huge strange production cross-section + good particle identification + good resolution on mass / vertex / impact parameter etc
- Best limits on $K_{S} \rightarrow \mu^{+} \mu^{-}$ branching ratio with 2011 + 2012 data
- Improved BR measurement for $\Sigma^+ \rightarrow p \mu^+ \mu^-$ with 2011 + 2012 data + No evidence of dimuon resonance (e.g. physics beyond the SM) found
- Sensitivity study on branching ratio measurement for $K_S \rightarrow \pi^0 \mu^+ \mu^-$ shows that LHCb improve on NA48 measurement after the upgrade.
- Feasibility study shows that $K_s \rightarrow \pi^+ \pi^- e^+ e^-$ should be observable with data recorded by LHCb in 2011 + 2012.

Thank you!

Backup

Greatest uncertainties

Ratio of trigger efficiencies:

- Trigger efficiencies taken from simulation
- Trigger response not perfectly described in simulation
- Uncertainty: difference between trigger efficiency from data and simulation
- Use proxy to estimate uncertainty: $B^{\pm}{ o}J/\psi({ o}\mu^{+}\mu^{-})K^{\pm}$

Trigger efficiency from data:Overlap between trigger categoriesTriggered byTriggered independently of $B^{\pm} \rightarrow J/\psi(\rightarrow \mu^{+}\mu^{-})K^{\pm}$ $B^{\pm} \rightarrow J/\psi(\rightarrow \mu^{+}\mu^{-})K^{\pm}$

Correct for different momentum distribution

 \rightarrow ~10 % uncertainty on normalization

Greatest uncertainties

<u>Kaon p_{τ} spectrum in not well modeled in simulation:</u>

- $K_{s} \rightarrow \pi^{+}\pi^{-}$ data used to obtain correct p_{τ} spectrum
- All efficiencies obtained from $K_{S} \rightarrow \mu^{+}\mu^{-}$ simulation are reweighted
- Systematic uncertainty estimated by using a different binning in the reweighting and evaluating the difference
- \rightarrow 4.3 % uncertainty on normalization

