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Outline

• Introduction on B-physics anomalies and EFT interpretations 

• Implications of R(D(*)): SU(2)n flavor symmetry &  K→πνν 

• Implications of R(K(*)):  

1. Rank-One Flavour Violation (ROFV) assumption 

2. Constraints from KL,S→µµ  and KL→π0 µµ  

• Summary
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Charged-current anomaliesSemi-leptonic b to c decays

Charged-current interaction: tree-level effect 
in the SM, with mild CKM suppression
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• RH & scalar currents disfavoured 


• SM predictions robust: form factors  
cancel in the ratio (to a good extent)


• Consistent results by three very different 
experiments, in different channels


• Large backgrounds & systematic errors

~ 20% enhancement in LH currents  
~ 4σ from SM
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Tree-level SM process with Vcb suppression.

b → c τ ν  vs.  b → c ℓ ν
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All measurements since 2012 consistently above the SM predictions
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Charged-current anomaliesSemi-leptonic b to c decays

Charged-current interaction: tree-level effect 
in the SM, with mild CKM suppression
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• RH & scalar currents disfavoured 


• SM predictions robust: form factors  
cancel in the ratio (to a good extent)


• Consistent results by three very different 
experiments, in different channels


• Large backgrounds & systematic errors

~ 20% enhancement in LH currents  
~ 4σ from SM
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Tree-level SM process with Vcb suppression.

While μ/e universality well tested

~ 14% enhancement from the SM

~ 3.7σ from the SM (when combined)

b → c τ ν  vs.  b → c ℓ ν

Belle - [1510.03657]
R(D)µ/e = 0.995 ± 0.045
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Before Moriond ’19:
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Neutral-Current B-anomalies
b → s µ+ µ- 
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Clean SM prediction:  1 ± O(1%)

Lepton Flavor Universality ratios

Bordone, Isidori, Pattori 2016

1. Differential branching fractions
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• We also now have precise 
measurements of the branching 
fraction of Λb→Λ�+�− decays. 

➡ Signal mainly at high q2.
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Poor agreement in shape between SM  
predictions and data (especially at low q2)? 
!
[SM from Detmold et al.  Phys. Rev. D87 (2013) 074502]
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⌘ All measurements are seen to be lower than SM predictions.
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2. Angular analyses

B0 ! K ⇤0µ+µ�
angular analysis

⌘ Rich amplitude structure ! 8 observables

The B0 ! K �0(K+��)µ+µ� decay

⌘ The decay probability and angular distribution of decay products described
by 3 angles and the dimuon mass squared (q2)

Observables from the angular distribtion
For B0 � K�(892)0(� K±��)µ+µ� decays...

� P ! V V � (pseudoscalar to vector-vector)
� Vector K⇤(892) =� angular distribution, as well as rate, is interesting

B0

K* 0

K+

π - μ -

μ+

θK
θℓ

φ

� 3 angles, and q2

˘
�K , �`, �, q2¯

� Angular distribution �! Sets of observables:
˘
FL, AFB, A2

T, S9

¯ {P �
4, P �

5, P �
6, P �

8}

� ...Clever ratios of angular terms

S.Cunliffe (Imperial) FFP14 Angular analysis of B0 � K�0µ+µ� 13/21

⌘ Correctly determining which is the kaon
and which is the pion is critical to this
measurement

⌘ The decay of a B0 to a vector K⇤0 particle offers large number of
experimental observables by analysing distribution of the final state decay
products

! 8 experimental observables
! Sensitive to the effect of new particles entering the loop

October 21, 2014 1 / 4

In the �2 fit, the correlations between the di�erent observables are taken into account.
The floating parameters are Re(C9) and a number of nuisance parameters associated with
the form factors, CKM elements and possible sub-leading corrections to the amplitudes.
The sub-leading corrections to the amplitudes are expected to be suppressed by the size of
the b-quark mass relative to the typical energy scale of QCD. The nuisance parameters are
treated according to the prescription of Ref. [11] and are included in the fit with Gaussian
constraints. In the �2 minimisation procedure, the value of each observable (as derived
from a particular choice of the theory parameters) is compared to the measured value.
Depending on the sign of the di�erence between these values, either the lower or upper
(asymmetric) uncertainty on the measurement is used to compute the �2.

The minimum �2 corresponds to a value of Re(C9) shifted by �Re(C9) = �1.04 ± 0.25
from the SM central value of Re(C9) = 4.27 [11] (see Fig. 14). From the di�erence in �2

between the SM point and this best-fit point, the significance of this shift corresponds to
3.4 standard deviations. As discussed in the literature [9–12,14–21], a shift in C9 could be
caused by a contribution from a new vector particle or could result from an unexpectedly
large hadronic e�ect.

If a fit is instead performed to the CP -averaged observables from the moment analysis
in the same q2 ranges, then �Re(C9) = �0.68 ± 0.35 is obtained. As expected, the
uncertainty on �Re(C9) is larger than that from the likelihood fit. Taking into account the
correlations between the two methods, the values of �Re(C9) are statistically compatible.

)9C(Re
3 3.5 4 4.5

2
χ

Δ

0

5

10

15

LHCb

SM

Figure 14: The ��2 distribution for the real part of the generalised vector-coupling strength, C9.
This is determined from a fit to the results of the maximum likelihood fit of the CP -averaged
observables. The SM central value is Re(CSM

9 ) = 4.27 [11]. The best fit point is found to be at
�Re(C9) = �1.04 ± 0.25.
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□ ATLAS-CONF-2017-023
○ CMS-PAS-BPH-15-008

⌘ Angular distribution at 3.4� tension with SM

! Anomalous vector-dilepton coupling

⌘ Update with Run2 is in process.

⌘ With LHCb Upgrade II 400,000 fully

reconstructed B0
! K⇤0µ+µ�

candidates are

expected.

⇤ Precise determination of angular

observables in narrow bins or in an

unbinned approach.
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B → K*(→Kπ) µ+ µ- Differential branching fractions in qµµ2 in several channels.
Angular distributions

Latest update
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if  c = 1      →   Λ ~ 4.5 TeV

b → c τ ν

Freytsis et al. 2015, Angelescu et al. 1808.08179, Shi et al. 1905.08498, 
Murgui et al. 1904.09311, Bardhan, Ghosh 1904.10432, 

Semi-leptonic b to c decays

Charged-current interaction: tree-level effect 
in the SM, with mild CKM suppression


 
LFU ratios:

b

c

ν̄

τ

W

Vcb

R(D)
0.2 0.3 0.4 0.5 0.6

R
(D

*)

0.2

0.25

0.3

0.35

0.4

0.45

0.5 BaBar, PRL109,101802(2012)
Belle, PRD92,072014(2015)
LHCb, PRL115,111803(2015)
Belle, PRD94,072007(2016)
Belle, PRL118,211801(2017)
LHCb, FPCP2017
Average

SM Predictions

 = 1.0 contours2χ∆

R(D)=0.300(8) HPQCD (2015)
R(D)=0.299(11) FNAL/MILC (2015)
R(D*)=0.252(3) S. Fajfer et al. (2012)

HFLAV

FPCP 2017

) = 71.6%2χP(

σ4

σ2

HFLAV
FPCP 2017

• RH & scalar currents disfavoured 


• SM predictions robust: form factors  
cancel in the ratio (to a good extent)


• Consistent results by three very different 
experiments, in different channels


• Large backgrounds & systematic errors

~ 20% enhancement in LH currents 
~ 4σ from SM

RD(⇤) =
BR(B ! D(⇤)⌧ ⌫̄)/SM

BR(B ! D(⇤)`⌫̄)/SM
= 1.237± 0.053

He↵ =
GF
p
2
V ⇤
cb(b̄L�µcL)(⌧̄L�

µ⌫⌧ )

RV V ⌘ �(⌘ ! V V )

�(⌘ ! ��)
=
�(pp ! ⌘ ! V V )

�(pp ! ⌘ ! ��)
(21)
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B(B ! D⇤`⌫)exp/B(B ! D⇤`⌫)SM
= 1.25± 0.08 , (26)
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=

B(B ! D⌧⌫)exp/B(B ! D⌧⌫)SM
B(B ! D`⌫)exp/B(B ! D`⌫)SM

= 1.32± 0.17 , (27)
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K
)SM = 1.0003± 0.0001 (36)

�
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⇤
3i�3j) (37)

�
q

bs
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(⇤SM
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p
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⇡
VtsVtb

C
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9 � C

SM
10

2
(1)

⇤SM
bs

⇡ 12 TeV (2)

Vq ⇠ (2,1,1) , �Yu ⇠ (2, 2̄,1) , �Yd ⇠ (2,1, 2̄) (3)
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using the expressions of the di↵erential rates and form factors from Refs. [70–73]:

RK([1.1� 6]) ⇡ 1.00 + 0.24(Re�C
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, (37)

where Cµ

10, e↵ = �4.103 [70] describes the short-distance SM contribution. These are in good
agreement with the numerical expressions of Ref. [17]. In the above expression we fixed
the central value for the coe�cients of the form factor parametrization. For B

0
s
! µµ we

combine the LHCb [9] and ATLAS [10] measurements assuming Gaussian distributions, and
as the SM prediction we take Br(B0

s
! µµ)SM = (3.65± 0.23)⇥ 10�10 [43].

We perform a simple �
2 fit of these observables for a set of assumptions on the NP

coe�cients, the results are shown in Fig. 8. In the top-left panel we show a comparison with
the fit performed with or without the latest results presented at the Rencontres du Moriond
2019 conference, in the (Re�C

µ

9 ,Re�C
µ

10) plane. We are particularly interested in the case
where the NP coe�cients has a non-vanishing complex phase. Our results, when removing
the latest results presented at Moriond 2019, are in good agreement with Ref. [74], which
also shows a fit including imaginary parts for the NP coe�cients.

The lower-right panel of Fig. 8 shows the fit in the parametrization of the left-left operator
we mostly focus on in this work:

Le↵ �
e
i↵bs

⇤2
bs

(s̄L�
µ
bL)(µ̄L�µµL) + h.c. , (38)

which is related to the standard parametrization by

e
i↵bs

⇤2
bs

=
GF↵
p
2⇡

VtbV
⇤
ts
(�C

µ

9 ��C
µ

10) . (39)

The result of the fit in this parametrization can be seen in the bottom-right panel of Fig. 8.
The best-fit point is found for ⇤bs ⇡ 31.6 TeV and ↵bs = 0.67. Assuming ↵bs = 0 the best-fit
shifts to ⇤bs ⇡ 38.5 TeV, corresponding to �C

µ

9 = ��C
µ

10 ⇡ �0.40. We also note that the
di↵erence in �

2 between these two points is completely negligible. Indeed, the fit presents
an approximate flat direction in ↵bs for approximately |↵bs| . ⇡/4.

In case of the vector solution, �C
µ

9 , the best-fit point assuming vanishing imaginary part
is found for �C

µ

9 = �0.82.
Lastly, a short comment is in order regarding the precision of this fit. It is well known

that the cancellation of uncertainties in the ratios which define the clean observables is a
feature that happens only for the SM point. When considering non-vanishing NP coe�cients,
the uncertainties in the knowledge of the form factors become relevant. A precise fit should
therefore include also these uncertainties and marginalise over the relevant parameters, this
is however beyond the purpose of this work. Comparing the top-left panel in Fig. 8 with the
analogous result of Ref. [17] we check that our results are in good enough agreement with a
more complete fit.
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also shows a fit including imaginary parts for the NP coe�cients.
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that the cancellation of uncertainties in the ratios which define the clean observables is a
feature that happens only for the SM point. When considering non-vanishing NP coe�cients,
the uncertainties in the knowledge of the form factors become relevant. A precise fit should
therefore include also these uncertainties and marginalise over the relevant parameters, this
is however beyond the purpose of this work. Comparing the top-left panel in Fig. 8 with the
analogous result of Ref. [17] we check that our results are in good enough agreement with a
more complete fit.
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(if αbs=0)   Λbs ~ 34 TeV
D’Amico et al. 1704.05438, Algueró et al. 1903.09578, Alok et al. 
1903.09617, Ciuchini et al. 1903.09632, Aebischer et al 1903.10434, …

��μ=-���μ =
π

� � � α��� ���*
�

Λ���
�� α��

�σ �σ �σ

� �� �� �� �� ���
-π/�

-π/�

�

π/�

π/�

Λ�� [���]

α �
�

Figure 8: 2D fits of the clean bsµµ observables listed in Tab. 1. In the top-left panel the
dots represent the best-fit points while dashed (solid) lines are 95%CL (99%CL) contours.
In the other panels the black dot is the best-fit point and the green, orange, and red regions
are such that ��

2
 2.28 (68%CL), 5.99 (95%CL), and 11.6 (99%CL), respectively.

Rencontres de Moriond 2019 [4].6 For updated global fits including all relevant observables
we refer to [15, 22–25].

We are interested in New Physics operators with current-current structure and left-
handed quarks, since they allow the best fits to the observed experimental anomalies:

L
NP
e↵ �

GF↵
p
2⇡

VtbV
⇤
ts
[�C

µ

9 (s̄�
µ
PLb)(µ̄�µµ) +�C

µ

10(s̄�
µ
PLb)(µ̄�µ�5µ)] + h.c. . (36)

We derive the dependence of the clean observables on the �C
µ

9 and �C
µ

10 coe�cients

6The slides can be found at the following url: http://moriond.in2p3.fr/2019/EW/slides/6_Friday/
1_morning/1_Markus_Prim.pdf.
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simplified fit of clean observables 
R(K), R(K*), Bs→µµ

Semi-leptonic b to s decays
FCNC: occurs only at loop-level in the SM 
            + CKM suppressed


Semi-leptonic effective Lagrangian:

L =
4GF
p
2

↵

4⇡
V ⇤
tbVts

X

i

CiOi + C 0
iO

0
i

Deviations from SM in several observables

• Angular distributions in B → K*µµ 

• Various branching ratios B(s) → Xs µµ 

• LFU in R(K) and R(K*) (very clean prediction!)


~ 20% NP contribution to LH current

Globally 5-6σ

b s

ℓ

ℓ̄

Vtb V ∗

ts

W

Z, γ

2

Coe↵. best fit 1� 2� pull

Cµ
9 �1.59 [�2.15, �1.13] [�2.90, �0.73] 4.2�

Cµ
10 +1.23 [+0.90, +1.60] [+0.60, +2.04] 4.3�

Ce
9 +1.58 [+1.17, +2.03] [+0.79, +2.53] 4.4�

Ce
10 �1.30 [�1.68, �0.95] [�2.12, �0.64] 4.4�

Cµ
9 = �Cµ

10 �0.64 [�0.81, �0.48] [�1.00, �0.32] 4.2�

Ce
9 = �Ce

10 +0.78 [+0.56, +1.02] [+0.37, +1.31] 4.3�

C0µ
9 �0.00 [�0.26, +0.25] [�0.52, +0.51] 0.0�

C0µ
10 +0.02 [�0.22, +0.26] [�0.45, +0.49] 0.1�

C0 e
9 +0.01 [�0.27, +0.31] [�0.55, +0.62] 0.0�

C0 e
10 �0.03 [�0.28, +0.22] [�0.55, +0.46] 0.1�

TABLE I. Best-fit values and pulls for scenarios with NP in
one individual Wilson coe�cient.

and the corresponding Wilson coe�cients C
`
i , with ` =

e, µ. We do not consider other dimension-six operators
that can contribute to b ! s`` transitions. Dipole oper-
ators and four-quark operators [46] cannot lead to vio-
lation of LFU and are therefore irrelevant for this work.
Four-fermion contact interactions containing scalar cur-
rents would be a natural source of LFU violation. How-
ever, they are strongly constrained by existing measure-
ments of the Bs ! µµ and Bs ! ee branching ra-
tios [47, 48]. Imposing SU(2)L invariance, these bounds
cannot be avoided [49]. We have checked explicitly that
SU(2)L invariant scalar operators cannot lead to any ap-
preciable e↵ects in RK(⇤) (cf. [50]).

For the numerical analysis we use the open source code
flavio [51]. Based on the experimental measurements
and theory predictions for the LFU ratios RK(⇤) and
the LFU di↵erences of B ! K

⇤
`
+
`
� angular observ-

ables DP 0
4,5

(see below), we construct a �
2 function that

depends on the Wilson coe�cients and that takes into
account the correlations between theory uncertainties of
di↵erent observables. The experimental uncertainties are
presently dominated by statistics, so their correlations
can be neglected. For the SM we find �

2
SM = 24.4 for 5

degrees of freedom.
Tab. I lists the best fit values and pulls, defined as thep
��2 between the best-fit point and the SM point for

scenarios with NP in one individual Wilson coe�cient.
The plots in Fig. 1 show contours of constant ��

2 ⇡
2.3, 6.2, 11.8 in the planes of two Wilson coe�cients for
the scenarios with NP in C

µ
9 and C

µ
10 (top), in C

µ
9 and

C
e
9 (center), or in C

µ
9 and C

0 µ
9 (bottom), assuming the

remaining coe�cients to be SM-like.
The fit prefers NP in the Wilson coe�cients corre-

sponding to left-handed quark currents with high sig-
nificance ⇠ 4�. Negative C

µ
9 and positive C

µ
10 decrease

both B(B ! Kµ
+
µ

�) and B(B ! K
⇤
µ

+
µ

�) while pos-

FIG. 1. Allowed regions in planes of two Wilson coe�cients,
assuming the remaining coe�cients to be SM-like.

Altmannshofer, Stangl, Straub 2017

➡ see Nazila’s talk
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Adding SM SU(2)L gauge invariance:

SM EFT fit  (LH)
Buttazzo, Greljo, Isidori, DM 1706.07808

B(K+ ! ⇡
+
⌫⌫̄) = 2B(K+ ! ⇡

+
⌫e⌫̄e)SM+B(K+ ! ⇡

+
⌫⌧ ⌫̄⌧ )SM

�����1 +
1

⇤2
sd⌫⌫

1

C
sd,⌧

SM

����� ⇠ 30⇥10�11

(1)

B(K+ ! ⇡
+
⌫⌫̄)exp = (17.3+11.5

�10.5)⇥ 10�11 B(KL ! ⇡
0
⌫⌫̄)exp < 3.0⇥ 10�9

(2)

B(KL ! ⇡
0
⌫⌫̄) ⇠ 5� 12⇥ 10�11 B(KL ! ⇡

0
⌫⌫̄)SM = (3.4± 0.6)⇥ 10�11

(3)

LSMEFT = �
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ij
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↵�
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Q

j

L
)(L̄↵
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µ
�
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�
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L�µQ
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L
)(L̄↵
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�
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)
i

(4)

LNP
R(D(⇤)) = 2C

R(D(⇤))�
`

⌧⌧ (c̄L�µbL)(⌧̄L�µ⌫⌧ ) + h.c. (5)
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`

µµ(s̄L�µdL)(⌫̄µ�µ⌫µ)
i
+ h.c. (7)

Csd⌫⌫ = (CS � CT )�
q

sd
(8)

LNP
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=
(CS � CT )

v2
�
q

sd
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�
`

⌧⌧ (s̄L�µdL)(⌫̄⌧�µ⌫⌧ ) + �
`
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+ h.c. (9)
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(3.2 TeV)2
�
q

sd

�
q

bs

(11)

�
q

sd

�
q

bs

⇠ VtdVts
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= Vtd/3 (12)

⇤sd⌫⌫ ⇠ ⇤
R(D(⇤))/

p
Vtd/3 ⇠ 60 TeV (13)

Csb = C sin ✓ cos ✓ sin�ei↵bs =
e
i↵bs

⇤2
bs

Cdb = C sin ✓ cos ✓ cos�ei↵bd

Cds = C sin2 ✓ sin� cos�ei(↵bd�↵bs)

(14)

L � �iQq̄
i

L Q�+ h.c. (15)

n̂i / �iQ (16)

LNP
�F=2 = Cij(q̄

i

L�µq
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L
)2 (17)

CQijL
⇠ CQL
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@
� .. ↵Vtd

.. � ↵Vts
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⇤
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⇤
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SU(2)n flavour symmetry
Keeping only the third-generation Yukawa couplings, the SM enjoys an approximate 

SU(2)5  flavor symmetry

If, instead, the anomalous dimension � is small, the scale ⇤t should be not much above
the compositeness scale ⇤HC in order to generate the required top Yukawa coupling. In
this case an approximate flavour symmetry is required in order to protect the theory
from unwanted flavour violation e↵ects. In the following I take this approach and assume
that the sector responsible for generating these four-fermion operators enjoys a global
approximate, possibly accidental, SU(2)5 flavour symmetry [104–106]:

GF = SU(2)q ⇥ SU(2)u ⇥ SU(2)d ⇥ SU(2)l ⇥ SU(2)e . (3.3)

I also assume that the UV dynamics is such that in the symmetric limit only the third
generation fermions are coupled to the strong sector. All other terms are generated via
small symmetry-breaking e↵ects. These are encoded in a small set of spurions. The mass
of the first two SM families can be generated by a set of bi-doublets:

�Yu = (2, 2̄,1,1,1) , �Yd = (2,1, 2̄,1,1) , �Ye = (1,1,1,2, 2̄) . (3.4)

The mixing between these and the third generation, instead, can be successfully described
by only two doublets:

Vq = (2,1,1,1,1) , Vl = (1,1,1,2,1) . (3.5)

While Vq is related to the CKM matrix elements, the leptonic spurion Vl is unconstrained.
Due to the smallness of the first two generation fermion masses, these two doublets provide
the leading e↵ects in most flavour observables. The smallness of the bottom and ⌧ Yukawa
couplings could be explained by introducing two approximate U(1)d ⇥U(1)e symmetries,
under which all the right-handed down quarks and leptons are charged [105]. The flavour
symmetry and this set of spurions also provide a good structure to fit the B-physics
anomalies [22, 26, 35, 45] while at the same protecting the model from other flavour and
high-pT constraints. Indeed, possible dangerous e↵ects of the 1

⇤2
t

( SM)4 operators are

suppressed by the GF symmetry and the large ⇤t scale.
Another class of possible bilinear operators are those built in terms of vector currents.

At low energies these are interpolated by vector resonances of the strong sector as well as
pNGB vector currents:

L �
c

⇤2
t

( ̄SM�
µ SM)( ̄a�µ b) ! g⇢ ( ̄SM�

µ SM)Tr(cabiU
†DµU + cab⇢µ) , (3.6)

where by NDA, Eq. (2.8) with E4f = 1, one has g⇢ ⇠ O(f/⇤) ⇠ O(1/4⇡). Their e↵ect
is discussed in Section 4.5.

3.1 HC-fermion bilinears

I construct the coupling of the SM fermions to the two Higgses and the S1,3 scalar lepto-
quarks via operators like  ̄SM SM ̄i j, where  ̄ j interpolates the pNGBs below ⇤HC .

In general, both baryon (B) and lepton (L) numbers are broken by adding non-
renormalizable operators (as happens in the SM EFT). In order to avoid proton decay
and other unwanted e↵ects, one could impose B and L conservation in the operators at
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I construct the coupling of the SM fermions to the two Higgses and the S1,3 scalar lepto-
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In general, both baryon (B) and lepton (L) numbers are broken by adding non-
renormalizable operators (as happens in the SM EFT). In order to avoid proton decay
and other unwanted e↵ects, one could impose B and L conservation in the operators at
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discussion in Ref. [89], so Eq. (3.16) is imposed at the matrix level. If also the scalar HC
currents were kept, a slightly more general condition can be derived, see Ref. [68] for a
detailed discussion of this point.

TheGF flavour symmetry and its spurions (3.4,3.5) dictate the structure of the Yukawa
matrices. At leading order in the spurions and up to possible O(1) factors multiplying
each term one has [104] (in L̄R notation):

yu ⇠ yt

✓
�Yu Vq

0 1

◆
, yd ⇠ yb

✓
�Yd Vq

0 1

◆
, ye ⇠ y⌧

✓
�Ye Vl

0 1

◆
. (3.17)

In the left-handed quark sector this can be put in correspondence with the CKM matrix
elements:

Vq = aq

✓
V ⇤
td

V ⇤
ts

◆
, (3.18)

where aq is an O(1) parameter. As shown in Section 5, in order to fit the flavour anomalies
while avoiding dangerous e↵ects involving electrons, the left-handed lepton spurion can
be taken approximately as

Vl ⇡

✓
0
�⌧µ

◆
, (3.19)

where �⌧µ ⌧ 1.

3.3 S1,3 LQ couplings

The operators responsible for generating the leptoquark couplings to fermions are

LF �
1

⇤2
t

⇥
(q̄cLc1,ql✏lL + ēcRc1,euuR) ( ̄Q�5 L) +

�
q̄cLc3,ql✏�

AlL
�
( ̄Q�5�

A L)
⇤
+ h.c. .

(3.20)

Also in this case one can introduce a set of spurions of G to keep track of the explicit
breaking of the global symmetry (see App. C.3):

 ̄a
Q�5 L =  ̄�a

S1
�5 ,

 ̄a
Q�

A�5 L =  ̄�A,a
S3

�5 ,
(3.21)

where the index a runs in the fundamental of SU(3)c while A is in the adjoint of SU(2)w.
Below ⇤HC one can write the couplings of both scalar LQ to SM fermions as6

L
e↵
LQ = i

f

4
(g1q̄

c,a
L �1✏lL + gu1 ē

c
R�

u
1u

a
R) Tr[�

a
S1
(U � U †)] + h.c.

+i
f

4

�
g3q̄

c,a
L �3✏�

AlL
�
Tr[�A,a

S3
(U � U †)] + h.c. = (3.22)

= �g1�1,i↵(q̄
c i
L ✏l↵L)S1 � gu1 (�

u
1 )

T
↵i(ē

c↵
R ui

R)S1 � g3�3,i↵(q̄
c i
L ✏�Al↵L)S

A
3 + h.c.+O(�2) ,

6In presence of EWSB, a factor of cos ✓

2 should muliply all terms in the last line of Eq. (3.22). Since
this is ⇡ 1 up to a small O(⇠) correction, I neglect it in the following.
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The Yukawa matrices 
get this structure:
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The doublet spurions regulate the mixing of the third generation with the lighter ones:

Directly related to CKM

In the down-quark mass basis:

Gly Higgs t S t t
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f snoutsInfo to tabs is Ollis

tssY lbs

O O O
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o ten

int't tni l
Quark flavor matrix:

L � �iQq̄
i
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All is up to unknown O(1) factors!



 9

K→πνν and R(D(*))

LNP
s!d⌫⌫

=
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Contribution to s → dνν: Contribution to b → cτν:

If CS = CT, then the contribution to this channel vanishes (this happens for the U1 vector LQ). 
Assuming instead  CS - CT ~ CT then the NP coefficient of this operator is

This must be compared with the experimental sensitivity
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K→πνν and R(D(*))

With these numbers I obtain:
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Figure 1. Left: allowed range for the real and imaginary parts of the NP Wilson coe�cient C
NP
sd,⌧ .

Right: correlation between B(K+ ! ⇡
+
⌫⌫̄) and RD(⇤) for di↵erent values of the parameter ✓q (with

�q = c13 = 0); the coloured regions are the experimental measurements at 1�, the dark green band is
the SM prediction.

where we have defined
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1p
2GF

. (4.6)

In the limit where we neglect sub-leading terms suppressed by the small leptonic spurion, NP
does not a↵ect B(B ! D
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`⌫̄) for the light leptons. This allows us to fix the overall scale of

NP via the relation
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⇡ 2R0(1� ✓q cos�q) = 0.24± 0.07 . (4.7)

The reference e↵ective scale of NP, obtained for ✓q ! 0, is ⇤0 ⇡ 700GeV. Notice that higher
scales of NP can be obtained if ✓q = O(1) and cos�q < 0, obtaining in this way a better
compatibility with constraints from direct searches [40] and electroweak precision tests [41,42].
On the other hand, the NP contribution to RD(⇤) vanishes in the case of alignment of the flavour
symmetry to up-type quarks (✓q ! 1,�q ! 0).
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where C
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0.11i includes also the long-distance contributions of (2.3).
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While the precise correlation depends on the details 
of the model, it is clear that a future measurements by 
NA62, KOTO, and KLEVER will cover most of the 
parameter space.

Note: for a complete analysis it is important to take 
into account the bounds from B → K(*) νν, 
LEP data, and direct searches.
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Kaon physics and R(K(*)) ?
Under the SU(2)n flavor symmetry: very small effect in kaon observables with muons. 

To see an effect we need a more general flavor structure, 
allowing for larger NP contributions in light quark generations.

The operator(s) responsible for the anomalies are part of an EFT involving all three families
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We need another motivated ansatz for the flavor structure of this matrix.
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Directions in SU(3)q spacequark n̂ � ✓ ↵bd ↵bs

down (1, 0, 0) 0 ⇡/2 0 0

strange (0, 1, 0) ⇡/2 ⇡/2 0 0

bottom (0, 0, 1) 0 0 0 0

up e
i arg(Vub)(V ⇤

ud, V
⇤
us, V

⇤
ub) 0.23 1.57 �1.17 �1.17

charm e
i arg(Vcb)(V ⇤

cd, V
⇤
cs, V

⇤
cb) 1.80 1.53 �6.2⇥ 10�4

�3.3⇥ 10�5

top e
i arg(Vtb)(V ⇤

td, V
⇤
ts, V

⇤
tb) 0.042 4.92 �0.018 0.39

Table 1: SM quark directions of the unitary vector n̂i. The plot shows the corresponding di-
rections in the semi-sphere described by the two angles (✓,�).[AR: si capisce il significato
della freccia in alto?]

We analyse the constraints on the direction n̂ under di↵erent assumptions. We begin in
Sec. ?? by using the e↵ective description in eq. (3) and focussing on the case CR = 0. We
then discuss the extension to the SMEFT description in eq. (4). The latter contributes to
several semileptonic processes. Tab. 2 shows the dependencies of the various types of process
upon the three coe�cients CS,T,R. As the constraints on n̂ depend on the ratios CS : CT : CR.
In Sec. 4 we study di↵erent possible ratios motivated by underlying models with tree-level
mediators.

3 General correlations in OL-type solutions

In this Section, we study the correlations that follow directly from the rank-one condition,
for all models in which NP couples only to left-handed fermions. We begin by using the
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Table 1: SM quark directions of the unitary vector n̂i. The plot shows the corresponding di-
rections in the semi-sphere described by the two angles (✓,�).[AR: si capisce il significato
della freccia in alto?]
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The values of the angles and phases that determine n̂ associated to a specific directions in
flavour space (up and down quarks) are collected in Table 1 and shown in the corresponding
plot.

The flavor structure we assume for the semileptonic operators, Eq. (4), implies the ex-
istence of correlations between the NP contributions to b ! sµ

+
µ
� anomalous observables

4

Channel Coe�cient dependencies
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+
µ
�
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+
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di ! dj⌫µ⌫µ CS � CT

ui ! djµ
+
⌫µ CT

Table 1: Dependencies of various semileptonic processes on the three coe�cients CS,T,R (cf.
Eq. (4)).

be rank-one and proportional. This condition is automatically satisfied in all cases where
the SM quark doublets couple to NP only via a linear coupling:

L = �iq̄
i
LONP + h.c. , (3)

and thus finds realization in several UV models, including all single leptoquark models
[*Refs*], models with single vector-like fermion mediators [*Refs*], and one-loop models
with linear flavor violation [7].

Given our assumptions, the coe�cients of the operators in Eq. (2) can be written as

C
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where CS,T,R 2 R and n̂i is a unitary vector in three-dimensional flavor space. We can
parametrize n̂ as follows1:
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The flavour structure of the semileptonic operators, Eq. (4), implies the existence of
correlations between NP contributions to RK(⇤) and to other observables. Our strategy for
studying these can be summarized as follows: for a given direction n̂, we fix (some combina-
tion of) the overall scalar coe�cients in Eq. (4) by matching with the experimental central
value of RK . Once this is done, we can compute NP contributions to other semileptonic pro-
cesses as functions of n̂, and compare with the corresponding experimental values/bounds.
By this procedure, we are able to narrow down considerably the space of allowed flavor
directions n̂.

The NP lagrangian (2) contributes to several semileptonic processes. The dependencies
of the various types of process upon the three coe�cients CS,T,R are listed in Tab. 1. Since

1For the e↵ective operators considered here, a global rephasing of n is inconsequential, so that we may
assume n3 > 0.
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Rank-One Flavor Violation

We assume that the flavor matrix 
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NP = Cij(d̄
i

L�µd
i

L)(µ̄L�
µ
µL) (1)

Cij = C n̂in̂
⇤
j (2)

⇠ gµVts

⇤2
(b̄L�↵sL)(µ̄L�

↵
µL) (3)

⇠ gµVcb

⇤2
(b̄L�↵cL)(⌫̄

µ

L
�
↵
µL) (4)

⇠ g⌧Vcb

⇤2
(b̄L�↵cL)(⌫̄

⌧

L�
↵
⌧L) (5)

|✏1,3|2 = (6)

L4�Fermi ⇠
c  

⇤2
t

 ̄SM SM ̄ 
E.⇤HC�! ⇠ y �  ̄SM SM �+ . . . (7)

⇤t & ⇤HC (8)

�B(B ! K
⇤
⌫⌫) / (9)

LBSM =
2c

⇤2
(c̄L�µbL)(⌧̄L�

µ
⌫⌧ ) + h.c. (10)

1

⇤2
bsµ

=
�
q

bs

⇤2
qqµ

(11)

Cbsµ

v2
=
�
q

bs

v2
Cqµ (12)

1

⇤2
bsµ

(s̄L�µbL)(µ̄L�
µ
µL) (13)

�
µ

bs
⌧ 1 ⇤qqµ ⌧ ⇤bsµ Cbsµ =

v
2

⇤2
bsµ

(14)

1

⇤2
qqµ

⇥
�
q

bs
(s̄L�µbL) + (q̄L�µqL)

⇤
(µ̄L�

µ
µL) (15)

L � ci

⇤2
(s̄L�

↵
bL)(µ̄L�↵µL) + h.c. (16)

�C
µ

9 = ��C
µ

10 = �0.61± 0.12 (17)

R(K(⇤)) =
B(B ! K

(⇤)
µ
+
µ
�)

B(B ! K(⇤)e+e�)
(18)

�1,s⌧ ⇠ ��3,s⌧ ⇠ (few)⇥ Vcb (19)

(CT + CS)�bs(b̄L�µsL)(⌧̄L�
µ
⌧L) (20)

(CT � CS)�bs(b̄L�µsL)(⌫̄⌧�
µ
⌫⌧ ) (21)

1

Valerio Gherardi, D.M., Marco Nardecchia, Andrea Romanino [1903.10954]

L � �iQq̄
i

L Q�+ h.c. (1)

n̂i / �iQ (2)

LNP
�F=2 = Cij(q̄

i

L�µq
j

L
)2 (3)

CQijL
⇠ CQL

0

@
� .. ↵Vtd

.. � ↵Vts

↵
⇤
V

⇤
td

↵
⇤
V

⇤
ts 1

1

A (4)

CQijL
/

✓
0 cVq

c
⇤
V

†
q 1

◆
+O(V 2

q ,�Y
2) (5)

Vts ! �bs (6)

↵ ⇠ O(1) � . O(1) (7)

�tail ⇠
✓
g
2
⇤
p
2

M2

◆
(8)

1

(⇤SM
bs

)2
=

p
2Gf↵

⇡
VtsVtb

C
SM
9 � C

SM
10

2
(9)

⇤SM
bs

⇡ 12 TeV (10)

Vq ⇠ (2,1,1) , �Yu ⇠ (2, 2̄,1) , �Yd ⇠ (2,1, 2̄) (11)

n̂ ⇠ 1+ 2q ⇠
�
cU2V

T

q , 1
�T

(12)

Br(B0
s ! µ

+
µ
�)

Br(B0
s ! µ+µ�)SM ⇡ Br(B0 ! µ

+
µ
�)

Br(B0 ! µ+µ�)SM . (13)

CL sin ✓ cos ✓ sin�ei↵bs =
e
i↵bs

⇤2
bs

, (14)

n̂ ⇠ 3q (15)

C
MFV
ij ⇠

⇣
1+ aYuY

†
u + bYdY

†
d
+ . . .

⌘

ij

(16)

U(2)3 = U(2)q ⇥ U(2)u ⇥ U(2)d (17)

C =

0

@
Cdd Cds Cdb
C⇤
ds

Css Csb
C⇤
db

C⇤
sb

Cbb

1

A (18)

LEFT
NP = Cij(d̄

i

L�µd
i

L)(µ̄L�
µ
µL) (19)

LEFT
NP = C n̂in̂

⇤
j (d̄

i

L�µd
i

L)(µ̄L�
µ
µL) (20)

Cij = C n̂in̂
⇤
j (21)

⇠ gµVts

⇤2
(b̄L�↵sL)(µ̄L�

↵
µL) (22)

1

n̂ is some (arbitrary) unitary vector 
in flavour space SU(3)q. 

It selects a direction in that space.

Assuming B-anomalies are reproduced,
what are the experimentally allowed directions for n̂?

We aim to answer the following question

quark n̂ � ✓ ↵bd ↵bs

down (1, 0, 0) 0 ⇡/2 0 0

strange (0, 1, 0) ⇡/2 ⇡/2 0 0

bottom (0, 0, 1) 0 0 0 0

up e
i arg(Vub)(V ⇤

ud, V
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us, V
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ub) 0.23 1.57 �1.17 �1.17

charm e
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cb) 1.80 1.53 �6.2⇥ 10�4

�3.3⇥ 10�5

top e
i arg(Vtb)(V ⇤

td, V
⇤
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⇤
tb) 0.042 4.92 �0.018 0.39

Table 1: SM quark directions of the unitary vector n̂i. The plot shows the corresponding di-
rections in the semi-sphere described by the two angles (✓,�).[AR: si capisce il significato
della freccia in alto?]

We analyse the constraints on the direction n̂ under di↵erent assumptions. We begin in
Sec. ?? by using the e↵ective description in eq. (3) and focussing on the case CR = 0. We
then discuss the extension to the SMEFT description in eq. (4). The latter contributes to
several semileptonic processes. Tab. 2 shows the dependencies of the various types of process
upon the three coe�cients CS,T,R. As the constraints on n̂ depend on the ratios CS : CT : CR.
In Sec. 4 we study di↵erent possible ratios motivated by underlying models with tree-level
mediators.

3 General correlations in OL-type solutions

In this Section, we study the correlations that follow directly from the rank-one condition,
for all models in which NP couples only to left-handed fermions. We begin by using the
e↵ective description in eq. (3). For CR = 0, the coe�cient CL = CS +CT is fixed directly by

5

n̂
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Comment on UV realisations
This rank-1 condition is automatically realised 
in many UV scenarios

Single leptoquark models

Single vector-like quark mixing
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Table 1: Dependencies of various semileptonic processes on the three coe�cients CS,T,R (cf.
Eq. (4)).

be rank-one and proportional. This condition is automatically satisfied in all cases where
the SM quark doublets couple to NP only via a linear coupling:

L = �iq̄
i
LONP + h.c. , (3)

and thus finds realization in several UV models, including all single leptoquark models
[*Refs*], models with single vector-like fermion mediators [*Refs*], and one-loop models
with linear flavor violation [7].

Given our assumptions, the coe�cients of the operators in Eq. (2) can be written as

C
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where CS,T,R 2 R and n̂i is a unitary vector in three-dimensional flavor space. We can
parametrize n̂ as follows1:
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The flavour structure of the semileptonic operators, Eq. (4), implies the existence of
correlations between NP contributions to RK(⇤) and to other observables. Our strategy for
studying these can be summarized as follows: for a given direction n̂, we fix (some combina-
tion of) the overall scalar coe�cients in Eq. (4) by matching with the experimental central
value of RK . Once this is done, we can compute NP contributions to other semileptonic pro-
cesses as functions of n̂, and compare with the corresponding experimental values/bounds.
By this procedure, we are able to narrow down considerably the space of allowed flavor
directions n̂.

The NP lagrangian (2) contributes to several semileptonic processes. The dependencies
of the various types of process upon the three coe�cients CS,T,R are listed in Tab. 1. Since

1For the e↵ective operators considered here, a global rephasing of n is inconsequential, so that we may
assume n3 > 0.
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Comment on UV realisations
This rank-1 condition is automatically realised 
in many UV scenarios

Single leptoquark models
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be rank-one and proportional. This condition is automatically satisfied in all cases where
the SM quark doublets couple to NP only via a linear coupling:
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and thus finds realization in several UV models, including all single leptoquark models
[*Refs*], models with single vector-like fermion mediators [*Refs*], and one-loop models
with linear flavor violation [7].
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The flavour structure of the semileptonic operators, Eq. (4), implies the existence of
correlations between NP contributions to RK(⇤) and to other observables. Our strategy for
studying these can be summarized as follows: for a given direction n̂, we fix (some combina-
tion of) the overall scalar coe�cients in Eq. (4) by matching with the experimental central
value of RK . Once this is done, we can compute NP contributions to other semileptonic pro-
cesses as functions of n̂, and compare with the corresponding experimental values/bounds.
By this procedure, we are able to narrow down considerably the space of allowed flavor
directions n̂.

The NP lagrangian (2) contributes to several semileptonic processes. The dependencies
of the various types of process upon the three coe�cients CS,T,R are listed in Tab. 1. Since

1For the e↵ective operators considered here, a global rephasing of n is inconsequential, so that we may
assume n3 > 0.
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Channel Coe�cient dependencies

di ! djµ
+
µ
�

CS + CT , CR

ui ! uj⌫µ⌫µ CS + CT

ui ! ujµ
+
µ
�

CS � CT , CR

di ! dj⌫µ⌫µ CS � CT

ui ! djµ
+
⌫µ CT

Table 1: Dependencies of various semileptonic processes on the three coe�cients CS,T,R (cf.
Eq. (4)).

be rank-one and proportional. This condition is automatically satisfied in all cases where
the SM quark doublets couple to NP only via a linear coupling:

L = �iq̄
i
LONP + h.c. , (3)

and thus finds realization in several UV models, including all single leptoquark models
[*Refs*], models with single vector-like fermion mediators [*Refs*], and one-loop models
with linear flavor violation [7].

Given our assumptions, the coe�cients of the operators in Eq. (2) can be written as

C
ij
S,T,R = CS,T,R n̂in̂

⇤
j , (4)

where CS,T,R 2 R and n̂i is a unitary vector in three-dimensional flavor space. We can
parametrize n̂ as follows1:
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@
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A , (5)

where the angles and phases can be chosen to lie in the following range:
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i
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2
,
⇡
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i
. (6)

The flavour structure of the semileptonic operators, Eq. (4), implies the existence of
correlations between NP contributions to RK(⇤) and to other observables. Our strategy for
studying these can be summarized as follows: for a given direction n̂, we fix (some combina-
tion of) the overall scalar coe�cients in Eq. (4) by matching with the experimental central
value of RK . Once this is done, we can compute NP contributions to other semileptonic pro-
cesses as functions of n̂, and compare with the corresponding experimental values/bounds.
By this procedure, we are able to narrow down considerably the space of allowed flavor
directions n̂.

The NP lagrangian (2) contributes to several semileptonic processes. The dependencies
of the various types of process upon the three coe�cients CS,T,R are listed in Tab. 1. Since

1For the e↵ective operators considered here, a global rephasing of n is inconsequential, so that we may
assume n3 > 0.
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Figure 8: 2D fits of the clean bsµµ observables listed in Tab. 1. In the top-left panel the
dots represent the best-fit points while dashed (solid) lines are 95%CL (99%CL) contours.
In the other panels the black dot is the best-fit point and the green, orange, and red regions
are such that ��

2
 2.28 (68%CL), 5.99 (95%CL), and 11.6 (99%CL), respectively.

Rencontres de Moriond 2019 [4].6 For updated global fits including all relevant observables
we refer to [15, 22–25].

We are interested in New Physics operators with current-current structure and left-
handed quarks, since they allow the best fits to the observed experimental anomalies:

L
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⇤
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9 (s̄�
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PLb)(µ̄�µ�5µ)] + h.c. . (36)

We derive the dependence of the clean observables on the �C
µ

9 and �C
µ

10 coe�cients

6The slides can be found at the following url: http://moriond.in2p3.fr/2019/EW/slides/6_Friday/
1_morning/1_Markus_Prim.pdf.
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Simplified fit of R(K), R(K*), Bs→μμ= (from fit)
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3)  Compute NP contribution for other flavor transitions:

4)  Check if experimentally excluded or not.

  We fix the phases αbs,αbd and plot θ,φ.
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Direct correlations with other didjµµ observables
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Figure 1: Limits in the plane (�, ✓) for two choices of the phases ↵bs and ↵bd from observables
with direct correlation with R

K(⇤) . The blue contours correspond to the value of |CL|
�1/2

in TeV, where solid (dashed) lines are for positive (negative) CL. The meshed red region
correspond to the one suggested by partial compositeness or SU(2)q-like flavor symmetry,
Eq. (30) with |abd,bs| 2 [0.2� 5].

As can be seen from the plots, the most severe bounds arise from B
+
! ⇡

+
µ
+
µ
� and

KL ! µ
+
µ
�. However, notice that the latter observable does not yield any bound for

↵bd � ↵bs = ⇡/2, i.e. for ReCds

L
= 0. The imaginary part of that coe�cient can instead be

tested by KS ! µ
+
µ
�, which however at present is not sensitive enough to exclude a sizeable

region of parameter space. More details on the observables and their NP dependence can be
found in App. B.

As a final remark, let us stress that here and in the following we are ignoring possible NP
contributions to (pseudo)scalar, tensor, or dipole operators. While these are known to be
too constrained to give significant contributions to RK(⇤) (see e.g. [11]), they may nonetheless
produce important e↵ects in other observables, so that some of the bounds discussed here
may be relaxed, if some degree of fine-tuning is allowed.

3 SMEFT and Simplified mediators

Let us now assume that the e↵ective operators in Eq. (2) originate from the SM-invariant
ones in Eq. (3), as expected. The SU(2)L invariance then relates the processes di ! djµ

+
µ
�

in Eq. (10) to the processes involving up quarks and muon neutrinos listed in Tab. 3. Using
the experimental constraints on those, we can impose further constraints on n̂. These,
though, are model dependent even in the CR = 0 case, as they depend on the relative
size of the two operators in Eq. (3) contributing to CL, i.e. CS and CT . The origin of the
model dependence can be clarified taking advantage of a phenomenological observation. Our

7

ATLAS, LHCb
LHCb
LHCb
E871, 
Isidori Unterdorfer ‘03
KTEV

D’Ambrosio et al ’98, Buchalla et al ’03, 
Isidori et al ’04, Mescia et al ’06, Buras et al ’17

Channel Coe�cient dependencies

di ! djµ
+
µ
�

CS + CT , CR

ui ! uj⌫µ⌫µ CS + CT

ui ! ujµ
+
µ
�

CS � CT , CR

di ! dj⌫µ⌫µ CS � CT

ui ! djµ
+
⌫µ CT

Table 3: Dependencies of various semileptonic processes on the three coe�cients CS,T,R (cf.
Eq. (4)). Here and in the text, a given quark level process represents all processes obtained
through a crossing symmetry from the shown one.

Observable Experimental value/bound SM prediction References

Br(B0
d
! µ

+
µ
�) < 2.1⇥ 10�10 (95% CL) (1.06± 0.09)⇥ 10�10 [10, 45]

Br(B+
! ⇡

+
µ
+
µ
�)[1,6] (4.55+1.05

�1.00 ± 0.15)⇥ 10�9 (6.55± 1.25)⇥ 10�9 [46–48]
Br(KS ! µ

+
µ
�) < 1.0⇥ 10�9 (95% CL) (5.0± 1.5)⇥ 10�12 [49]

Br(KL ! µ
+
µ
�)SD < 2.5⇥ 10�9

⇡ 0.9⇥ 10�9 [50, 51]
Br(KL ! ⇡

0
µ
+
µ
�) < 3.8⇥ 10�10 (90% CL) 1.41+0.28

�0.26(0.95
+0.22
�0.21)⇥ 10�11 [52–56]

Table 4: Observables with direct correlation with bsµµ.

symmetries. A discussion on the impact of future measurements is presented in Sec. 5, and
we conclude in Sec. 6. A simplified fit of the RK and RK⇤ anomalies as well as some details
on the flavor observables considered in this work, are collected in two Appendices.

2 General correlations in V-A solutions

In this Section, we study the correlations that follow directly from the rank-one condition,
for all models in which NP couples only to left-handed fermions. We begin by using the
e↵ective description in Eq. (2). For CR = 0, and for fixed ✓ and � in the ranges specified by
Eq. (7), the coe�cient CL = CS + CT and the phase ↵bs are univocally determined by the
b ! sµ

+
µ
� anomalies fit:

CL sin ✓ cos ✓ sin�e
i↵bs = C

bs

L
⌘

e
i↵bs

⇤2
bs

. (8)

From a fit of the observables listed in Table 1, described in detail in App. A, we find that
the phase ↵bs has an approximately flat direction in the range |↵bs| . ⇡/4. Since a non-zero
phase necessarily implies a lower ⇤bs scale in order to fit the anomalies, to be conservative
we fix ↵bs = 0. In this case the best-fit point for the NP scale is

(⇤bs)
best-fit = 38.5 TeV (↵bs ⌘ 0). (9)

We now constrain n̂ (or, more precisely, ✓ and � for given ↵bs) using the other observables
correlated with RK by the relation C

ij

L
= CLn̂in̂

⇤
j
. Such observables are associated to the
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Figure 4: Limits in the plane (�, ✓) for the vector singlet Z
0 with vector-like couplings to

muons and two choices of the phases ↵bs and ↵bd. The dashed purple contour lines are upper
limits on the Z

0 mass [TeV] from �F = 2 processes using Eq. (26) with |g
max
µ | = 4⇡.

The only relevant limits are thus arising from B
+
! ⇡

+
µµ, K+

! ⇡
+
⌫⌫, and from LHC

dimuon searches, as shown in Fig. 4.
This model also generates at the tree-level four quark operators which contribute to

�F = 2 observables:

�L�F=2 = �
g
2
q
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For a fixed direction in quark space, n̂, and a fixed value of R(K(⇤)), we can use �F = 2
constraints to put an upper limit on the ratio rqµ ⌘ |gq/gµ|. We can then assign a maximum
value to gµ, e.g. |gmax

µ | = 4⇡ and derive an upper limit for the Z
0 mass:

M
lim
Z0 =

s
rlimqµ

4|C|
|g

max
µ | . (26)

6 Flavour symmetry and U(2)

The left-handed quark linear interaction, Eq. (3), constitutes an explicit breaking of the SM
flavor symmetry group:

U(3)5 ⌘ U(3)q ⇥ U(3)` ⇥ U(3)u ⇥ U(3)d ⇥ U(3)e. (27)

We can formally assign the coupling � quantum numbers 3q ⌦ ⇢ under U(3)5, where ⇢ is
some representation of

Q
f=`,u,d,e U(3)f , which depends on the specific UV model considered3.

For instance, for the three models of the previous Section we have (cf. Eqs. (), () and ()):

3We shall denote U(n) = U(1) ⇥ SU(n) representations by SU(n) labels only. In all examples which
follow, the U(1) charge of an SU(n) tensor with p contravariant and q covariant indices is Q = p� q.
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Figure 1: Limits in the plane (�, ✓) for two choices of the phases ↵bs and ↵bd from observables
with direct correlation with RK(⇤) . The blue contours correspond to the value of |CL|

�1/2

in TeV, where solid (dashed) lines are for positive (negative) CL. The meshed red region
correspond to the one suggested by partial compositeness or SU(2)q-like flavor symmetry,
Eq. (30) with |abd,bs| 2 [0.2� 5].

quark-level transitions
di ! djµ

+
µ
� (10)

and cross-symmetric counterparts. The most relevant among those observables are listed in
Tab. 4, and the corresponding allowed regions for ✓, � are shown in Fig. 1 in the two cases
(↵bd,↵bs) = (0, 0) and (↵bd,↵bs) = (⇡/2, 0).

As can be seen from the plots, the most severe bounds arise from B
+
! ⇡

+
µ
+
µ
� (LHCb

[46]) and KL ! µ
+
µ
� (E871 [50, 51]). However, the latter observable does not yield any

bound for ↵bd � ↵bs = ⇡/2, i.e. for ReCds

L
= 0. The imaginary part of that coe�cient can

instead be tested by KS ! µ
+
µ
� (LHCb [49]) and KL ! ⇡

0
µ
+
µ
� (KTeV [52]).3 More

details on the observables and their NP dependence can be found in App. B.
As a final remark, let us stress that here and in the following we are ignoring possible NP

contributions to (pseudo)scalar, tensor, or dipole operators. While these are known to be
too constrained to give significant contributions to R

K(⇤) (see e.g. [11]), they may nonetheless
produce important e↵ects in other observables, so that some of the bounds discussed here
may be relaxed, if some degree of fine-tuning is allowed.

3 SMEFT and Simplified mediators

Let us now assume that the e↵ective operators in Eq. (2) originate from the SM-invariant
ones in Eq. (3), as expected. The SU(2)L invariance then relates the processes di ! djµ

+
µ
�

in Eq. (10) to the processes involving up quarks and muon neutrinos listed in Tab. 3. Using

3We thank C. Bobeth for suggesting us to consider this observable.
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Tab. 4, and the corresponding allowed regions for ✓, � are shown in Fig. 1 in the two cases
(↵bd,↵bs) = (0, 0) and (↵bd,↵bs) = (⇡/2, 0).

As can be seen from the plots, the most severe bounds arise from B
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+
µ
+
µ
� (LHCb

[46]) and KL ! µ
+
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� (E871 [50, 51]). However, the latter observable does not yield any

bound for ↵bd � ↵bs = ⇡/2, i.e. for ReCds

L
= 0. The imaginary part of that coe�cient can

instead be tested by KS ! µ
+
µ
� (LHCb [49]) and KL ! ⇡

0
µ
+
µ
� (KTeV [52]).3 More

details on the observables and their NP dependence can be found in App. B.
As a final remark, let us stress that here and in the following we are ignoring possible NP

contributions to (pseudo)scalar, tensor, or dipole operators. While these are known to be
too constrained to give significant contributions to R

K(⇤) (see e.g. [11]), they may nonetheless
produce important e↵ects in other observables, so that some of the bounds discussed here
may be relaxed, if some degree of fine-tuning is allowed.

3 SMEFT and Simplified mediators

Let us now assume that the e↵ective operators in Eq. (2) originate from the SM-invariant
ones in Eq. (3), as expected. The SU(2)L invariance then relates the processes di ! djµ

+
µ
�

in Eq. (10) to the processes involving up quarks and muon neutrinos listed in Tab. 3. Using

3We thank C. Bobeth for suggesting us to consider this observable.
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in TeV, where solid (dashed) lines are for positive (negative) CL. The meshed red region
correspond to the one suggested by partial compositeness or SU(2)q-like flavor symmetry,
Eq. (30) with |abd,bs| 2 [0.2� 5].

As can be seen from the plots, the most severe bounds arise from B
+
! ⇡

+
µ
+
µ
� and

KL ! µ
+
µ
�. However, notice that the latter observable does not yield any bound for

↵bd � ↵bs = ⇡/2, i.e. for ReCds

L
= 0. The imaginary part of that coe�cient can instead be

tested by KS ! µ
+
µ
�, which however at present is not sensitive enough to exclude a sizeable

region of parameter space. More details on the observables and their NP dependence can be
found in App. B.

As a final remark, let us stress that here and in the following we are ignoring possible NP
contributions to (pseudo)scalar, tensor, or dipole operators. While these are known to be
too constrained to give significant contributions to RK(⇤) (see e.g. [11]), they may nonetheless
produce important e↵ects in other observables, so that some of the bounds discussed here
may be relaxed, if some degree of fine-tuning is allowed.

3 SMEFT and Simplified mediators

Let us now assume that the e↵ective operators in Eq. (2) originate from the SM-invariant
ones in Eq. (3), as expected. The SU(2)L invariance then relates the processes di ! djµ

+
µ
�

in Eq. (10) to the processes involving up quarks and muon neutrinos listed in Tab. 3. Using
the experimental constraints on those, we can impose further constraints on n̂. These,
though, are model dependent even in the CR = 0 case, as they depend on the relative
size of the two operators in Eq. (3) contributing to CL, i.e. CS and CT . The origin of the
model dependence can be clarified taking advantage of a phenomenological observation. Our

7

Each colored region is excluded by 
the respective observable

Fix the phases and plot on the angles φ, θ (it’s a semi-sphere in SU(3)q)

Channel Coe�cient dependencies

di ! djµ
+
µ
�

CS + CT , CR

ui ! uj⌫µ⌫µ CS + CT

ui ! ujµ
+
µ
�

CS � CT , CR

di ! dj⌫µ⌫µ CS � CT

ui ! djµ
+
⌫µ CT

Table 3: Dependencies of various semileptonic processes on the three coe�cients CS,T,R (cf.
Eq. (4)). Here and in the text, a given quark level process represents all processes obtained
through a crossing symmetry from the shown one.

Observable Experimental value/bound SM prediction References

Br(B0
d
! µ

+
µ
�) < 2.1⇥ 10�10 (95% CL) (1.06± 0.09)⇥ 10�10 [10, 45]

Br(B+
! ⇡

+
µ
+
µ
�)[1,6] (4.55+1.05

�1.00 ± 0.15)⇥ 10�9 (6.55± 1.25)⇥ 10�9 [46–48]
Br(KS ! µ

+
µ
�) < 1.0⇥ 10�9 (95% CL) (5.0± 1.5)⇥ 10�12 [49]

Br(KL ! µ
+
µ
�)SD < 2.5⇥ 10�9

⇡ 0.9⇥ 10�9 [50, 51]
Br(KL ! ⇡

0
µ
+
µ
�) < 3.8⇥ 10�10 (90% CL) 1.41+0.28

�0.26(0.95
+0.22
�0.21)⇥ 10�11 [52–56]

Table 4: Observables with direct correlation with bsµµ.

symmetries. A discussion on the impact of future measurements is presented in Sec. 5, and
we conclude in Sec. 6. A simplified fit of the RK and RK⇤ anomalies as well as some details
on the flavor observables considered in this work, are collected in two Appendices.

2 General correlations in V-A solutions

In this Section, we study the correlations that follow directly from the rank-one condition,
for all models in which NP couples only to left-handed fermions. We begin by using the
e↵ective description in Eq. (2). For CR = 0, and for fixed ✓ and � in the ranges specified by
Eq. (7), the coe�cient CL = CS + CT and the phase ↵bs are univocally determined by the
b ! sµ

+
µ
� anomalies fit:

CL sin ✓ cos ✓ sin�e
i↵bs = C

bs

L
⌘

e
i↵bs

⇤2
bs

. (8)

From a fit of the observables listed in Table 1, described in detail in App. A, we find that
the phase ↵bs has an approximately flat direction in the range |↵bs| . ⇡/4. Since a non-zero
phase necessarily implies a lower ⇤bs scale in order to fit the anomalies, to be conservative
we fix ↵bs = 0. In this case the best-fit point for the NP scale is

(⇤bs)
best-fit = 38.5 TeV (↵bs ⌘ 0). (9)

We now constrain n̂ (or, more precisely, ✓ and � for given ↵bs) using the other observables
correlated with RK by the relation C

ij

L
= CLn̂in̂

⇤
j
. Such observables are associated to the
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General correlations (LH)�i =

8
><

>:

g
⇤
µi ⇠ 3q ⌦ 3` U

µ
1 ,

⌘
⇤
µi ⇠ 3q ⌦ 3` S3,

M
⇤
i ⇠ 3q Z

0
, V

0
.

(28)

If we assume a subgroup G ✓ U(3)5 to be an actual (spontaneously broken) symmetry of
the complete UV lagrangian, we can investigate possible relations between � and the other
source of U(3)5 breaking in the SM, namely the Yukawa couplings Yu,d,e. To this end, we
write all U(3)5-violating couplings as VEVs of flavons with irreducible G quantum numbers,
and assume the UV theory to contain at most one flavon of each type. By means of a
standard spurionic analysis, we obtain the following results:

• If G = U(3)5, Yu,d,e and �i have, in principle, completely independent flavor structures
for all models in Eq. (28).

• A BSM flavour protection mechanism relying to leading couplings with third generation
fermions, such as partial compositeness or a generic U(2) flavour symmetric-case, cor-
responds to a unit vector of the kind n̂ = (O(Vtd),O(Vts),O(1)). We can parametrize
such a scenario in full generality as

n̂ =
1p

1 + a2bd|Vtd|
2 + a2bs|Vts|

2)

�
abde

i↵bd |Vtd|, abse
i↵bs |Vts|, 1

�
(29)

where abd and abs are O(1) real parameters. The area in the (�, ✓) plane corresponding
to values |abs,bd| 2 [0.2� 5] is shown as a meshed-red one in the plots of Figs. 1,2,3.

• In the specific case of a minimally broken G = U(2)5 flavour symmetry, we find a
relation [4]:

�1

�2
= (

Vtd

Vts
)⇤, (30)

which holds up to O(ms
mb

) corrections. More precisely, Eq. (30) is always valid in
Z

0 and V
0 models, whereas for the leptoquark models its validity is guaranteed if

|Vq`| ⌧ |Vq| |V`|, where Vq, V` and Vq` are the (adimensional) VEVs of flavons with
U(2)5 quantum numbers 2q, 2` and 2q ⌦ 2` respectively.

In the second case, the unit vector n̂ in Eq. (4) can be written:

n̂ =
1p

1 + |cU2|
2(|Vtd|

2 + |Vts|
2)

�
cU2e

i�
V

⇤
td, cU2e

i�
V

⇤
ts, 1

�
. (31)

Comparing with the parametrization (5), one gets:

↵bd = � arg(Vtd)+� , ↵bs = � arg(Vts)+� , tan� =
|Vts|

|Vtd|
, tan ✓ = |cU2|

p
|Vtd|

2 + |Vts|
2 .

(32)
The limit in the plane (�, cU2), once the overall scale C+ is fixed by the R(K(⇤)) anomalies,

is shown in Fig. 5. One can notice that, for positive values of C+ (solid blue lines), the limit
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Figure 4: Limits in the plane (�, ✓) for the vector singlet Z
0 with vector-like couplings to

muons and two choices of the phases ↵bs and ↵bd. The dashed purple contour lines are upper
limits on the Z

0 mass [TeV] from �F = 2 processes using Eq. (26) with |g
max
µ | = 4⇡.

The only relevant limits are thus arising from B
+
! ⇡

+
µµ, K+

! ⇡
+
⌫⌫, and from LHC

dimuon searches, as shown in Fig. 4.
This model also generates at the tree-level four quark operators which contribute to

�F = 2 observables:

�L�F=2 = �
g
2
q

8M2
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⇥
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For a fixed direction in quark space, n̂, and a fixed value of R(K(⇤)), we can use �F = 2
constraints to put an upper limit on the ratio rqµ ⌘ |gq/gµ|. We can then assign a maximum
value to gµ, e.g. |gmax

µ | = 4⇡ and derive an upper limit for the Z
0 mass:

M
lim
Z0 =

s
rlimqµ

4|C|
|g

max
µ | . (26)

6 Flavour symmetry and U(2)

The left-handed quark linear interaction, Eq. (3), constitutes an explicit breaking of the SM
flavor symmetry group:

U(3)5 ⌘ U(3)q ⇥ U(3)` ⇥ U(3)u ⇥ U(3)d ⇥ U(3)e. (27)

We can formally assign the coupling � quantum numbers 3q ⌦ ⇢ under U(3)5, where ⇢ is
some representation of

Q
f=`,u,d,e U(3)f , which depends on the specific UV model considered3.

For instance, for the three models of the previous Section we have (cf. Eqs. (), () and ()):

3We shall denote U(n) = U(1) ⇥ SU(n) representations by SU(n) labels only. In all examples which
follow, the U(1) charge of an SU(n) tensor with p contravariant and q covariant indices is Q = p� q.
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Figure 1: Limits in the plane (�, ✓) for two choices of the phases ↵bs and ↵bd from observables
with direct correlation with RK(⇤) . The blue contours correspond to the value of |CL|

�1/2

in TeV, where solid (dashed) lines are for positive (negative) CL. The meshed red region
correspond to the one suggested by partial compositeness or SU(2)q-like flavor symmetry,
Eq. (30) with |abd,bs| 2 [0.2� 5].

quark-level transitions
di ! djµ

+
µ
� (10)

and cross-symmetric counterparts. The most relevant among those observables are listed in
Tab. 4, and the corresponding allowed regions for ✓, � are shown in Fig. 1 in the two cases
(↵bd,↵bs) = (0, 0) and (↵bd,↵bs) = (⇡/2, 0).

As can be seen from the plots, the most severe bounds arise from B
+
! ⇡

+
µ
+
µ
� (LHCb

[46]) and KL ! µ
+
µ
� (E871 [50, 51]). However, the latter observable does not yield any

bound for ↵bd � ↵bs = ⇡/2, i.e. for ReCds

L
= 0. The imaginary part of that coe�cient can

instead be tested by KS ! µ
+
µ
� (LHCb [49]) and KL ! ⇡

0
µ
+
µ
� (KTeV [52]).3 More

details on the observables and their NP dependence can be found in App. B.
As a final remark, let us stress that here and in the following we are ignoring possible NP

contributions to (pseudo)scalar, tensor, or dipole operators. While these are known to be
too constrained to give significant contributions to R

K(⇤) (see e.g. [11]), they may nonetheless
produce important e↵ects in other observables, so that some of the bounds discussed here
may be relaxed, if some degree of fine-tuning is allowed.

3 SMEFT and Simplified mediators

Let us now assume that the e↵ective operators in Eq. (2) originate from the SM-invariant
ones in Eq. (3), as expected. The SU(2)L invariance then relates the processes di ! djµ

+
µ
�

in Eq. (10) to the processes involving up quarks and muon neutrinos listed in Tab. 3. Using

3We thank C. Bobeth for suggesting us to consider this observable.
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with direct correlation with RK(⇤) . The blue contours correspond to the value of |CL|

�1/2

in TeV, where solid (dashed) lines are for positive (negative) CL. The meshed red region
correspond to the one suggested by partial compositeness or SU(2)q-like flavor symmetry,
Eq. (30) with |abd,bs| 2 [0.2� 5].

quark-level transitions
di ! djµ

+
µ
� (10)

and cross-symmetric counterparts. The most relevant among those observables are listed in
Tab. 4, and the corresponding allowed regions for ✓, � are shown in Fig. 1 in the two cases
(↵bd,↵bs) = (0, 0) and (↵bd,↵bs) = (⇡/2, 0).

As can be seen from the plots, the most severe bounds arise from B
+
! ⇡

+
µ
+
µ
� (LHCb

[46]) and KL ! µ
+
µ
� (E871 [50, 51]). However, the latter observable does not yield any

bound for ↵bd � ↵bs = ⇡/2, i.e. for ReCds

L
= 0. The imaginary part of that coe�cient can

instead be tested by KS ! µ
+
µ
� (LHCb [49]) and KL ! ⇡

0
µ
+
µ
� (KTeV [52]).3 More

details on the observables and their NP dependence can be found in App. B.
As a final remark, let us stress that here and in the following we are ignoring possible NP

contributions to (pseudo)scalar, tensor, or dipole operators. While these are known to be
too constrained to give significant contributions to R

K(⇤) (see e.g. [11]), they may nonetheless
produce important e↵ects in other observables, so that some of the bounds discussed here
may be relaxed, if some degree of fine-tuning is allowed.

3 SMEFT and Simplified mediators

Let us now assume that the e↵ective operators in Eq. (2) originate from the SM-invariant
ones in Eq. (3), as expected. The SU(2)L invariance then relates the processes di ! djµ

+
µ
�

in Eq. (10) to the processes involving up quarks and muon neutrinos listed in Tab. 3. Using

3We thank C. Bobeth for suggesting us to consider this observable.
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the respective observable

Channel Coe�cient dependencies

di ! djµ
+
µ
�

CS + CT , CR

ui ! uj⌫µ⌫µ CS + CT

ui ! ujµ
+
µ
�

CS � CT , CR

di ! dj⌫µ⌫µ CS � CT

ui ! djµ
+
⌫µ CT

Table 3: Dependencies of various semileptonic processes on the three coe�cients CS,T,R (cf.
Eq. (4)). Here and in the text, a given quark level process represents all processes obtained
through a crossing symmetry from the shown one.

Observable Experimental value/bound SM prediction References

Br(B0
d
! µ

+
µ
�) < 2.1⇥ 10�10 (95% CL) (1.06± 0.09)⇥ 10�10 [10, 45]

Br(B+
! ⇡

+
µ
+
µ
�)[1,6] (4.55+1.05

�1.00 ± 0.15)⇥ 10�9 (6.55± 1.25)⇥ 10�9 [46–48]
Br(KS ! µ

+
µ
�) < 1.0⇥ 10�9 (95% CL) (5.0± 1.5)⇥ 10�12 [49]

Br(KL ! µ
+
µ
�)SD < 2.5⇥ 10�9

⇡ 0.9⇥ 10�9 [50, 51]
Br(KL ! ⇡

0
µ
+
µ
�) < 3.8⇥ 10�10 (90% CL) 1.41+0.28

�0.26(0.95
+0.22
�0.21)⇥ 10�11 [52–56]

Table 4: Observables with direct correlation with bsµµ.

symmetries. A discussion on the impact of future measurements is presented in Sec. 5, and
we conclude in Sec. 6. A simplified fit of the RK and RK⇤ anomalies as well as some details
on the flavor observables considered in this work, are collected in two Appendices.

2 General correlations in V-A solutions

In this Section, we study the correlations that follow directly from the rank-one condition,
for all models in which NP couples only to left-handed fermions. We begin by using the
e↵ective description in Eq. (2). For CR = 0, and for fixed ✓ and � in the ranges specified by
Eq. (7), the coe�cient CL = CS + CT and the phase ↵bs are univocally determined by the
b ! sµ

+
µ
� anomalies fit:

CL sin ✓ cos ✓ sin�e
i↵bs = C

bs

L
⌘

e
i↵bs

⇤2
bs

. (8)

From a fit of the observables listed in Table 1, described in detail in App. A, we find that
the phase ↵bs has an approximately flat direction in the range |↵bs| . ⇡/4. Since a non-zero
phase necessarily implies a lower ⇤bs scale in order to fit the anomalies, to be conservative
we fix ↵bs = 0. In this case the best-fit point for the NP scale is

(⇤bs)
best-fit = 38.5 TeV (↵bs ⌘ 0). (9)

We now constrain n̂ (or, more precisely, ✓ and � for given ↵bs) using the other observables
correlated with RK by the relation C

ij

L
= CLn̂in̂

⇤
j
. Such observables are associated to the
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Figure 4: Limits in the plane (�, ✓) for the vector singlet Z
0 with vector-like couplings to

muons and two choices of the phases ↵bs and ↵bd. The dashed purple contour lines are upper
limits on the Z

0 mass [TeV] from �F = 2 processes using Eq. (26) with |g
max
µ | = 4⇡.

The only relevant limits are thus arising from B
+
! ⇡

+
µµ, K+

! ⇡
+
⌫⌫, and from LHC

dimuon searches, as shown in Fig. 4.
This model also generates at the tree-level four quark operators which contribute to

�F = 2 observables:

�L�F=2 = �
g
2
q

8M2
Z0

⇥
(n̂in̂

⇤
j d̄

i
L�

↵
d
j
L)

2 + (Vikn̂kn̂
⇤
l V

⇤
jl ū

i
L�

↵
u
j
L)

2
⇤
. (25)

For a fixed direction in quark space, n̂, and a fixed value of R(K(⇤)), we can use �F = 2
constraints to put an upper limit on the ratio rqµ ⌘ |gq/gµ|. We can then assign a maximum
value to gµ, e.g. |gmax

µ | = 4⇡ and derive an upper limit for the Z
0 mass:

M
lim
Z0 =

s
rlimqµ

4|C|
|g

max
µ | . (26)

6 Flavour symmetry and U(2)

The left-handed quark linear interaction, Eq. (3), constitutes an explicit breaking of the SM
flavor symmetry group:

U(3)5 ⌘ U(3)q ⇥ U(3)` ⇥ U(3)u ⇥ U(3)d ⇥ U(3)e. (27)

We can formally assign the coupling � quantum numbers 3q ⌦ ⇢ under U(3)5, where ⇢ is
some representation of

Q
f=`,u,d,e U(3)f , which depends on the specific UV model considered3.

For instance, for the three models of the previous Section we have (cf. Eqs. (), () and ()):

3We shall denote U(n) = U(1) ⇥ SU(n) representations by SU(n) labels only. In all examples which
follow, the U(1) charge of an SU(n) tensor with p contravariant and q covariant indices is Q = p� q.
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Figure 1: Limits in the plane (�, ✓) for two choices of the phases ↵bs and ↵bd from observables
with direct correlation with RK(⇤) . The blue contours correspond to the value of |CL|

�1/2

in TeV, where solid (dashed) lines are for positive (negative) CL. The meshed red region
correspond to the one suggested by partial compositeness or SU(2)q-like flavor symmetry,
Eq. (30) with |abd,bs| 2 [0.2� 5].

quark-level transitions
di ! djµ

+
µ
� (10)

and cross-symmetric counterparts. The most relevant among those observables are listed in
Tab. 4, and the corresponding allowed regions for ✓, � are shown in Fig. 1 in the two cases
(↵bd,↵bs) = (0, 0) and (↵bd,↵bs) = (⇡/2, 0).

As can be seen from the plots, the most severe bounds arise from B
+
! ⇡

+
µ
+
µ
� (LHCb

[46]) and KL ! µ
+
µ
� (E871 [50, 51]). However, the latter observable does not yield any

bound for ↵bd � ↵bs = ⇡/2, i.e. for ReCds

L
= 0. The imaginary part of that coe�cient can

instead be tested by KS ! µ
+
µ
� (LHCb [49]) and KL ! ⇡

0
µ
+
µ
� (KTeV [52]).3 More

details on the observables and their NP dependence can be found in App. B.
As a final remark, let us stress that here and in the following we are ignoring possible NP

contributions to (pseudo)scalar, tensor, or dipole operators. While these are known to be
too constrained to give significant contributions to R

K(⇤) (see e.g. [11]), they may nonetheless
produce important e↵ects in other observables, so that some of the bounds discussed here
may be relaxed, if some degree of fine-tuning is allowed.

3 SMEFT and Simplified mediators

Let us now assume that the e↵ective operators in Eq. (2) originate from the SM-invariant
ones in Eq. (3), as expected. The SU(2)L invariance then relates the processes di ! djµ

+
µ
�

in Eq. (10) to the processes involving up quarks and muon neutrinos listed in Tab. 3. Using

3We thank C. Bobeth for suggesting us to consider this observable.
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For complex coefficients, 
KL→π0µµ  and KS→µµ 
become important

Direct correlations with other didjµµ observables

LEFT
NP = Cij(d̄

i

L�µd
i

L)(µ̄L�
µ
µL) (1)

LEFT
NP = C n̂in̂

⇤
j (d̄

i

L�µd
i

L)(µ̄L�
µ
µL) (2)

Cij = C n̂in̂
⇤
j (3)

⇠ gµVts

⇤2
(b̄L�↵sL)(µ̄L�

↵
µL) (4)

⇠ gµVcb

⇤2
(b̄L�↵cL)(⌫̄

µ

L
�
↵
µL) (5)

⇠ g⌧Vcb

⇤2
(b̄L�↵cL)(⌫̄

⌧

L�
↵
⌧L) (6)

|✏1,3|2 = (7)

L4�Fermi ⇠
c  

⇤2
t

 ̄SM SM ̄ 
E.⇤HC�! ⇠ y �  ̄SM SM �+ . . . (8)

⇤t & ⇤HC (9)

�B(B ! K
⇤
⌫⌫) / (10)

LBSM =
2c

⇤2
(c̄L�µbL)(⌧̄L�

µ
⌫⌧ ) + h.c. (11)

1

⇤2
bsµ

=
�
q

bs

⇤2
qqµ

(12)

Cbsµ

v2
=
�
q

bs

v2
Cqµ (13)

1

⇤2
bsµ

(s̄L�µbL)(µ̄L�
µ
µL) (14)

�
µ

bs
⌧ 1 ⇤qqµ ⌧ ⇤bsµ Cbsµ =

v
2

⇤2
bsµ

(15)

1

⇤2
qqµ

⇥
�
q

bs
(s̄L�µbL) + (q̄L�µqL)

⇤
(µ̄L�

µ
µL) (16)

L � ci

⇤2
(s̄L�

↵
bL)(µ̄L�↵µL) + h.c. (17)

�C
µ

9 = ��C
µ

10 = �0.61± 0.12 (18)

R(K(⇤)) =
B(B ! K

(⇤)
µ
+
µ
�)

B(B ! K(⇤)e+e�)
(19)

�1,s⌧ ⇠ ��3,s⌧ ⇠ (few)⇥ Vcb (20)

(CT + CS)�bs(b̄L�µsL)(⌧̄L�
µ
⌧L) (21)

1

Channel Coe�cient dependencies

di ! djµ
+
µ
�

CS + CT , CR

ui ! uj⌫µ⌫µ CS + CT

ui ! ujµ
+
µ
�

CS � CT , CR

di ! dj⌫µ⌫µ CS � CT

ui ! djµ
+
⌫µ CT

Table 1: Dependencies of various semileptonic processes on the three coe�cients CS,T,R (cf.
Eq. (4)).

be rank-one and proportional. This condition is automatically satisfied in all cases where
the SM quark doublets couple to NP only via a linear coupling:

L = �iq̄
i
LONP + h.c. , (3)

and thus finds realization in several UV models, including all single leptoquark models
[*Refs*], models with single vector-like fermion mediators [*Refs*], and one-loop models
with linear flavor violation [7].

Given our assumptions, the coe�cients of the operators in Eq. (2) can be written as

C
ij
S,T,R = CS,T,R n̂in̂

⇤
j , (4)

where CS,T,R 2 R and n̂i is a unitary vector in three-dimensional flavor space. We can
parametrize n̂ as follows1:

n̂ =

0

@
sin ✓ cos�ei↵bd

sin ✓ sin�ei↵bs

cos ✓

1

A , (5)

where the angles and phases can be chosen to lie in the following range:

✓ 2

h
0,

⇡

2

i
, � 2 [0, 2⇡) , ↵bd 2

h
�
⇡

2
,
⇡

2

i
, ↵bs 2

h
�
⇡

2
,
⇡

2

i
. (6)

The flavour structure of the semileptonic operators, Eq. (4), implies the existence of
correlations between NP contributions to RK(⇤) and to other observables. Our strategy for
studying these can be summarized as follows: for a given direction n̂, we fix (some combina-
tion of) the overall scalar coe�cients in Eq. (4) by matching with the experimental central
value of RK . Once this is done, we can compute NP contributions to other semileptonic pro-
cesses as functions of n̂, and compare with the corresponding experimental values/bounds.
By this procedure, we are able to narrow down considerably the space of allowed flavor
directions n̂.

The NP lagrangian (2) contributes to several semileptonic processes. The dependencies
of the various types of process upon the three coe�cients CS,T,R are listed in Tab. 1. Since

1For the e↵ective operators considered here, a global rephasing of n is inconsequential, so that we may
assume n3 > 0.

4

Cdb

Im(Cds) 
Re(Cds) 
Im(Cds)

Channel Coe�cient dependencies

di ! djµ
+
µ
�

CS + CT , CR

ui ! uj⌫µ⌫µ CS + CT

ui ! ujµ
+
µ
�

CS � CT , CR

di ! dj⌫µ⌫µ CS � CT

ui ! djµ
+
⌫µ CT

Table 3: Dependencies of various semileptonic processes on the three coe�cients CS,T,R (cf.
Eq. (4)). Here and in the text, a given quark level process represents all processes obtained
through a crossing symmetry from the shown one.

Observable Experimental value/bound SM prediction References

Br(B0
d
! µ

+
µ
�) < 2.1⇥ 10�10 (95% CL) (1.06± 0.09)⇥ 10�10 [10, 45]

Br(B+
! ⇡

+
µ
+
µ
�)[1,6] (4.55+1.05

�1.00 ± 0.15)⇥ 10�9 (6.55± 1.25)⇥ 10�9 [46–48]
Br(KS ! µ

+
µ
�) < 1.0⇥ 10�9 (95% CL) (5.0± 1.5)⇥ 10�12 [49]

Br(KL ! µ
+
µ
�)SD < 2.5⇥ 10�9

⇡ 0.9⇥ 10�9 [50, 51]
Br(KL ! ⇡

0
µ
+
µ
�) < 3.8⇥ 10�10 (90% CL) 1.41+0.28

�0.26(0.95
+0.22
�0.21)⇥ 10�11 [52–56]

Table 4: Observables with direct correlation with bsµµ.

symmetries. A discussion on the impact of future measurements is presented in Sec. 5, and
we conclude in Sec. 6. A simplified fit of the RK and RK⇤ anomalies as well as some details
on the flavor observables considered in this work, are collected in two Appendices.

2 General correlations in V-A solutions

In this Section, we study the correlations that follow directly from the rank-one condition,
for all models in which NP couples only to left-handed fermions. We begin by using the
e↵ective description in Eq. (2). For CR = 0, and for fixed ✓ and � in the ranges specified by
Eq. (7), the coe�cient CL = CS + CT and the phase ↵bs are univocally determined by the
b ! sµ

+
µ
� anomalies fit:

CL sin ✓ cos ✓ sin�e
i↵bs = C

bs

L
⌘

e
i↵bs

⇤2
bs

. (8)

From a fit of the observables listed in Table 1, described in detail in App. A, we find that
the phase ↵bs has an approximately flat direction in the range |↵bs| . ⇡/4. Since a non-zero
phase necessarily implies a lower ⇤bs scale in order to fit the anomalies, to be conservative
we fix ↵bs = 0. In this case the best-fit point for the NP scale is

(⇤bs)
best-fit = 38.5 TeV (↵bs ⌘ 0). (9)

We now constrain n̂ (or, more precisely, ✓ and � for given ↵bs) using the other observables
correlated with RK by the relation C

ij

L
= CLn̂in̂

⇤
j
. Such observables are associated to the
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Figure 1: Limits in the plane (�, ✓) for two choices of the phases ↵bs and ↵bd from observables
with direct correlation with RK(⇤) . The blue contours correspond to the value of |CL|

�1/2

in TeV, where solid (dashed) lines are for positive (negative) CL. The meshed red region
correspond to the one suggested by partial compositeness or SU(2)q-like flavor symmetry,
Eq. (30) with |abd,bs| 2 [0.2� 5].

quark-level transitions
di ! djµ

+
µ
� (10)

and cross-symmetric counterparts. The most relevant among those observables are listed in
Tab. 4, and the corresponding allowed regions for ✓, � are shown in Fig. 1 in the two cases
(↵bd,↵bs) = (0, 0) and (↵bd,↵bs) = (⇡/2, 0).

As can be seen from the plots, the most severe bounds arise from B
+
! ⇡

+
µ
+
µ
� (LHCb

[46]) and KL ! µ
+
µ
� (E871 [50, 51]). However, the latter observable does not yield any

bound for ↵bd � ↵bs = ⇡/2, i.e. for ReCds

L
= 0. The imaginary part of that coe�cient can

instead be tested by KS ! µ
+
µ
� (LHCb [57]) and KL ! ⇡

0
µ
+
µ
� (KTeV [52]).3 More

details on the observables and their NP dependence can be found in App. B.
As a final remark, let us stress that here and in the following we are ignoring possible NP

contributions to (pseudo)scalar, tensor, or dipole operators. While these are known to be
too constrained to give significant contributions to R

K(⇤) (see e.g. [11]), they may nonetheless
produce important e↵ects in other observables, so that some of the bounds discussed here
may be relaxed, if some degree of fine-tuning is allowed.

3 SMEFT and Simplified mediators

Let us now assume that the e↵ective operators in Eq. (2) originate from the SM-invariant
ones in Eq. (3), as expected. The SU(2)L invariance then relates the processes di ! djµ

+
µ
�

in Eq. (10) to the processes involving up quarks and muon neutrinos listed in Tab. 3. Using

3We thank C. Bobeth for suggesting us to consider this observable.
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]
[MN: Sec. 2: Just in case we will get an experimental update on RK we can

perform a simple fit with the clean observables only +R
2016
K ]

[DM: Sec. 3: we could start here introducing directly with a SU(2)-invariant
discussion and the SMEFT operators, then in the ’minimal’ correlations we can
briefly revert and generalise the discussion to LEFT, since there are no relevant
bounds from uu ! ⌫⌫.

I would also move some of these parts directly in the introduction, going
directly to the point without too much bla bla. ]

[VG: Sec. 3 e 4: Nei grafici dei bound la scelta delle fasi non è quella cor-
rispondente a U(2), forse la lineetta rossa può creare confusione?]

[VG: Sec. 5. Qui ho riassunto i punti salienti della nota di Andrea. Ho omesso
le considerazioni su SU(5) (unificazione degli spurioni ` e d); nel caso volessimo
includerle, mi domandavo se simili considerazioni non si possano applicare al
caso G = U(3)5?]

2 Setup

Model independent analyses of neutral current anomalies hint towards New Physics (NP)
coupling to quark and lepton vectorial currents [1,2]. As a matter of fact, the vast majority of
NP explanations of the anomalies collapses, at low energy, onto one of the following muonic
operators:

OL = (s�⇢PLb)(µ�
⇢
PLµ), O9 = (s�⇢PLb)(µ�

⇢
µ), (1)

which we shall take as benchmark scenarios in what follows.
Assuming the relevant NP degrees of freedom to lie above the electroweak scale, the most

natural framework for model independent studies of the anomalies is that of the Standard
Model E↵ective Field Theory (SMEFT). The SMEFT operators which can contribute to the
above low-energy ones are collected in the following lagrangian:

L
SMEFT
NP = C

ij
S

�
q̄
i
L�µq

j
L

� �
¯̀2
L�

µ
`
2
L

�
+ C

ij
T

�
q̄
i
L�µ�

a
q
j
L

� �
¯̀2
L�

µ
�
a
`
2
L

�
+ C

ij
R

�
q̄
i
L�µq

j
L

�
(µR�

µ
µR) ,

(2)

where `
i
L = (⌫i

L, e
i
L)

t
and q

i
L =

�
V

⇤
jiu

j
L, d

i
L

�t
are the lepton and quark doublets, respectively

in the charged-lepton and down quarks mass basis, and V is the CKM matrix.
At present, the only experimental inputs to the e↵ective lagrangian (2) are circumscribed

to the b ! s operators. The situation improves a lot when one focuses on specific NP
flavor structures, in which case the EFT parametrization becomes predictive, and further
correlations between RK(⇤) and other observables can be established. Popular scenarios
of flavor non-generic NP include Minimal Flavor Violation [3] and approaches based on
spontaneously broken U(2) flavor symmetries [4, 5] (see, in particular, Ref. [6] for the link
with B-anomalies).

In this respect, our key assumption is that the NP sector responsible of the RK(⇤) signal
couples to a single direction in quark flavor space (at least when only the second generation
of leptons is considered), which requires the Wilson coe�cient matrices C ij

S,T,R in Eq. (2) to

3

Channel Coe�cient dependencies

di ! djµ
+
µ
�

CS + CT , CR

ui ! uj⌫µ⌫µ CS + CT

ui ! ujµ
+
µ
�

CS � CT , CR

di ! dj⌫µ⌫µ CS � CT

ui ! djµ
+
⌫µ CT

Table 1: Dependencies of various semileptonic processes on the three coe�cients CS,T,R (cf.
Eq. (4)).

be rank-one and proportional. This condition is automatically satisfied in all cases where
the SM quark doublets couple to NP only via a linear coupling:

L = �iq̄
i
LONP + h.c. , (3)

and thus finds realization in several UV models, including all single leptoquark models
[*Refs*], models with single vector-like fermion mediators [*Refs*], and one-loop models
with linear flavor violation [7].

Given our assumptions, the coe�cients of the operators in Eq. (2) can be written as

C
ij
S,T,R = CS,T,R n̂in̂

⇤
j , (4)

where CS,T,R 2 R and n̂i is a unitary vector in three-dimensional flavor space. We can
parametrize n̂ as follows1:

n̂ =

0

@
sin ✓ cos�ei↵bd

sin ✓ sin�ei↵bs

cos ✓

1

A , (5)

where the angles and phases can be chosen to lie in the following range:

✓ 2

h
0,

⇡

2

i
, � 2 [0, 2⇡) , ↵bd 2

h
�
⇡

2
,
⇡

2

i
, ↵bs 2

h
�
⇡

2
,
⇡

2

i
. (6)

The flavour structure of the semileptonic operators, Eq. (4), implies the existence of
correlations between NP contributions to RK(⇤) and to other observables. Our strategy for
studying these can be summarized as follows: for a given direction n̂, we fix (some combina-
tion of) the overall scalar coe�cients in Eq. (4) by matching with the experimental central
value of RK . Once this is done, we can compute NP contributions to other semileptonic pro-
cesses as functions of n̂, and compare with the corresponding experimental values/bounds.
By this procedure, we are able to narrow down considerably the space of allowed flavor
directions n̂.

The NP lagrangian (2) contributes to several semileptonic processes. The dependencies
of the various types of process upon the three coe�cients CS,T,R are listed in Tab. 1. Since

1For the e↵ective operators considered here, a global rephasing of n is inconsequential, so that we may
assume n3 > 0.
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2 Setup

Model independent analyses of neutral current anomalies hint towards New Physics (NP)
coupling to quark and lepton vectorial currents [1,2]. As a matter of fact, the vast majority of
NP explanations of the anomalies collapses, at low energy, onto one of the following muonic
operators:

OL = (s�⇢PLb)(µ�
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PLµ), O9 = (s�⇢PLb)(µ�
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µ), (1)

which we shall take as benchmark scenarios in what follows.
Assuming the relevant NP degrees of freedom to lie above the electroweak scale, the most

natural framework for model independent studies of the anomalies is that of the Standard
Model E↵ective Field Theory (SMEFT). The SMEFT operators which can contribute to the
above low-energy ones are collected in the following lagrangian:
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in the charged-lepton and down quarks mass basis, and V is the CKM matrix.
At present, the only experimental inputs to the e↵ective lagrangian (2) are circumscribed

to the b ! s operators. The situation improves a lot when one focuses on specific NP
flavor structures, in which case the EFT parametrization becomes predictive, and further
correlations between RK(⇤) and other observables can be established. Popular scenarios
of flavor non-generic NP include Minimal Flavor Violation [3] and approaches based on
spontaneously broken U(2) flavor symmetries [4, 5] (see, in particular, Ref. [6] for the link
with B-anomalies).

In this respect, our key assumption is that the NP sector responsible of the RK(⇤) signal
couples to a single direction in quark flavor space (at least when only the second generation
of leptons is considered), which requires the Wilson coe�cient matrices C ij

S,T,R in Eq. (2) to

3

However, didj µµ transitions, 
are directly correlated with bs µµ 

(depend on the same combination of CS and CT)

Even assuming a LH solution, the relative size of CS and CT is a free parameter.

CL = CS + CT ≡ C+

Also uiuj νµνµ transitions, 
are directly correlated with bs µµ 

however no relevant bound exist 
(e.g. from D → π νν)
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be rank-one and proportional. This condition is automatically satisfied in all cases where
the SM quark doublets couple to NP only via a linear coupling:

L = �iq̄
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LONP + h.c. , (3)

and thus finds realization in several UV models, including all single leptoquark models
[*Refs*], models with single vector-like fermion mediators [*Refs*], and one-loop models
with linear flavor violation [7].
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The flavour structure of the semileptonic operators, Eq. (4), implies the existence of
correlations between NP contributions to RK(⇤) and to other observables. Our strategy for
studying these can be summarized as follows: for a given direction n̂, we fix (some combina-
tion of) the overall scalar coe�cients in Eq. (4) by matching with the experimental central
value of RK . Once this is done, we can compute NP contributions to other semileptonic pro-
cesses as functions of n̂, and compare with the corresponding experimental values/bounds.
By this procedure, we are able to narrow down considerably the space of allowed flavor
directions n̂.

The NP lagrangian (2) contributes to several semileptonic processes. The dependencies
of the various types of process upon the three coe�cients CS,T,R are listed in Tab. 1. Since

1For the e↵ective operators considered here, a global rephasing of n is inconsequential, so that we may
assume n3 > 0.
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The flavour structure of the semileptonic operators, Eq. (4), implies the existence of
correlations between NP contributions to RK(⇤) and to other observables. Our strategy for
studying these can be summarized as follows: for a given direction n̂, we fix (some combina-
tion of) the overall scalar coe�cients in Eq. (4) by matching with the experimental central
value of RK . Once this is done, we can compute NP contributions to other semileptonic pro-
cesses as functions of n̂, and compare with the corresponding experimental values/bounds.
By this procedure, we are able to narrow down considerably the space of allowed flavor
directions n̂.
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2 Setup

Model independent analyses of neutral current anomalies hint towards New Physics (NP)
coupling to quark and lepton vectorial currents [1,2]. As a matter of fact, the vast majority of
NP explanations of the anomalies collapses, at low energy, onto one of the following muonic
operators:

OL = (s�⇢PLb)(µ�
⇢
PLµ), O9 = (s�⇢PLb)(µ�

⇢
µ), (1)

which we shall take as benchmark scenarios in what follows.
Assuming the relevant NP degrees of freedom to lie above the electroweak scale, the most

natural framework for model independent studies of the anomalies is that of the Standard
Model E↵ective Field Theory (SMEFT). The SMEFT operators which can contribute to the
above low-energy ones are collected in the following lagrangian:
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in the charged-lepton and down quarks mass basis, and V is the CKM matrix.
At present, the only experimental inputs to the e↵ective lagrangian (2) are circumscribed

to the b ! s operators. The situation improves a lot when one focuses on specific NP
flavor structures, in which case the EFT parametrization becomes predictive, and further
correlations between RK(⇤) and other observables can be established. Popular scenarios
of flavor non-generic NP include Minimal Flavor Violation [3] and approaches based on
spontaneously broken U(2) flavor symmetries [4, 5] (see, in particular, Ref. [6] for the link
with B-anomalies).

In this respect, our key assumption is that the NP sector responsible of the RK(⇤) signal
couples to a single direction in quark flavor space (at least when only the second generation
of leptons is considered), which requires the Wilson coe�cient matrices C ij

S,T,R in Eq. (2) to

3
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of flavor non-generic NP include Minimal Flavor Violation [3] and approaches based on
spontaneously broken U(2) flavor symmetries [4, 5] (see, in particular, Ref. [6] for the link
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be rank-one and proportional. This condition is automatically satisfied in all cases where
the SM quark doublets couple to NP only via a linear coupling:

L = �iq̄
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LONP + h.c. , (3)

and thus finds realization in several UV models, including all single leptoquark models
[*Refs*], models with single vector-like fermion mediators [*Refs*], and one-loop models
with linear flavor violation [7].

Given our assumptions, the coe�cients of the operators in Eq. (2) can be written as
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The flavour structure of the semileptonic operators, Eq. (4), implies the existence of
correlations between NP contributions to RK(⇤) and to other observables. Our strategy for
studying these can be summarized as follows: for a given direction n̂, we fix (some combina-
tion of) the overall scalar coe�cients in Eq. (4) by matching with the experimental central
value of RK . Once this is done, we can compute NP contributions to other semileptonic pro-
cesses as functions of n̂, and compare with the corresponding experimental values/bounds.
By this procedure, we are able to narrow down considerably the space of allowed flavor
directions n̂.

The NP lagrangian (2) contributes to several semileptonic processes. The dependencies
of the various types of process upon the three coe�cients CS,T,R are listed in Tab. 1. Since

1For the e↵ective operators considered here, a global rephasing of n is inconsequential, so that we may
assume n3 > 0.
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1For the e↵ective operators considered here, a global rephasing of n is inconsequential, so that we may
assume n3 > 0.
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The ROFV structure gives Different processes depend 
on different combinations of 
the three overall coefficients

Three overall coefficients

]
[MN: Sec. 2: Just in case we will get an experimental update on RK we can

perform a simple fit with the clean observables only +R
2016
K ]

[DM: Sec. 3: we could start here introducing directly with a SU(2)-invariant
discussion and the SMEFT operators, then in the ’minimal’ correlations we can
briefly revert and generalise the discussion to LEFT, since there are no relevant
bounds from uu ! ⌫⌫.

I would also move some of these parts directly in the introduction, going
directly to the point without too much bla bla. ]

[VG: Sec. 3 e 4: Nei grafici dei bound la scelta delle fasi non è quella cor-
rispondente a U(2), forse la lineetta rossa può creare confusione?]

[VG: Sec. 5. Qui ho riassunto i punti salienti della nota di Andrea. Ho omesso
le considerazioni su SU(5) (unificazione degli spurioni ` e d); nel caso volessimo
includerle, mi domandavo se simili considerazioni non si possano applicare al
caso G = U(3)5?]

2 Setup

Model independent analyses of neutral current anomalies hint towards New Physics (NP)
coupling to quark and lepton vectorial currents [1,2]. As a matter of fact, the vast majority of
NP explanations of the anomalies collapses, at low energy, onto one of the following muonic
operators:

OL = (s�⇢PLb)(µ�
⇢
PLµ), O9 = (s�⇢PLb)(µ�

⇢
µ), (1)

which we shall take as benchmark scenarios in what follows.
Assuming the relevant NP degrees of freedom to lie above the electroweak scale, the most

natural framework for model independent studies of the anomalies is that of the Standard
Model E↵ective Field Theory (SMEFT). The SMEFT operators which can contribute to the
above low-energy ones are collected in the following lagrangian:

L
SMEFT
NP = C

ij
S

�
q̄
i
L�µq

j
L

� �
¯̀2
L�

µ
`
2
L

�
+ C

ij
T

�
q̄
i
L�µ�

a
q
j
L

� �
¯̀2
L�

µ
�
a
`
2
L

�
+ C

ij
R

�
q̄
i
L�µq

j
L

�
(µR�

µ
µR) ,

(2)

where `
i
L = (⌫i

L, e
i
L)

t
and q

i
L =

�
V

⇤
jiu

j
L, d

i
L

�t
are the lepton and quark doublets, respectively

in the charged-lepton and down quarks mass basis, and V is the CKM matrix.
At present, the only experimental inputs to the e↵ective lagrangian (2) are circumscribed

to the b ! s operators. The situation improves a lot when one focuses on specific NP
flavor structures, in which case the EFT parametrization becomes predictive, and further
correlations between RK(⇤) and other observables can be established. Popular scenarios
of flavor non-generic NP include Minimal Flavor Violation [3] and approaches based on
spontaneously broken U(2) flavor symmetries [4, 5] (see, in particular, Ref. [6] for the link
with B-anomalies).

In this respect, our key assumption is that the NP sector responsible of the RK(⇤) signal
couples to a single direction in quark flavor space (at least when only the second generation
of leptons is considered), which requires the Wilson coe�cient matrices C ij

S,T,R in Eq. (2) to

3

Different ones generate different combinations of CS,T,R.

Simplified model Spin SM irrep (cS, cT , cR)
S3 0 (3, 3, 1/3) (3/4, 1/4, 0)
U1 1 (3, 1, 2/3) (1/2, 1/2, 0)
U3 1 (3, 3, 2/3) (3/2,�1/2, 0)
V

0 1 (1, 3, 0) (0, 1, 0)
Z

0
(L) 1 (1, 1, 0) (1, 0, 0)

Z
0
(V ) 1 (1, 1, 0) (1, 0, 1)

Table 4: Wilson coe�cients ratios (cf. Eq. (15)) for some single-mediator simplified models.

• As could be expected, ui ! uj⌫µ⌫µ channels do not play at this stage a phenomenologi-
cally crucial role. The choice to frame our analysis in the SMEFT is thus, at this stage,
merely a notational one. Indeed, we can reduce this section to the study of the min-
imal correlations of RK(⇤) with other observables a↵ected by the e↵ective low-energy
lagrangian:

L
LEFT
NP = C+n̂in̂

⇤
j(d

i
L�µd

j
L)(µL�

µ
µL)

5 Simplified mediators

The general SMEFT setup of Eq. (2) contains three independent overall scales, one for each
operator structure. In order to reduce the number of free parameters, we focus in this
Section on single-mediator simplified models, which generate specific combinations of the
three operators when integrated out at the tree-level. Some relevant benchmarks are shown
in Table 4, where in the last column we list the ratios:

cX ⌘
CX

CS + CT
(X = S, T,R) (15)

so that CX = cXC+.
Besides the observables considered in the previous Section, within these specific models

we can establish additional correlations with FCNC processes,

di ! dj⌫µ⌫µ, ui ! ujµ
+
µ
�
, (16)

as well as with FCCC processes,
ui ! djµ

+
⌫µ. (17)

See Tab. 1 for the dependence of each class of processes on the three Wilson coe�cients.
Notice that the exclusions shown in Fig. 1 apply to all models in Tab. 4, except for the Z 0

(V )

which has vector-like coupling to muons. We find that the most relevant bounds, beyond
those already analised, arise from the two FCNC observables in Tab. 5. Some simplified
models also allow to compute neutral meson mixing amplitudes, which we include in the
analysis when appropriate.

For the purpose of comparison, we display in this Section also the collider bounds arising
from the high-pT tails of muonic Drell-Yan process measured at LHC [14], for which we
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As representative examples, we study:

S3 U1 Z’V
(backup slides)

We can ask what are the possible tree-level mediators which generate these operators.

K→πνν  is important
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S3 scalar leptoquark

Observable Experimental value/bound SM prediction References

Br(K+
! ⇡

+
⌫µ⌫µ) ⇤ ⇤ ⇤ (90% CL) ⇤ ⇤ ⇤⇤ [6]

Br(KL ! ⇡
0
⌫µ⌫µ) ⇤ ⇤ ⇤ ⇥ 10�9 (95% CL) ⇤ ⇤ ⇤± ⇤ ⇤ ⇤ ⇥ 10�10 [6]

Table 5: RK(⇤)-correlated observables for single-mediator models.

follow the analysis of Ref. [15]. As can be seen from the plots below, the collider bounds are
outmatched by FCNC bounds in a large part of parameter space. The only region where
LHC searches are the most relevant constraint is close to the bottom quark direction, i.e. for
✓ ⌧ 1, as can be seen directly in the top-left panel of Fig. 2 in the case of the S3 leptoquark.

In the rest of this Section we focus on the following models:

1. Scalar leptoquark S3. This is the simplest renormalizable model for the R(K(⇤))
anomalies.

2. Vector leptoquark U1. Besides having some theoretical motivation (from Pati-Salam
SM extensions), this is the only single-mediator simplified model for which a combined
explanation of R(K(⇤)) and R(D(⇤)) anomalies is possible [*REF*].

3. Vector singlet Z
0
(V ) with vector-like coupling to muons. Arguably the most

compelling O9-type solution, it is relevant to some interesting proposals such as gauged
Lµ � L⌧ models [*REF*].

5.1 Scalar leptoquark S3

The relevant interaction of the S3 leptoquark with SM quarks and leptons can be described
by the Lagrangian

LNP � �3,iµ(q̄
c i
L ✏�

a
`
2
L)S

a
3 + h.c. , (18)

where we focussed on the interaction with muons. It is clear that this model falls under the
category described by Eq. (3). Integrating out S3 at the tree-level, the e↵ective operators in
Eq. (2) are generated, with

C
ij
S =

3

4

�
⇤
3,iµ�3,jµ

M2
S3

, C
ij
T =

1

4

�
⇤
3,iµ�3,jµ

M2
S3

, C
ij
R = 0 . (19)

We can match to our parametrization as �⇤
3,iµ ⌘ �

⇤
3 n̂i, corresponding to C = |�3|

2
/M

2
S3

> 0,
cS = 3/4, cT = 1/4, and cR = 0. Since in this case C > 0, to reproduce the measured values
of R(K(⇤)) the angle � is restricted to the range � 2 [0, ⇡].

The scalar LQ S3 generates a contribution to �F = 2 processes at the one-loop level.
The relevant diagrams are finite and the contribution is given by

�L�F=2 = �
5|�3|

4

128⇡2M2
S3

⇥
(n̂in̂

⇤
j d̄

i
L�

↵
d
j
L)

2 + (Vikn̂kn̂
⇤
l V

⇤
jl ū

i
L�

↵
u
j
L)

2
⇤
. (20)

Given a direction in quark space, i.e. a fixed n̂, and fixing |�3|
2
/M

2
S3

to reproduce R(K(⇤)),
the experimental bounds on K � K̄, Bd,s � B̄d,s, and D0 � D̄0 mixing can be used to set an
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LHC dimuon searches are relevant only for small θ, 
i.e. very close to the 3rd generation. 
Still far from testing U(2) hypothesis [Greljo, D.M. 1704.09015]

Zooming in on the small θ region
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Figure 2: Limits in the plane (�, ✓) for the scalar leptoquark S3 and two choices of the phases
↵bs and ↵bd. In addition to the limits in Fig.1, the orange bound is from K ! ⇡⌫⌫ while the
red one is from the high-pT tail of pp ! µ

+
µ
� at the LHC [35]. The top-left panel is a zoom

of the region ✓ ⌧ 10 of the bottom-left one, which shows in more detail the region excluded
by LHC dimuon searches. The dashed purple contour lines are the upper limits (in TeV) on
the leptoquark mass from �F = 2 processes.

limit |�max
3 |

2 = 8⇡
3
p
3
[36]. The contours of the strongest of these two upper limits on MS3 are

shown as dashed purple lines (in TeV) in the plots of Fig. 2. The perturbativity limit is never
stronger than the one from �F = 2 processes in this scenario. More details are reported in
App. A.6. Direct searches at the LHC of pair-produced leptoquarks, on the other hand, set
lower limits on its mass, which are now in the ⇠ 1 TeV range [].

4.2 Vector leptoquark U1

The interaction lagrangian of the vector leptoquark U1 is [AR: la barra va estesa a
coprire la chiralità, ovunque come sotto, giusto?]

LNP � �iµ(qiL�↵`2L)U
↵
1 + h.c. , (19)
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Observable Experimental value/bound SM prediction References

Br(K+
! ⇡

+
⌫µ⌫µ) ⇤ ⇤ ⇤ (90% CL) ⇤ ⇤ ⇤⇤ [6]

Br(KL ! ⇡
0
⌫µ⌫µ) ⇤ ⇤ ⇤ ⇥ 10�9 (95% CL) ⇤ ⇤ ⇤± ⇤ ⇤ ⇤ ⇥ 10�10 [6]

Table 5: RK(⇤)-correlated observables for single-mediator models.

follow the analysis of Ref. [15]. As can be seen from the plots below, the collider bounds are
outmatched by FCNC bounds in a large part of parameter space. The only region where
LHC searches are the most relevant constraint is close to the bottom quark direction, i.e. for
✓ ⌧ 1, as can be seen directly in the top-left panel of Fig. 2 in the case of the S3 leptoquark.

In the rest of this Section we focus on the following models:

1. Scalar leptoquark S3. This is the simplest renormalizable model for the R(K(⇤))
anomalies.

2. Vector leptoquark U1. Besides having some theoretical motivation (from Pati-Salam
SM extensions), this is the only single-mediator simplified model for which a combined
explanation of R(K(⇤)) and R(D(⇤)) anomalies is possible [*REF*].

3. Vector singlet Z
0
(V ) with vector-like coupling to muons. Arguably the most

compelling O9-type solution, it is relevant to some interesting proposals such as gauged
Lµ � L⌧ models [*REF*].

5.1 Scalar leptoquark S3

The relevant interaction of the S3 leptoquark with SM quarks and leptons can be described
by the Lagrangian

LNP � �3,iµ(q̄
c i
L ✏�

a
`
2
L)S

a
3 + h.c. , (18)

where we focussed on the interaction with muons. It is clear that this model falls under the
category described by Eq. (3). Integrating out S3 at the tree-level, the e↵ective operators in
Eq. (2) are generated, with

C
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S =
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T =
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We can match to our parametrization as �⇤
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⇤
3 n̂i, corresponding to C = |�3|

2
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2
S3

> 0,
cS = 3/4, cT = 1/4, and cR = 0. Since in this case C > 0, to reproduce the measured values
of R(K(⇤)) the angle � is restricted to the range � 2 [0, ⇡].

The scalar LQ S3 generates a contribution to �F = 2 processes at the one-loop level.
The relevant diagrams are finite and the contribution is given by

�L�F=2 = �
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Given a direction in quark space, i.e. a fixed n̂, and fixing |�3|
2
/M

2
S3

to reproduce R(K(⇤)),
the experimental bounds on K � K̄, Bd,s � B̄d,s, and D0 � D̄0 mixing can be used to set an
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At 1-loop it generates ΔF=2 operators

Limits on D-D̅, K-K̅, Bd-B̅d, Bs-B̅s give an 
upper limit on the leptoquark mass
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follow the analysis of Ref. [15]. As can be seen from the plots below, the collider bounds are
outmatched by FCNC bounds in a large part of parameter space. The only region where
LHC searches are the most relevant constraint is close to the bottom quark direction, i.e. for
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2. Vector leptoquark U1. Besides having some theoretical motivation (from Pati-Salam
SM extensions), this is the only single-mediator simplified model for which a combined
explanation of R(K(⇤)) and R(D(⇤)) anomalies is possible [*REF*].

3. Vector singlet Z
0
(V ) with vector-like coupling to muons. Arguably the most

compelling O9-type solution, it is relevant to some interesting proposals such as gauged
Lµ � L⌧ models [*REF*].

5.1 Scalar leptoquark S3

The relevant interaction of the S3 leptoquark with SM quarks and leptons can be described
by the Lagrangian

LNP � �3,iµ(q̄
c i
L ✏�

a
`
2
L)S

a
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where we focussed on the interaction with muons. It is clear that this model falls under the
category described by Eq. (3). Integrating out S3 at the tree-level, the e↵ective operators in
Eq. (2) are generated, with
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3. Vector singlet Z
0
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compelling O9-type solution, it is relevant to some interesting proposals such as gauged
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The relevant interaction of the S3 leptoquark with SM quarks and leptons can be described
by the Lagrangian

LNP � �3,iµ(q̄
c i
L ✏�

a
`
2
L)S

a
3 + h.c. , (18)

where we focussed on the interaction with muons. It is clear that this model falls under the
category described by Eq. (3). Integrating out S3 at the tree-level, the e↵ective operators in
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cS = 3/4, cT = 1/4, and cR = 0. Since in this case C > 0, to reproduce the measured values
of R(K(⇤)) the angle � is restricted to the range � 2 [0, ⇡].
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The relevant diagrams are finite and the contribution is given by
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Given a direction in quark space, i.e. a fixed n̂, and fixing |�3|
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to reproduce R(K(⇤)),
the experimental bounds on K � K̄, Bd,s � B̄d,s, and D0 � D̄0 mixing can be used to set an

9

S3 = (3,̅ 3, 1/3)

Observable Experimental value/bound SM prediction References

Br(K+
! ⇡

+
⌫µ⌫µ) (17.3+11.5

�10.5)⇥ 10�11 (8.4± 1.0)⇥ 10�11 [31, 32]
Br(KL ! ⇡

0
⌫µ⌫µ) < 3.0⇥ 10�9 (90% CL) (3.4± 0.6)⇥ 10�11 [32, 33]

Table 5: RK(⇤)-correlated observables for single-mediator models.

LHC searches are the most relevant constraint is close to the bottom quark direction, i.e. for
✓ ⌧ 1, as can be seen directly in the top-left panel of Fig. 2 in the case of the S3 leptoquark.

In the rest of this Section we focus on the following models:

1. Scalar leptoquark S3. This is the simplest renormalizable model for the R(K(⇤))
anomalies.

2. Vector leptoquark U1. Besides having some theoretical motivation (from Pati-Salam
SM extensions), this is the only single-mediator simplified model for which a combined
explanation of R(K(⇤)) and R(D(⇤)) anomalies is possible [*REF*].

3. Vector singlet Z
0
(V ) with vector-like coupling to muons. Arguably the most

compelling O9-type solution, it is relevant to some interesting proposals such as gauged
Lµ � L⌧ models [*REF*].

4.1 Scalar leptoquark S3

The relevant interaction of the S3 leptoquark with SM quarks and leptons can be described
by the Lagrangian
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a
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2
L)S

a
3 + h.c. , (16)

where we focussed on the interaction with muons. It is clear that this model falls under the
category described by Eq. (5). Integrating out S3 at the tree-level, the e↵ective operators in
Eq. (4) are generated, with
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We can match to our parametrization by writing the coupling in eq. (16) as �
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3,iµ ⌘ �

⇤
3 n̂i,

giving C+ = |�3|
2
/M

2
S3

> 0, cS = 3/4, cT = 1/4, and cR = 0. Since in this case C+ = CL > 0
and the r.h.s. of Eq. (9) is also positive, the angle � is restricted to the range � 2 [0, ⇡]. The
constraints on � and ✓ we obtain are shown in Fig. 2.

The scalar LQ S3 generates a contribution to �F = 2 processes at the one-loop level.
The relevant diagrams are finite and the contribution is given by
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Given a direction in quark space, i.e. a fixed n̂, and fixing C+ to reproduce RK(⇤) , the
experimental bounds on K � K̄, Bd,s � B̄d,s, and D0 � D̄0 mixing can be used to set an
upper limit on the LQ mass. Another upper limit on its mass, for a given value of C+,
can be set by requiring that the coupling �3 does not exceed the perturbative unitarity
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KL→π0µµ

K+→π+νν

KS→µµ

U(2)-like |C+
-1/2 [TeV] MS3

max [TeV]

Figure 2: Limits in the plane (�, ✓) for the scalar leptoquark S3 and two choices of the phases
↵bs and ↵bd. In addition to the limits in Fig.1, the orange bound is from K ! ⇡⌫⌫ while the
red one is from the high-pT tail of pp ! µ

+
µ
� at the LHC [62]. The top-left panel is a zoom

of the region ✓ ⌧ 10 of the bottom-left one, which shows in more detail the region excluded
by LHC dimuon searches. The dashed purple contour lines are the upper limits (in TeV) on
the leptoquark mass from �F = 2 processes.

and the r.h.s. of Eq. (8) is also positive, the angle � is restricted to the range � 2 [0, ⇡]. The
constraints on � and ✓ we obtain are shown in Fig. 2.

The scalar LQ S3 generates a contribution to �F = 2 processes at the one-loop level.
The relevant diagrams are finite and the contribution is given by

�L�F=2 = �
5

128⇡2
C

2
+M

2
S3

⇥
(n̂in̂

⇤
j
diL�

↵
djL)

2 + (Vikn̂kn̂
⇤
l
V

⇤
jl
uiL�

↵
ujL)

2
⇤
. (17)

Given a direction in quark space, i.e. a fixed n̂, and fixing C+ to reproduce R
K(⇤) , the

experimental bounds on K� K̄, Bd,s� B̄d,s, and D0� D̄0 mixing can be used to set an upper

limit on the LQ mass, assuming the contributions in Eq. (17) are not cancelled by other NP
terms. Another upper limit on its mass, for a given value of C+, can be set by requiring that
the coupling � does not exceed the perturbative unitarity limit |�max

|
2 = (8⇡)/(3

p
3) [77].

The contours of the strongest of these two upper limits on MS3 are shown as dashed purple
lines (in TeV) in the plots of Fig. 2. The perturbativity limit is never stronger than the
one from �F = 2 processes in this scenario. More details are reported in App. B.6. Direct
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Prospects
Future improvements in the measurements of these observables 
will allow to cover the majority of the parameter space
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Figure 6: Future prospects for the exclusion limits in the plane (�, ✓) for two choices of the
phases ↵bs and ↵bd from observables with direct correlation with RK(⇤) . For KL ! µµ we use
the present bound. [VG: Stessa cosa per KL ! ⇡

0
µµ?][DM: Non é mostrato perché

piú debole del prospect di KS ! µµ.]

6 Conclusions

If the flavor anomalies in b ! sµµ transitions are experimentally confirmed, they will provide
important information about the flavor structure of the underlying New Physics. The latter
can be tested by studying possible correlations with other measurements in flavor physics.
In this work we assumed that the putative NP, responsible for the anomalous e↵ects, couples
to SM left-handed down quarks in such a way to generate a rank-one structure in the novel
flavor-violating sector. We dub such a scenario Rank-One Flavor Violation (ROFV). Such
a structure can result from a number of well motivated UV completions for the explanation
of the flavor anomalies, in which a single linear combination of SM quark doublets couples
to the relevant NP sector. This automatically includes all single-leptoquark models, and
models where LH quarks mix with a single vector-like fermion partner. As these examples
reveal, the ROFV condition might not originate from symmetry but rather as a feature of
the UV dynamics.

Varying the direction associated to the NP (n̂) in U(3)q flavor space, we identified the
most important observables that can be correlated to the flavor anomalies. The more model-
independent correlations are with di ! djµµ transitions (and their crossed symmetric pro-
cesses). A large part of the parameter space is probed by the measurement of the branching
ratio of B+

! ⇡
+
µµ. While the sensitivity to NP e↵ects in this channel is limited by the

large hadronic uncertainty of the SM prediction, future measurements of the theoretically
clean ratio R⇡ are going to provide further information on b ! d flavor violations. Among
the transitions involving the first two generations of quarks (s ! d), the KL ! µµ decay
rate has a major impact and it is particularly sensitive to the phases of our parametrization.
Unfortunately, future prospects in this channel are limited by theory uncertainties in the SM

18

Observable Expected sensitivity Experiment Reference

RK

0.7 (1.7)% LHCb 300 (50) fb�1 [78]
3.6 (11)% Belle II 50 (5) ab�1 [79]

RK⇤
0.8 (2.0)% LHCb 300 (50) fb�1 [78]
3.2 (10)% Belle II 50 (5) ab�1 [79]

R⇡ 4.7 (11.7)% LHCb 300 (50) fb�1 [78]

Br(B0
s
! µ

+
µ
�)

4.4 (8.2)% LHCb 300 (23) fb�1 [78, 80]
7 (12)% CMS 3 (0.3) ab�1 [80]

Br(B0
d
! µ

+
µ
�)

9.4 (33)% LHCb 300 (23) fb�1 [78, 80]
16 (46)% CMS 3 (0.3) ab�1 [80]

Br(KS ! µ
+
µ
�) ⇠ 10�11 LHCb 300fb�1 [78, 80]

Br(KL ! ⇡
0
⌫⌫)

⇠ 30% KOTO phase-I
20% KLEVER [81]

Br(K+
! ⇡

+
⌫⌫) 10% NA62 goal [82]

Table 7: Future prospects for the precision reach in various flavor observables. The expected
sensitivity in percent are quoted with respect to the Standard Model prediction.

of observables sensitive to the same partonic transition b ! sµ
+
µ
� will be measured (such

as R�, RpK and Q5 for example [78]). This will allow to confirm or disprove the present
anomalies and to pinpoint the size of the New Physics contribution with high accuracy.

The leptonic decays B
0
(d,s) ! µ

+
µ
� will be crucial for discriminating between the O9

and OL scenarios. As to the B ! ⇡`
+
`
� channels, we note that the power of the muon-

specific Br(B+
! ⇡

+
µ
+
µ
�) as a probe of NP is, already at present, limited by theoretical

uncertainties [48]. The situation improves substantially for the LFU ratio R⇡ (cf. Eq. (32)),
for which, as already noted, U(2)5 flavor symmetry predicts R⇡ = RK and for which LHCb
is expected to reach a ⇠ 4.7% sensitivity with 300 fb�1 of luminosity [78]. As can be seen
in Fig. 6, these channels will be able to cover almost the complete parameter space of the
setup studied here, particularly if the phase ↵bd is small.

In all cases where CS 6= CT , such as in the S3 and Z
0 models, other relevant channels

which will improve substantially in sensitivity are Br(K+
! ⇡

+
⌫̄⌫) and Br(KL ! ⇡

0
⌫̄⌫).

The former is expected to be measured with a 10% accuracy by NA62 [82] in the next few
years while the KOTO experiment at JPARC [60] should reach a ⇠ 30% sensitivity in the
latter during stage-I and with a possible future upgrade of the whole experiment (stage-II)
it could even reach a percent accuracy.6 The proposed KLEVER experiment at CERN SPS
could reach a ⇠ 20% accuracy in measuring Br(KL ! ⇡

0
⌫̄⌫) [81]. An example for the

prospects due to these observables for a particular choice of phases in the two simplified
models are shown in Fig. 7.

6From a CERN EP seminar given in February 2019 (slides at https://indico.cern.ch/event/799787/
attachments/1797668/2939627/EPSeminar_YuChen.pdf) and of a talk presented at the Rencontres de
Morions 2019 (slides at http://moriond.in2p3.fr/2019/EW/slides/1_Sunday/1_morning/5_Nanjo.pdf).
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Figure 7: Future prospects for the exclusion limits in the (�, ✓) plane for the scalar leptoquark
S3 (left) and the vector singlet Z 0 with vector-like couplings to muons (right), for a choice
of phases. The orange and gray regions correspond to the future expected limits from
K

+
! ⇡

+
⌫⌫ (NA62 [82]) and KL ! ⇡

0
⌫⌫ (KLEVER [81]), respectively.

prediction of the long-distance contribution to the decay. A sizeable improvement by LHCb
is instead expected in the limit on the KS ! µµ decay rate.

While the former conclusions rely only on our rank-one hypothesis, more model dependent
correlations can be established once the relevant e↵ective operators are embedded into the
SMEFT or in the presence of specific mediators. An example of such correlations is given
by di ! dj⌫⌫ processes, and we have in fact shown that present data from K

+
! ⇡

+
⌫⌫ are

particularly relevant to the leptoquark S3 or vector Z 0 simplified models.
From a more theoretical point of view, we investigated whether the flavor violation asso-

ciated to the NP can be connected to the one present in the SM Yukawa sector. A generic
expectation is that the leading source of U(3)q breaking in the NP couplings is provided by
a direction in flavor space close to the one identified by the top quark. Indeed, we showed in
a concrete example based on a flavor symmetry that the vector n̂ turns out to be correlated
to the third line of the CKM matrix, as in Eq. (30). Remarkably, a large portion of the
theoretically favoured region (red meshed lines region in our plots) survive the bounds from
current flavor physics data. Our order of magnitude predictions can be narrowed down un-
der further theoretical assumptions. For example a minimally broken U(2)5 flavor symmetry
predicts RK = R⇡ and the ratio Br(Bs ! µµ)/Br(Bd ! µµ) to be SM-like (up to small
corrections of a few percent).

In our last section we explored future prospects for the exclusion limits in the ROFV
framework. In the near future a series of experiments will be able to cover almost all of the
parameter space identified by our ansatz. Indeed, in the next few years, significant informa-
tion will be provided by the NA62 and KOTO experiments, thanks to precise measurements
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→μμ KL→μμ

Figure 3: Limits in the plane (�, ✓) for the vector leptoquark U1 and two choices of the
phases ↵bs and ↵bd. The red region is excluded by the high-pT tail of pp ! µ

+
µ
� at the

LHC [62].

searches at the LHC of pair-produced leptoquarks, on the other hand, set lower limits on its
mass, which are now in the ⇠ 1 TeV range.

3.2 Vector leptoquark U1

The interaction lagrangian of the vector leptoquark U1 is

LNP � �iµ(qiL�↵`2L)U
↵

1 + h.c. , (18)

The matching to the SMEFT operators generated by integrating out U1 at the tree-level is
given by

C
ij

S
= �

1

2

�
iµ
�
⇤
jµ

M
2
U1

, C
ij

T
= �

1

2

�
iµ
�
⇤
jµ

M
2
U1

, C
ij

R
= 0 . (19)

We can match to our parametrization by defining �iµ ⌘ � n̂i, corresponding to C+ =
�|�|

2
/M

2
U1

< 0, cS = 1/2, cT = 1/2, and cR = 0. Contrary to the S3 model, the U1

LQ implies C+ = CL < 0. Therefore, Eq. (8), whose r.h.s. is positive, restricts the angle
� to the range [⇡, 2⇡). The constraints on � and ✓ we obtain are shown in Fig. 3. As
anticipated, they coincide with the constraints (in the ⇡ < � < 2⇡ part) of Fig. 1.

Like S3, also the U1 vector LQ contributes to meson anti-meson mixing at one-loop.
Such a contribution is however UV-divergent and, in order to be calculable, requires a
UV-completion of the simplified model. In general such UV completions contains other
contributions to the same processes, which must also be taken into account [34,38,67–70,72].

11

(present bound)
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Summary
The B-physics anomalies are one of the few experimental hints for NP at TeV scales.  
If confirmed, understanding the flavor structure of this new breaking of the SM flavor 
symmetries will be crucial. 

Specific flavor structures imply correlated effects in Kaon physics. 

In SU(2)n flavor symmetry, R(D(*)) is correlated with K→πνν: O(1) effects possible. 

The Rank-One Flavor Violation assumption, realised in several UV completions, 
allows to correlate R(K(*)) with other Kaon observables,  
e.g. KL,S→µµ  and KL→π0 µµ, but also K→πνν. 

Already now a sizeable part of parameter space is tested and 
future measurements will cover the majority of the framework.

Grazie!
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Simplified* fit of clean observablesWe are interested in New Physics operators with current-current structure and left-
handed quarks, since they allow the best fits to the observed experimental anomalies:

L
NP
e↵ �

GF↵
p
2⇡

VtbV
⇤
ts [�C

µ
9 (s̄L�

µ
bL)(µ̄�µµ) +�C

µ
10(s̄L�

µ
bL)(µ̄�µ�5µ)] + h.c. . (36)

We derive the dependence of the clean observables on the �C
µ
9 and �C

µ
10 coe�cients

using the expressions of the di↵erential rates and form factors from Refs. [42–45]:

R(K)[1�6] ⇡ 1.00 + 0.24(Re�C
µ
9 � Re�C

µ
10) + 0.0036Im�C

µ
9 + 0.029(|�C

µ
9 |

2 + |�C
µ
10|

2),

R(K⇤)[1.1�6] ⇡ 1.00 + 0.21Re�C
µ
9 � 0.29Re�C

µ
10) + 0.0043Im�C

µ
9 + 0.035(|�C

µ
9 |

2 + |�C
µ
10|

2),

R(K⇤)[0.045�1.1] ⇡ 0.93 + 0.057Re�C
µ
9 � 0.10Re�C

µ
10 + 0.0015Im�C

µ
9 + 0.012(|�C

µ
9 |

2 + |�C
µ
10|

2),

Br(B0
s ! µ

+
µ
�)

Br(B0
s ! µ+µ�)SM

⇡

�����1 +
�C

µ
10

C
µ
10, e↵

�����

2

, (37)

where Cµ
10, e↵ = �4.103 [42] describes the short-distance SM contribution. These are in good

agreement with the numerical expressions of Ref. [15]. In the above expression we fixed the
central value for the coe�cients of the form factor parametrization.

We perform a simple �
2 fit of these observables for a set of assumptions on the NP

coe�cients, the results are shown in Fig. 7. In particular, we are interested in the case where
the NP coe�cients has a non-vanishing complex phase. Our results are in good agreement
with Ref. [46], which also shows a fit including imaginary parts for the NP coe�cients.

The lower-right panel of Fig. 7 shows the fit in the parametrization of the left-left operator
we mostly focus on in this work:

Le↵ �
e
i↵bs

⇤2
bs

(s̄L�
µ
bL)(µ̄L�µµL) + h.c. , (38)

which is related to the standard parametrization by

e
i↵bs

⇤2
bs

=
GF↵
p
2⇡

VtbV
⇤
ts(�C

µ
9 ��C

µ
10) . (39)

The best-fit point is found for ⇤bs ⇡ 30.8 TeV and ↵bs = �0.12. Assuming ↵bs = 0 the
best-fit shifts to ⇤bs ⇡ 31.0 TeV, corresponding to �C

µ
9 = ��C

µ
10 ⇡ �0.62. We also note

that the di↵erence in �
2 between these two points is completely negligible.

In case of the vector solution, �C
µ
9 , the best-fit point assuming vanishing imaginary part

is found for �C
µ
9 = �1.54.

Lastly, a short comment is in order regarding the precision of this fit. It is well known
that the cancellation of uncertainties in the ratios which define the clean observables is a
feature that happens only for the SM point. When considering non-vanishing NP coe�cients,
the uncertainties in the knowledge of the form factors become relevant. A precise fit should
therefore include also these uncertainties and marginalise over the relevant parameters, this
is however beyond the purpose of this work. Comparing the top-left panel in Fig. 7 with the
analogous result of Ref. [15] we check that our results are in good enough agreement with a
more complete fit.
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that the cancellation of uncertainties in the ratios which define the clean observables is a
feature that happens only for the SM point. When considering non-vanishing NP coe�cients,
the uncertainties in the knowledge of the form factors become relevant. A precise fit should
therefore include also these uncertainties and marginalise over the relevant parameters, this
is however beyond the purpose of this work. Comparing the top-left panel in Fig. 7 with the
analogous result of Ref. [15] we check that our results are in good enough agreement with a
more complete fit.
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*Simplified = no theory uncertainties considered. Agrees well “enough" with full fits.

RK [1.1, 6] GeV2 0.846± 0.062 LHCb [1, 2]

RK⇤ [0.045, 1.1] GeV2 0.66± 0.11 LHCb [3]
0.52+0.36

�0.26 Belle [4]

RK⇤ [1.1, 6] GeV2 0.69± 0.12 LHCb [3]
0.96+0.45

�0.29 Belle [4]
RK⇤ [15, 19] GeV2 1.18+0.52

�0.32 Belle [4]

Br(B0
s
! µµ)

(3.0+0.67
�0.63)⇥ 10�9 LHCb [9]

(2.8+0.8
�0.7)⇥ 10�9 ATLAS [10]

Table 1: Clean observables sensitive to bsµµ contact interactions.

The two low-energy operators in Eq. (1) can be thought to be part of an e↵ective la-
grangian involving all the three quark families

L
EFT
NP = C

ij

L
(di�⇢PLdj)(µ�

⇢
PLµ) + C

ij

R
(di�⇢PLdj)(µ�

⇢
PRµ) , (2)

where the coe�cient of the OL operator is identified with C
sb

L
, the coe�cient of the O9

operator with C
sb

L
+C

sb

R
, and we have focussed on muon processes on the leptonic side. If the

B-meson anomalies are confirmed by future data, determining the flavor structure of these
operators will be crucial for a deeper understanding of the SM flavor puzzle.

Assuming that the relevant NP degrees of freedom lie above the electroweak scale, the nat-
ural framework for model-independent studies of the anomalies is actually that of the Stan-
dard Model E↵ective Field Theory (SMEFT). The SMEFT operators that can contribute to
the above low-energy ones at the tree level are collected in the following lagrangian:

L
SMEFT
NP = C

ij

S
(qiL�µqjL)

�
`2L�

µ
`2L

�
+C

ij

T
(qiL�µ�

a
qjL)

�
`2L�

µ
�
a
`2L

�
+C

ij

R
(qiL�µqjL) (µR�

µ
µR) ,
(3)

giving C
ij

L
= C

ij

S
+ C

ij

T
in Eq. (2). In the previous equation, `

i

L
= (⌫i

L
, e

i

L
)
t
and q

i

L
=�

V
⇤
ji
u
j

L
, d

i

L

�t
are the lepton and quark doublets, in the charged-lepton and down quarks mass

basis respectively, and V is the CKM matrix.
In the above general description, each di $ dj transition corresponds to an independent

Wilson coe�cient C ij, and the experimental data constrain each of them independently. It
is however often the case that the underlying new physics gives rise to correlations among
the di↵erent C

ij coe�cients. It is also theoretically motivated to expect that this flavor
structure is somehow related to the SM Yukawas. For example, this happens in Minimal
Flavor Violation (MFV) [29] and in approaches based on spontaneously broken U(2)n flavor
symmetries [30, 31] (see Refs. [32–38] for the link with B-anomalies).

In this paper, we consider a di↵erent type of correlation. Our key assumption is that the
NP sector responsible of the RK(⇤) signal couples to a single direction in the quark flavor
space (as mentioned, we focus here on muon processes on the leptonic side), which requires
the Wilson coe�cient matrices C

ij

S,T,R
in Eq. (3) (and consequently C

ij

L,R
in Eq. (2)) to be

rank-one and proportional:
C

ij

S,T,R,L
= CS,T,R,L n̂in̂

⇤
j
, (4)

where CS,T,R,L 2 R, CL = CS + CT , and n̂i is a unitary vector in U(3)q flavor space. We
dub this scenario Rank-One Flavor Violation (ROFV). Rather than being an assumption
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Figure 11: Constraints on complex Wilson coe�cients. Contours are as in fig. 4
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ΔF = 2 observables (and ε'/ε)
Limits on �F = 2 coe�cients [GeV�2]

ReC1
K
2 [�6.8, 7.7]⇥ 10�13 , ImC

1
K
2 [�1.2, 2.4]⇥ 10�15

ReC1
D
2 [�2.5, 3.1]⇥ 10�13 , ImC

1
D
2 [�9.4, 8.9]⇥ 10�15

|C
1
Bd
| < 9.5⇥ 10�13

|C
1
Bs
| < 1.9⇥ 10�11

Table 8: Limits on�F = 2 operators from meson anti-meson mixing from [93] (2018 update).

C
sd,`

SM =

✓
4GF
p
2

↵

2⇡
V

⇤
ts
Vtd

◆
c` (57)

c` = �
1

s
2
W

✓
Xt +

V
⇤
cs
Vcd

V
⇤
tsVtd

X
`

c

◆
, (58)

Xt = 1.481± 0.009, (59)

X
e

c
= X

µ

c
= 1.053⇥ 10�3

, (60)

X
⌧

c
= 0.711⇥ 10�3

. (61)

The corresponding formulae for branching ratios are:

Br(K+
! ⇡

+
⌫⌫) = Br(K+

! ⇡
+
⌫⌧⌫⌧ )SM + Br(K+

! ⇡
+
⌫e⌫e)SM

8
<

:1 +

�����1 +
C

sd,µ

NP

C
sd,µ

SM

�����

2
9
=

; ,

(62)

Br(KL ! ⇡
0
⌫⌫)

Br(KL ! ⇡0⌫⌫)SM
=

2

3
+

1

3
(1 +

ImC
sd,µ

NP

ImC
sd,µ

SM

)2 (63)

The SM expressions of branching fractions can be found in [90]. Using the values (58)-(61),
we find:

Br(K+
! ⇡

+
⌫e⌫e)SM = 3.06⇥ 10�11

, (64)

Br(K+
! ⇡

+
⌫⌧⌫⌧ )SM = 2.52⇥ 10�11

, (65)

Br(KL ! ⇡
0
⌫⌫)SM = 2.95⇥ 10�11

, (66)

where the theoretical uncertainty is negligible in comparison to the experimental one.
The current experimental bounds are [60, 92]:

Br(K+
! ⇡

+
⌫⌫)exp = (17.3+11.5

�10.5)⇥ 10�11
, . (67)

Br(KL ! ⇡
0
⌫⌫)exp < 3.0⇥ 10�9

, (68)

B.6 Constraints on �F = 2 operators

In order to put limits on our simplified models from meson-antimeson mixing we use the
results of Ref. [93], in particular the update presented at ’La Thuile 2018’ by L. Silvestrini10.

10The slides can be found at https://agenda.infn.it/event/14377/contributions/24434/
attachments/17481/19830/silvestriniLaThuile.pdf.
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LNP
�F=2 = Cij(q̄

i

L�µq
j

L
)2 (1)

CQijL
⇠ CQL
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� .. ↵Vtd

.. � ↵Vts

↵
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0 cVq
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↵ ⇠ O(1) � . O(1) (5)

�tail ⇠
✓
g
2
⇤
p
2

M2

◆
(6)

1

(⇤SM
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C
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9 � C

SM
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2
(7)

⇤SM
bs

⇡ 12 TeV (8)

Vq ⇠ (2,1,1) , �Yu ⇠ (2, 2̄,1) , �Yd ⇠ (2,1, 2̄) (9)

n̂ ⇠ 1+ 2q ⇠
�
cU2V

T

q , 1
�T

(10)

Br(B0
s ! µ

+
µ
�)

Br(B0
s ! µ+µ�)SM ⇡ Br(B0 ! µ

+
µ
�)

Br(B0 ! µ+µ�)SM . (11)

CL sin ✓ cos ✓ sin�ei↵bs =
e
i↵bs

⇤2
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, (12)

n̂ ⇠ 3q (13)

C
MFV
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⇣
1+ aYuY

†
u + bYdY

†
d
+ . . .

⌘

ij

(14)

U(2)3 = U(2)q ⇥ U(2)u ⇥ U(2)d (15)

C =

0

@
Cdd Cds Cdb
C⇤
ds

Css Csb
C⇤
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C⇤
sb

Cbb

1

A (16)

LEFT
NP = Cij(d̄

i

L�µd
i

L)(µ̄L�
µ
µL) (17)

LEFT
NP = C n̂in̂

⇤
j (d̄

i

L�µd
i

L)(µ̄L�
µ
µL) (18)

Cij = C n̂in̂
⇤
j (19)

⇠ gµVts

⇤2
(b̄L�↵sL)(µ̄L�

↵
µL) (20)

⇠ gµVcb

⇤2
(b̄L�↵cL)(⌫̄

µ

L
�
↵
µL) (21)

1

For example, the Z’ contribution is:

This model also generates at the tree-level four quark operators which contribute to
�F = 2 observables:

�L�F=2 = �
g
2
q

2M2
Z0

⇥
(n̂in̂

⇤
j
diL�

↵
djL)

2 + (Vikn̂kn̂
⇤
l
V

⇤
jl
uiL�

↵
ujL)

2
⇤
. (24)

For a fixed direction in quark space, n̂, and a fixed value of R
K(⇤) , we can use �F = 2

constraints to put an upper limit on the ratio rqµ ⌘ |gq/gµ|. We can then assign a maximum
value to gµ and derive an upper limit for the Z

0 mass:

M
lim
Z0 = min

2

4
s

rlim
qµ

|C+|
|g

max
µ

| ,

s����
gmax
µ

gmax
q

C+

����

3

5 , (25)

where the first limit is from �F = 2 observables while the second is from perturbativity.
For the maximum values of the couplings we use the limits from perturbative unitarity from
Ref. [77], |gmax

µ
|
2 = 2⇡ and |g

max
q

|
2 = 2⇡/3.

4 Theoretical expectations

In the previous Sections we have been agnostic about the structure of the rank one coe�cients
of the NP interactions, and parameterised it in terms of the unit vector n̂. Here we would
like to illustrate, with a flavor symmetry example, the possible theoretical expectations on
the direction in flavor space at which n̂ points.

In the SM, the gauge lagrangian flavor group

U(3)5 ⌘ U(3)q ⇥ U(3)` ⇥ U(3)u ⇥ U(3)d ⇥ U(3)e (26)

is explicitly broken by the Yukawa couplings Yu,d,e. Here, the unit vector n̂, and the UV
couplings from which it originates, represent an additional source of explicit breaking. In
fact, we can formally assign the UV couplings introduced in the previous Section (and the
SM Yukawa couplings) quantum numbers under U(3)5:

SM :

8
><

>:

Yu ⇠ 3q ⌦ 3̄u,

Yd ⇠ 3q ⌦ 3̄d,

Ye ⇠ 3` ⌦ 3̄e.

n̂i /

8
><

>:

�iµ ⇠ 3q ⌦ 3` S3,

�iµ ⇠ 3q ⌦ 3` U
µ

1 ,

Mi ⇠ 3q Z
0
, V

0
(27)

Therefore, di↵erent models can be characterised not only in terms of the SM quantum
numbers of the messengers, but also in terms of the flavor quantum numbers of the couplings.

Correlations between the two sets of couplings in Eq. (27) can arise if they share a
common origin. This may be the case, for example, if we assume a subgroup G ✓ U(3)5 to
be an actual symmetry of the complete UV lagrangian, and the above couplings to originate
from its spontaneous breaking by means of a common set of “flavon” fields.

Correlations cannot arise if G coincides with the full U(3)5. The quantum numbers of
the relevant flavons coincide in this case with the transformation properties in Eq. (27).
Therefore, the flavons entering the Yukawas and the NP couplings are in this case entirely

13

Also ε’/ε provides a potential constrain on the coefficient of  

The relevant 95%CL bounds, in GeV�2, on the coe�cients �F = 2 operators (q̄i
L
�µq

j

L
)2,

are summarised in Table 8. In case of the S3 leptoquark, using Eq. (17) we calculate the
maximum value of the leptoquark mass for any point in parameter space and show the result
as dashed purple contours in Fig. 2. Similarly, in case of the Z

0, we set upper an limit on
its mass, assuming a maximum value for the gµ coupling from perturbative unitarity, c.f.
Sec. 3.3.

Using the the dependence of ✏0/✏ on the coe�cients of four-quark operators of the type
(s̄�µPLd)(q̄�µ

PLq) from Refs. [94, 95] we checked that the constraint this observable, in our
framework, is not competitive with those from meson-antimeson mixing.
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q = u, d, s, c

2

glecting isospin breaking corrections, ε′/ε can be written
as

(
ε′

ε

)

th

= − ω√
2|εK |

[
ImA0

ReA0
− ImA2

ReA2

]
, (2)

where ω = ReA2/ReA0 and A0,2 are the K → ππ isospin
amplitudes,

A0,2 =
〈
(ππ)I=0,2

∣∣ H(3)
∆S=1

∣∣K
〉
. (3)

Isospin breaking corrections have been considered in [53,

54]. Here H(3)
∆S=1 denotes the ∆S = 1 effective Hamil-

tonian with only the three lightest quarks (q = u, d, s)
being dynamical, obtained by decoupling the heavy W±,
Z0, and h0 bosons and the top quark at the electroweak
scale µew ∼ mW and the bottom and charm quarks at
their respective mass thresholds [55].
Assuming that no particles beyond the SM ones with

mass below the electroweak scale exist, any BSM effect
is encoded in the Wilson coefficients of the most general
∆S = 1 dimension-six effective Hamiltonian. The values
of the Wilson coefficients Ci(µew) in this effective Hamil-
tonian at the electroweak scale with Nf = 5 active quark
flavours,

H(5)
∆S=1 = −N∆S=1

∑

i

Ci Oi , (4)

are connected to those of H(3)
∆S=1, entering ε′/ε, by the

usual QCD and QED renormalization group (RG) evo-
lution. In full generality, three classes of operators can
contribute, directly or via RGmixing, toK → ππ decays:
a. four-quark operators:

Oq
XAB = (s̄iΓXPAd

i)(q̄jΓXPBq
j) , (5)

Õq
XAB = (s̄iΓXPAd

j)(q̄jΓXPBq
i) , (6)

b. electro- and chromo-magnetic dipole operators:

O(′)
7γ = ms(s̄σ

µνPL(R)d)Fµν , (7)

O(′)
8g = ms(s̄σ

µνT aPL(R)d)G
a
µν , (8)

c. semi-leptonic operators:

Oℓ
XAB = (s̄ΓXPAd)(ℓ̄ΓXPBℓ) . (9)

Here i, j are colour indices, A,B = L,R, and X = S, V, T
with ΓS = 1, ΓV = γµ, ΓT = σµν [56]. Throughout it
is sufficient to consider the case A = L, whereas results
for the case A = R follow analogously due to parity con-
servation of QCD and QED. We will choose the overall
normalization factor N∆S=1 below such that the coeffi-
cients Ci are dimensionless.
In the following, we will neglect the electro-magnetic

dipole and semi-leptonic operators, which only enter
through small QED effects. This leaves 40 four-quark op-
erators for Nf = 5 and one chromo-magnetic dipole op-
erator of a given chirality which have to be considered at

the electroweak scale. A detailed renormalization group
analysis of these operators, model independently and in
the context of the Standard Model effective field theory
(SMEFT), is performed in [57]. The goal of the present
letter is to provide the central result of [57] and [37], the
master formula for ε′/ε, in a form that could be used by
any model builder or phenomenologist right away with-
out getting involved with the technical intricacies of these
analyses.
Writing

(
ε′

ε

)
=

(
ε′

ε

)

SM

+

(
ε′

ε

)

BSM

, (10)

our formula allows to calculate automatically (ε′/ε)BSM

once the Wilson coefficients of all contributing operators
are known at the electroweak scale µew. It reads as fol-
lows:
(
ε′

ε

)

BSM

=
∑

i

Pi(µew) Im [Ci(µew)− C′
i(µew)] , (11)

where

Pi(µew) =
∑

j

∑

I=0,2

p(I)ij (µew, µ)

[
⟨Oj(µ)⟩I
GeV3

]
. (12)

The sum in (12) extends over the Wilson coefficients
Ci of the linearly independent four-quark and chromo-
magnetic dipole operators listed in Table I. The C′

i are
the Wilson coefficients of the corresponding chirality-
flipped operators obtained by replacing PL ↔ PR. The
relative minus sign accounts for the fact that their K →
ππ matrix elements differ by a sign. Among the con-
tributing operators are also operators present already in
the SM but their Wilson coefficients in (11) include only
BSM contributions.
The dimensionless coefficients p(I)ij (µew, µ) include the

QCD and QED RG evolution from µew to µ ∼ O(1GeV)
for each Wilson coefficient as well as the relative sup-
pression of the contributions to the I = 0 amplitude due
to ReA2/ReA0 ≪ 1 for the matrix elements ⟨Oj(µ)⟩I
of all the operators Oj present at the low-energy scale.
The index j includes also i so that the effect of self-
mixing is included. The Pi(µew) do not depend on µ
to the considered order, because the µ-dependence can-
cels between matrix elements and the RG evolution op-
erator. Moreover, it should be emphasized that their
values are model-independent and depend only on the
SM dynamics below the electroweak scale, which includes
short distance contributions down to µ and the long dis-
tance contributions represented by the hadronic matrix
elements. The BSM dependence enters our master for-
mula in (11) only through the Wilson coefficients Ci(µew)
and C′

i(µew). That is, even if a given Pi is non-zero, the
fate of its contribution depends on the difference of these
two coefficients. In particular, in models with exact left-
right symmetry this contribution vanishes as first pointed
out in [58].

[Aebisher et al. 1807.02520, 1808.00466 ]

≲ 10×10-4

In this framework, this constraint is not competitive with ΔF = 2
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U1 vector leptoquark

ΔF=2 loops are divergent, 
need a UV completion.

Figure 2: Limits in the plane (�, ✓) for the scalar leptoquark S3 and two choices of the phases
↵bs and ↵bd. In addition to the limits in Fig.1, the orange bound is from K ! ⇡⌫⌫ while the
red one is from the high-pT tail of pp ! µ

+
µ
� at the LHC [15]. The top-left panel is a zoom

of the region ✓ ⌧ 10 of the bottom-left one, which shows in more detail the region excluded
by LHC dimuon searches. The dashed purple contour lines are the upper limits (in TeV) on
the leptoquark mass from �F = 2 processes.

upper limit on the LQ mass. These are shown as dashed purple lines (in TeV) in the plots of
Fig. 2. More details are reported in App. A.5. Direct searches at the LHC of pair-produced
leptoquarks, on the other hand, set lower limits on its mass, which are now in the ⇠ 1 TeV
range.

5.2 Vector leptoquark U1

The interaction lagrangian of the vector leptoquark U1 is

LNP � �1,iµ(q̄
i
L�↵`

2
L)U

↵
1 + h.c. , (21)

The matching to the SMEFT operators generated by integrating out U1 at the tree-level is
given by

C
ij
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1

2
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⇤
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M2
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⇤
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the leptoquark mass from �F = 2 processes.

upper limit on the LQ mass. These are shown as dashed purple lines (in TeV) in the plots of
Fig. 2. More details are reported in App. A.5. Direct searches at the LHC of pair-produced
leptoquarks, on the other hand, set lower limits on its mass, which are now in the ⇠ 1 TeV
range.

5.2 Vector leptoquark U1

The interaction lagrangian of the vector leptoquark U1 is

LNP � �1,iµ(q̄
i
L�↵`

2
L)U

↵
1 + h.c. , (21)

The matching to the SMEFT operators generated by integrating out U1 at the tree-level is
given by

C
ij
S = �

1

2

�1,iµ�
⇤
1,jµ

M2
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ij
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Figure 3: Limits in the plane (�, ✓) for the vector leptoquark U1 and two choices of the
phases ↵bs and ↵bd. The red region is excluded by the high-pT tail of pp ! µ

+
µ
� at the

LHC [15].

We can match to our parametrization as �1,iµ ⌘ �1 n̂i, corresponding to C = �|�1|
2
/M

2
U1

< 0,
cS = 1/2, cT = 1/2, and cR = 0. Contrary to the S3 model, the U1 LQ predicts C < 0,
therefore the angle � should be restricted to the range � 2 [⇡, 2⇡) in order to fit R(K(⇤)).

The U1 vector LQ contributes to meson anti-meson mixing at one-loop. Such a contri-
bution is however UV-divergent and, in order to be calculable, requires a UV-completion of
the simplified model. In general such UV completions contains other contributions to the
same processes, which must also be taken into account. For explicit scenarios see e.g. [].

5.3 Vector singlet Z
0 with vector-like couplings to muons

Let us consider a heavy singlet vector Z 0 with couplings:

LNP �
⇥
gqn̂in̂

⇤
j(q̄

i
L�

↵
q
j
L) + gµ(¯̀

2
L�

↵
`
2
L + µ̄R�

↵
µR)

⇤
Z

0
↵ . (23)

Such a structure of the Z
0 couplings to quarks could arise, for example, by assuming that

they arise only via the mixing with a heavy vector-like quark doublet, see e.g. [].
The matching with the SMEFT operators in this case is given by

C
ij
S =

gqgµ

4M2
Z0
n̂in̂

⇤
j , C

ij
T = 0 , C

ij
R =

gqgµ

4M2
Z0
n̂in̂

⇤
j , (24)

corresponding to C = gqgµ/(4M2
Z0), cS = 1, cR = 1, and cT = 0. Note that in this scenario

the overall coe�cient C can take any sign. It is worth noting that all purely leptonic meson
decays such as KL,S or B0 to µµ vanish in this setup since the leptonic current is vector-like.
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therefore the angle � should be restricted to the range � 2 [⇡, 2⇡) in order to fit R(K(⇤)).

The U1 vector LQ contributes to meson anti-meson mixing at one-loop. Such a contri-
bution is however UV-divergent and, in order to be calculable, requires a UV-completion of
the simplified model. In general such UV completions contains other contributions to the
same processes, which must also be taken into account. For explicit scenarios see e.g. [].

5.3 Vector singlet Z
0 with vector-like couplings to muons

Let us consider a heavy singlet vector Z 0 with couplings:

LNP �
⇥
gqn̂in̂

⇤
j(q̄

i
L�

↵
q
j
L) + gµ(¯̀

2
L�

↵
`
2
L + µ̄R�

↵
µR)

⇤
Z

0
↵ . (23)

Such a structure of the Z
0 couplings to quarks could arise, for example, by assuming that

they arise only via the mixing with a heavy vector-like quark doublet, see e.g. [].
The matching with the SMEFT operators in this case is given by

C
ij
S =

gqgµ

4M2
Z0
n̂in̂

⇤
j , C

ij
T = 0 , C

ij
R =

gqgµ

4M2
Z0
n̂in̂

⇤
j , (24)

corresponding to C = gqgµ/(4M2
Z0), cS = 1, cR = 1, and cT = 0. Note that in this scenario

the overall coe�cient C can take any sign. It is worth noting that all purely leptonic meson
decays such as KL,S or B0 to µµ vanish in this setup since the leptonic current is vector-like.
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Figure 3: Limits in the plane (�, ✓) for the vector leptoquark U1 and two choices of the
phases ↵bs and ↵bd. The red region is excluded by the high-pT tail of pp ! µ

+
µ
� at the

LHC [63].

searches at the LHC of pair-produced leptoquarks, on the other hand, set lower limits on its
mass, which are now in the ⇠ 1 TeV range.

3.2 Vector leptoquark U1

The interaction lagrangian of the vector leptoquark U1 is

LNP � �iµ(qiL�↵`2L)U
↵

1 + h.c. , (18)

The matching to the SMEFT operators generated by integrating out U1 at the tree-level is
given by

C
ij

S
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2

�
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M
2
U1

, C
ij

T
= �

1

2

�
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⇤
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M
2
U1

, C
ij

R
= 0 . (19)

We can match to our parametrization by defining �iµ ⌘ � n̂i, corresponding to C+ =
�|�|

2
/M

2
U1

< 0, cS = 1/2, cT = 1/2, and cR = 0. Contrary to the S3 model, the U1

LQ implies C+ = CL < 0. Therefore, Eq. (8), whose r.h.s. is positive, restricts the angle
� to the range [⇡, 2⇡). The constraints on � and ✓ we obtain are shown in Fig. 3. As
anticipated, they coincide with the constraints (in the ⇡ < � < 2⇡ part) of Fig. 1.

Like S3, also the U1 vector LQ contributes to meson anti-meson mixing at one-loop.
Such a contribution is however UV-divergent and, in order to be calculable, requires a
UV-completion of the simplified model. In general such UV completions contains other
contributions to the same processes, which must also be taken into account [34,38,68–71,73].
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Figure 3: Limits in the plane (�, ✓) for the vector leptoquark U1 and two choices of the
phases ↵bs and ↵bd. The red region is excluded by the high-pT tail of pp ! µ

+
µ
� at the

LHC [15].

We can match to our parametrization as �1,iµ ⌘ �1 n̂i, corresponding to C = �|�1|
2
/M

2
U1

< 0,
cS = 1/2, cT = 1/2, and cR = 0. Contrary to the S3 model, the U1 LQ predicts C < 0,
therefore the angle � should be restricted to the range � 2 [⇡, 2⇡) in order to fit R(K(⇤)).

The U1 vector LQ contributes to meson anti-meson mixing at one-loop. Such a contri-
bution is however UV-divergent and, in order to be calculable, requires a UV-completion of
the simplified model. In general such UV completions contains other contributions to the
same processes, which must also be taken into account. For explicit scenarios see e.g. [].

5.3 Vector singlet Z
0 with vector-like couplings to muons

Let us consider a heavy singlet vector Z 0 with couplings:

LNP �
⇥
gqn̂in̂

⇤
j(q̄

i
L�

↵
q
j
L) + gµ(¯̀

2
L�

↵
`
2
L + µ̄R�

↵
µR)

⇤
Z

0
↵ . (23)

Such a structure of the Z
0 couplings to quarks could arise, for example, by assuming that

they arise only via the mixing with a heavy vector-like quark doublet, see e.g. [].
The matching with the SMEFT operators in this case is given by

C
ij
S =

gqgµ

4M2
Z0
n̂in̂

⇤
j , C

ij
T = 0 , C

ij
R =

gqgµ

4M2
Z0
n̂in̂

⇤
j , (24)

corresponding to C = gqgµ/(4M2
Z0), cS = 1, cR = 1, and cT = 0. Note that in this scenario

the overall coe�cient C can take any sign. It is worth noting that all purely leptonic meson
decays such as KL,S or B0 to µµ vanish in this setup since the leptonic current is vector-like.
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quark doublet Q in the form
MiQqiL + h.c. (22)

(see e.g. []). In such a case, n̂i / M
⇤
i . The matching with the SMEFT operators in this case

is given by
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corresponding to C+ = �gqgµ/(M2
Z0), cS = 1, cR = 1, and cT = 0. The matching to the

operators relevant for the bsµµ anomalies is now

C+ sin ✓ cos ✓ sin�ei↵bs =
GF↵
p
2⇡

VtbV
⇤
ts�C

µ
9 , (24)

Note that in this scenario the overall coe�cient C+ can take any sign. It is worth noting
that all purely leptonic meson decays such as KL,S or B

0 to µµ vanish in this setup since
the leptonic current is vector-like 3. The only relevant limits then arise from B

+
! ⇡

+
µµ,

K
+
! ⇡

+
⌫⌫, and from LHC dimuon searches, as shown in Fig. 4.

This model also generates at the tree-level four quark operators which contribute to
�F = 2 observables:

�L�F=2 = �
g
2
q

2M2
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⇥
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d
j
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2 + (Vikn̂kn̂
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l V

⇤
jl ū
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↵
u
j
L)

2
⇤
. (25)

For a fixed direction in quark space, n̂, and a fixed value of RK(⇤) , we can use �F = 2
constraints to put an upper limit on the ratio rqµ ⌘ |gq/gµ|. We can then assign a maximum

3The J = 0 constraint forces the final muon pair to be in a state with C = +1, whereas the vectorial
current µ�µ has negative C-parity.
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For a fixed direction in quark space, n̂, and a fixed value of RK(⇤) , we can use �F = 2
constraints to put an upper limit on the ratio rqµ ⌘ |gq/gµ|. We can then assign a maximum

3The J = 0 constraint forces the final muon pair to be in a state with C = +1, whereas the vectorial
current µ�µ has negative C-parity.
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For example see the gauged U(1)Lμ-Lτ model with 1 vector-like quark.
[Altmannshofer, Gori, et al  1403.1269, 1609.04026]
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3.3 Vector singlet Z
0
with vector-like couplings to muons

Let us consider a heavy singlet vector Z 0 with couplings:
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where g
ij

q
= gqn̂in̂
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j
. Such a flavor structure of the Z

0 couplings to quarks could arise, for
example, by assuming that they couple to Z

0 only via the mixing with a heavy vector-like
quark doublet Q in the form

MiQqiL + h.c. . (21)

In such a case, n̂i / M
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. The matching with the SMEFT operators in this case is given by
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corresponding to C+ = �gqgµ/(M2
Z0), cS = 1, cR = 1, and cT = 0. The matching to the

operators relevant for the bsµµ anomalies is now

C+ sin ✓ cos ✓ sin�ei↵bs =
GF↵
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9 , (23)

Note that in this scenario the overall coe�cient C+ can take any sign. It is worth noting
that all purely leptonic meson decays such as KL,S or B

0 to µµ vanish in this setup since
the leptonic current is vector-like 4. The only relevant limits then arise from B

+
! ⇡

+
µµ,

K
+
! ⇡

+
⌫⌫, and from LHC dimuon searches, as shown in Fig. 4.

4The J = 0 constraint forces the final muon pair to be in a state with C = +1, whereas the vectorial
current µ�µ has negative C-parity.
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corresponding to C+ = �gqgµ/(M2
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Note that in this scenario the overall coe�cient C+ can take any sign. It is worth noting
that all purely leptonic meson decays such as KL,S or B

0 to µµ vanish in this setup since
the leptonic current is vector-like 4. The only relevant limits then arise from B
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+
µµ,

K
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+
⌫⌫, and from LHC dimuon searches, as shown in Fig. 4.

4The J = 0 constraint forces the final muon pair to be in a state with C = +1, whereas the vectorial
current µ�µ has negative C-parity.
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Figure 3: Limits in the plane (�, ✓) for the vector leptoquark U1 and two choices of the
phases ↵bs and ↵bd. The red region is excluded by the high-pT tail of pp ! µ

+
µ
� at the

LHC [15].

We can match to our parametrization as �1,iµ ⌘ �1 n̂i, corresponding to C = �|�1|
2
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2
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< 0,
cS = 1/2, cT = 1/2, and cR = 0. Contrary to the S3 model, the U1 LQ predicts C < 0,
therefore the angle � should be restricted to the range � 2 [⇡, 2⇡) in order to fit R(K(⇤)).

The U1 vector LQ contributes to meson anti-meson mixing at one-loop. Such a contri-
bution is however UV-divergent and, in order to be calculable, requires a UV-completion of
the simplified model. In general such UV completions contains other contributions to the
same processes, which must also be taken into account. For explicit scenarios see e.g. [].
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Such a structure of the Z
0 couplings to quarks could arise, for example, by assuming that

they arise only via the mixing with a heavy vector-like quark doublet, see e.g. [].
The matching with the SMEFT operators in this case is given by
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corresponding to C = gqgµ/(4M2
Z0), cS = 1, cR = 1, and cT = 0. Note that in this scenario

the overall coe�cient C can take any sign. It is worth noting that all purely leptonic meson
decays such as KL,S or B0 to µµ vanish in this setup since the leptonic current is vector-like.
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Note that in this scenario the overall coe�cient C+ can take any sign. It is worth noting
that all purely leptonic meson decays such as KL,S or B

0 to µµ vanish in this setup since
the leptonic current is vector-like 3. The only relevant limits then arise from B
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µµ,
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⌫⌫, and from LHC dimuon searches, as shown in Fig. 4.
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For a fixed direction in quark space, n̂, and a fixed value of RK(⇤) , we can use �F = 2
constraints to put an upper limit on the ratio rqµ ⌘ |gq/gµ|. We can then assign a maximum

3The J = 0 constraint forces the final muon pair to be in a state with C = +1, whereas the vectorial
current µ�µ has negative C-parity.
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corresponding to C+ = �gqgµ/(M2
Z0), cS = 1, cR = 1, and cT = 0. The matching to the

operators relevant for the bsµµ anomalies is now
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Note that in this scenario the overall coe�cient C+ can take any sign. It is worth noting
that all purely leptonic meson decays such as KL,S or B

0 to µµ vanish in this setup since
the leptonic current is vector-like 3. The only relevant limits then arise from B

+
! ⇡

+
µµ,

K
+
! ⇡

+
⌫⌫, and from LHC dimuon searches, as shown in Fig. 4.

This model also generates at the tree-level four quark operators which contribute to
�F = 2 observables:
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For a fixed direction in quark space, n̂, and a fixed value of RK(⇤) , we can use �F = 2
constraints to put an upper limit on the ratio rqµ ⌘ |gq/gµ|. We can then assign a maximum

3The J = 0 constraint forces the final muon pair to be in a state with C = +1, whereas the vectorial
current µ�µ has negative C-parity.
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ΔF=2 operators are 
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0 with vector-like couplings to
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limits on the Z
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For a fixed direction in quark space, n̂, and a fixed value of R(K(⇤)), we can use �F = 2
constraints to put an upper limit on the ratio rqµ ⌘ |gq/gµ|. We can then assign a maximum
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6 Flavour symmetry and U(2)

The left-handed quark linear interaction, Eq. (3), constitutes an explicit breaking of the SM
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U(3)5 ⌘ U(3)q ⇥ U(3)` ⇥ U(3)u ⇥ U(3)d ⇥ U(3)e. (27)
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For instance, for the three models of the previous Section we have (cf. Eqs. (), () and ()):

3We shall denote U(n) = U(1) ⇥ SU(n) representations by SU(n) labels only. In all examples which
follow, the U(1) charge of an SU(n) tensor with p contravariant and q covariant indices is Q = p� q.
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quark doublet Q in the form
MiQqiL + h.c. (22)
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corresponding to C+ = �gqgµ/(M2
Z0), cS = 1, cR = 1, and cT = 0. The matching to the

operators relevant for the bsµµ anomalies is now
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Note that in this scenario the overall coe�cient C+ can take any sign. It is worth noting
that all purely leptonic meson decays such as KL,S or B

0 to µµ vanish in this setup since
the leptonic current is vector-like 3. The only relevant limits then arise from B

+
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+
µµ,

K
+
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+
⌫⌫, and from LHC dimuon searches, as shown in Fig. 4.
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For a fixed direction in quark space, n̂, and a fixed value of RK(⇤) , we can use �F = 2
constraints to put an upper limit on the ratio rqµ ⌘ |gq/gµ|. We can then assign a maximum

3The J = 0 constraint forces the final muon pair to be in a state with C = +1, whereas the vectorial
current µ�µ has negative C-parity.
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For example see the gauged U(1)Lμ-Lτ model with 1 vector-like quark.
[Altmannshofer, Gori, et al  1403.1269, 1609.04026]
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0 with vector-like couplings to

muons and two choices of the phases ↵bs and ↵bd. The dashed purple contour lines are upper
limits on the Z

0 mass [TeV] from �F = 2 processes using Eq. (25).

3.3 Vector singlet Z
0
with vector-like couplings to muons

Let us consider a heavy singlet vector Z 0 with couplings:
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. Such a flavor structure of the Z

0 couplings to quarks could arise, for
example, by assuming that they couple to Z

0 only via the mixing with a heavy vector-like
quark doublet Q in the form

MiQqiL + h.c. . (21)

In such a case, n̂i / M
⇤
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. The matching with the SMEFT operators in this case is given by
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corresponding to C+ = �gqgµ/(M2
Z0), cS = 1, cR = 1, and cT = 0. The matching to the

operators relevant for the bsµµ anomalies is now
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Note that in this scenario the overall coe�cient C+ can take any sign. It is worth noting
that all purely leptonic meson decays such as KL,S or B

0 to µµ vanish in this setup since
the leptonic current is vector-like 4. The only relevant limits then arise from B

+
! ⇡

+
µµ,

K
+
! ⇡

+
⌫⌫, and from LHC dimuon searches, as shown in Fig. 4.

4The J = 0 constraint forces the final muon pair to be in a state with C = +1, whereas the vectorial
current µ�µ has negative C-parity.
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3.3 Vector singlet Z
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with vector-like couplings to muons

Let us consider a heavy singlet vector Z 0 with couplings:
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⇥
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where g
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= gqn̂in̂
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. Such a flavor structure of the Z

0 couplings to quarks could arise, for
example, by assuming that they couple to Z

0 only via the mixing with a heavy vector-like
quark doublet Q in the form

MiQqiL + h.c. . (21)

In such a case, n̂i / M
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. The matching with the SMEFT operators in this case is given by
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corresponding to C+ = �gqgµ/(M2
Z0), cS = 1, cR = 1, and cT = 0. The matching to the

operators relevant for the bsµµ anomalies is now

C+ sin ✓ cos ✓ sin�ei↵bs =
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Note that in this scenario the overall coe�cient C+ can take any sign. It is worth noting
that all purely leptonic meson decays such as KL,S or B

0 to µµ vanish in this setup since
the leptonic current is vector-like 4. The only relevant limits then arise from B

+
! ⇡

+
µµ,

K
+
! ⇡

+
⌫⌫, and from LHC dimuon searches, as shown in Fig. 4.

4The J = 0 constraint forces the final muon pair to be in a state with C = +1, whereas the vectorial
current µ�µ has negative C-parity.
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ROFV & U(2)3 symmetry

U(2) flavour symmetry

SM Yukawa couplings exhibit an approximate U(2)3 flavour symmetry:


1. Good approximation of SM spectrum: mlight ~ 0, VCKM ~ 1 
 
  Breaking 
  pattern:


2. The assumption of a single spurion Vq connecting the 3rd generation with 
the other two ensures MFV-like FCNC protection


3. The most general symmetry that gives “CKM-like” interactions in a model-
independent way
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Barbieri et al. 2011, 2012
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1

discussion in Ref. [89], so Eq. (3.16) is imposed at the matrix level. If also the scalar HC
currents were kept, a slightly more general condition can be derived, see Ref. [68] for a
detailed discussion of this point.

TheGF flavour symmetry and its spurions (3.4,3.5) dictate the structure of the Yukawa
matrices. At leading order in the spurions and up to possible O(1) factors multiplying
each term one has [104] (in L̄R notation):
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0 1

◆
, yd ⇠ yb

✓
�Yd Vq

0 1

◆
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◆
. (3.17)

In the left-handed quark sector this can be put in correspondence with the CKM matrix
elements:

Vq = aq

✓
V ⇤
td

V ⇤
ts

◆
, (3.18)

where aq is an O(1) parameter. As shown in Section 5, in order to fit the flavour anomalies
while avoiding dangerous e↵ects involving electrons, the left-handed lepton spurion can
be taken approximately as

Vl ⇡

✓
0
�⌧µ

◆
, (3.19)

where �⌧µ ⌧ 1.

3.3 S1,3 LQ couplings

The operators responsible for generating the leptoquark couplings to fermions are
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Also in this case one can introduce a set of spurions of G to keep track of the explicit
breaking of the global symmetry (see App. C.3):
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�5 ,
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Q�

A�5 L =  ̄�A,a
S3

�5 ,
(3.21)

where the index a runs in the fundamental of SU(3)c while A is in the adjoint of SU(2)w.
Below ⇤HC one can write the couplings of both scalar LQ to SM fermions as6
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6In presence of EWSB, a factor of cos ✓

2 should muliply all terms in the last line of Eq. (3.22). Since
this is ⇡ 1 up to a small O(⇠) correction, I neglect it in the following.

13

Vq ⇠ (2,1,1) , �Yu ⇠ (2, 2̄,1) , �Yd ⇠ (2,1, 2̄) (1)

n̂ ⇠ 1+ 2q ⇠
�
cU2V

T

q , 1
�T

(2)

Br(B0
s ! µ

+
µ
�)

Br(B0
s ! µ+µ�)SM ⇡ Br(B0 ! µ

+
µ
�)

Br(B0 ! µ+µ�)SM . (3)

CL sin ✓ cos ✓ sin�ei↵bs =
e
i↵bs

⇤2
bs

, (4)

n̂ ⇠ 3q (5)

C
MFV
ij ⇠

⇣
1+ aYuY

†
u + bYdY

†
d
+ . . .

⌘

ij

(6)

U(2)3 = U(2)q ⇥ U(2)u ⇥ U(2)d (7)

C =

0

@
Cdd Cds Cdb
C⇤
ds

Css Csb
C⇤
db

C⇤
sb

Cbb

1

A (8)

LEFT
NP = Cij(d̄

i

L�µd
i

L)(µ̄L�
µ
µL) (9)

LEFT
NP = C n̂in̂

⇤
j (d̄

i

L�µd
i

L)(µ̄L�
µ
µL) (10)

Cij = C n̂in̂
⇤
j (11)

⇠ gµVts

⇤2
(b̄L�↵sL)(µ̄L�

↵
µL) (12)

⇠ gµVcb

⇤2
(b̄L�↵cL)(⌫̄

µ

L
�
↵
µL) (13)

⇠ g⌧Vcb

⇤2
(b̄L�↵cL)(⌫̄

⌧

L�
↵
⌧L) (14)

|✏1,3|2 = (15)

L4�Fermi ⇠
c  

⇤2
t

 ̄SM SM ̄ 
E.⇤HC�! ⇠ y �  ̄SM SM �+ . . . (16)

⇤t & ⇤HC (17)

�B(B ! K
⇤
⌫⌫) / (18)

LBSM =
2c

⇤2
(c̄L�µbL)(⌧̄L�

µ
⌫⌧ ) + h.c. (19)

1

⇤2
bsµ

=
�
q

bs

⇤2
qqµ

(20)

Cbsµ

v2
=
�
q

bs

v2
Cqµ (21)

1

discussion in Ref. [89], so Eq. (3.16) is imposed at the matrix level. If also the scalar HC
currents were kept, a slightly more general condition can be derived, see Ref. [68] for a
detailed discussion of this point.

TheGF flavour symmetry and its spurions (3.4,3.5) dictate the structure of the Yukawa
matrices. At leading order in the spurions and up to possible O(1) factors multiplying
each term one has [104] (in L̄R notation):

yu ⇠ yt

✓
�Yu Vq

0 1

◆
, yd ⇠ yb

✓
�Yd Vq

0 1

◆
, ye ⇠ y⌧

✓
�Ye Vl

0 1

◆
. (3.17)

In the left-handed quark sector this can be put in correspondence with the CKM matrix
elements:

Vq = aq

✓
V ⇤
td

V ⇤
ts

◆
, (3.18)

where aq is an O(1) parameter. As shown in Section 5, in order to fit the flavour anomalies
while avoiding dangerous e↵ects involving electrons, the left-handed lepton spurion can
be taken approximately as

Vl ⇡

✓
0
�⌧µ

◆
, (3.19)

where �⌧µ ⌧ 1.

3.3 S1,3 LQ couplings

The operators responsible for generating the leptoquark couplings to fermions are

LF �
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⇤2
t
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(q̄cLc1,ql✏lL + ēcRc1,euuR) ( ̄Q�5 L) +

�
q̄cLc3,ql✏�

AlL
�
( ̄Q�5�

A L)
⇤
+ h.c. .

(3.20)

Also in this case one can introduce a set of spurions of G to keep track of the explicit
breaking of the global symmetry (see App. C.3):

 ̄a
Q�5 L =  ̄�a

S1
�5 ,

 ̄a
Q�

A�5 L =  ̄�A,a
S3

�5 ,
(3.21)

where the index a runs in the fundamental of SU(3)c while A is in the adjoint of SU(2)w.
Below ⇤HC one can write the couplings of both scalar LQ to SM fermions as6

L
e↵
LQ = i
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4
(g1q̄
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L �1✏lL + gu1 ē
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1u

a
R) Tr[�
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S1
(U � U †)] + h.c.

+i
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g3q̄
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L �3✏�

AlL
�
Tr[�A,a

S3
(U � U †)] + h.c. = (3.22)

= �g1�1,i↵(q̄
c i
L ✏l↵L)S1 � gu1 (�

u
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T
↵i(ē
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R ui

R)S1 � g3�3,i↵(q̄
c i
L ✏�Al↵L)S

A
3 + h.c.+O(�2) ,

6In presence of EWSB, a factor of cos ✓

2 should muliply all terms in the last line of Eq. (3.22). Since
this is ⇡ 1 up to a small O(⇠) correction, I neglect it in the following.
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The doublet is given by 
CKM elements up to 
corrections

• A generic prediction, also found in models with partial compositeness, is the correla-
tion, up to O(1) factors, of the unit vector n̂ with the third line of the CKM matrix:
n̂ = (O(Vtd),O(Vts),O(1)). We can parametrize such a scenario in full generality as

n̂ /
�
abde

i↵bd |Vtd|, abse
i↵bs |Vts|, 1

�
(29)

where abd and abs are O(1) real parameters and the normalisation is fixed by the
condition ||n̂||

2 = 1. The area in the (�, ✓) plane corresponding to values |abs,bd| 2

[0.2� 5] is shown as a meshed-red one in the plots of Figs. 1,2,3. In the case of scalar
or vector leptoquarks, such a prediction holds if Vq`, Vq ¯̀ are not present, or do not
exceed the size of Vqd.

• In some cases, the above correlation between n̂ and the CKM matrix becomes precise
for the first two components: n̂1/n̂2 = Vtd/Vts, up to corrections of order ms/mb. We
then have

n̂ /
�
cU2e

i�
V

⇤
td, cU2e

i�
V

⇤
ts, 1

�
. (30)

where cU2 � 0. This is the case i) in Z
0 and V

0 models, independently of the flavon
structure and ii) in scalar and vector leptoquark models, if |Vq`| ,

��Vq ¯̀

�� ⌧ |Vq| |V`|

(“minimally broken U(2)5”). Comparing with the parametrization (7), one gets:

tan� =
|Vts|

|Vtd|
, tan ✓ ⇡ cU2|Vtd| , ↵bd = � arg(Vtd) + � , ↵bs = � arg(Vts) + � .

(31)

Let us now focus on the second case. The 95%CL limit in the plane (�, cU2), from our
global fit of bsµµ clean observables (see App. A.1) and the other didjµµ ones (Tab. 3) is
shown in Fig. 5-Left. The relevant observable in the excluded region is KL ! µ

+
µ
�. For

positive (negative) values of C+ we obtain a limit cU2 & �13 (. 43).
Another interesting point is that, within the parametrization (30), one has RK ⇡ R⇡ (up

to O(ms/mb) corrections), where:

RM ⌘
Br(B ! Mµ

+
µ
�)[1,6]

Br(B ! Me+e�)[1,6]
(M = K, ⇡), (32)

so that a comparison between the two observables could in principle rule out, in this context,
the V

0 and Z
0 cases, as well as minimally broken U(2)5. Assuming no NP in the electron

channels, we also have4:

R⇡ =
Br(B ! ⇡µ

+
µ
�)[1,6]

Br(B ! ⇡µ+µ�)SM[1,6]
. (33)

The RHS of Eq. (33) is, experimentally, (cf. Table 3):

Br(B ! ⇡µ
+
µ
�)exp[1,6]

Br(B ! ⇡µ+µ�)SM[1,6]
= 0.70± 0.30, (34)

4Using the LFU ratios (32) is of course advisable from the theoretical point of view. Unfortunately, there
are no measurements of Br(B ! ⇡e+e�), at present.
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ROFV & U(2)3 symmetry

U(2) flavour symmetry

SM Yukawa couplings exhibit an approximate U(2)3 flavour symmetry:


1. Good approximation of SM spectrum: mlight ~ 0, VCKM ~ 1 
 
  Breaking 
  pattern:


2. The assumption of a single spurion Vq connecting the 3rd generation with 
the other two ensures MFV-like FCNC protection


3. The most general symmetry that gives “CKM-like” interactions in a model-
independent way

mu ⇠
� �

md ⇠
� � VCKM ⇠

0

@

1

A

Yu,d ⇡
✓
0 0
0 1

◆
Yu,d ⇡

✓
� Vq

0 1

◆
� ⇠ (2,2,1)

Vq ⇠ (2,1,1)

Barbieri et al. 2011, 2012

U(2)qL ⇥ U(2)uR ⇥ U(2)dR

 i = ( 1  2  3 )
2 1

When minimally broken, the spurions are:

One can predict (up to O(2%) corrections)

These predictions of minimally broken U(2)3

will be tested with future data (see prospects slide).

Figure 5: Region excluded at 95%CL in a global fit of bsµµ clean observables and the other
didjµµ ones listed in Tab. 3, assuming the structure of Eq. (28), in the plane (�, cU2). The
relevant observable in the excluded region is KL ! µ

+
µ
�. In this plot we allow cU2 to

reach values beyond the O(1) expected ones. The blue lines indicate the overall scale of the
operator (in TeV), as extracted from the fit.

so that a comparison between the two observables could in principle rule out, in this context,
the V

0 and Z
0 cases, as well as minimally broken U(2)5. Assuming no NP in the electron

channels, we also have4:

R⇡ =
Br(B ! ⇡µ

+
µ
�)[1,6]

Br(B ! ⇡µ+µ�)SM[1,6]
. (31)

The RHS of Eq. (31) is, experimentally, (cf. Table 3):

Br(B ! ⇡µ
+
µ
�)exp[1,6]

Br(B ! ⇡µ+µ�)SM[1,6]
= 0.70± 0.30, (32)

showing no tension neither with the SM prediction, nor with the U(2)5 prediction

RK ⇡ R⇡ . (33)

Another prediction of this setup is for the branching ratio of B0
! µ

+
µ
� with respect to

Bs ! µ
+
µ
�:

Br(B0
s ! µ

+
µ
�)

Br(B0
s ! µ+µ�)SM

⇡
Br(B0

! µ
+
µ
�)

Br(B0 ! µ+µ�)SM
. (34)

The two predictions (33) and (34) are independent on the specific chiral structure of the
muon current. If the operators responsible for RK(⇤) are left-handed only, the two ratios in

4Using the LFU ratios (30) is of course advisable from the theoretical point of view. Unfortunately, there
are no measurements of Br(B ! ⇡e+e�), at present.

14

Br(B0
s ! µ

+
µ
�)

Br(B0
s ! µ+µ�)SM ⇡ Br(B0 ! µ

+
µ
�)

Br(B0 ! µ+µ�)SM . (1)

CL sin ✓ cos ✓ sin�ei↵bs =
e
i↵bs

⇤2
bs

, (2)

n̂ ⇠ 3q (3)

C
MFV
ij ⇠

⇣
1+ aYuY

†
u + bYdY

†
d
+ . . .

⌘

ij

(4)

U(2)3 = U(2)q ⇥ U(2)u ⇥ U(2)d (5)

C =

0

@
Cdd Cds Cdb
C⇤
ds

Css Csb
C⇤
db

C⇤
sb

Cbb

1

A (6)

LEFT
NP = Cij(d̄

i

L�µd
i

L)(µ̄L�
µ
µL) (7)

LEFT
NP = C n̂in̂

⇤
j (d̄

i

L�µd
i

L)(µ̄L�
µ
µL) (8)

Cij = C n̂in̂
⇤
j (9)

⇠ gµVts

⇤2
(b̄L�↵sL)(µ̄L�

↵
µL) (10)

⇠ gµVcb

⇤2
(b̄L�↵cL)(⌫̄

µ

L
�
↵
µL) (11)

⇠ g⌧Vcb

⇤2
(b̄L�↵cL)(⌫̄

⌧

L�
↵
⌧L) (12)

|✏1,3|2 = (13)

L4�Fermi ⇠
c  

⇤2
t

 ̄SM SM ̄ 
E.⇤HC�! ⇠ y �  ̄SM SM �+ . . . (14)

⇤t & ⇤HC (15)

�B(B ! K
⇤
⌫⌫) / (16)

LBSM =
2c

⇤2
(c̄L�µbL)(⌧̄L�

µ
⌫⌧ ) + h.c. (17)

1

⇤2
bsµ

=
�
q

bs

⇤2
qqµ

(18)

Cbsµ

v2
=
�
q

bs

v2
Cqµ (19)

1

⇤2
bsµ

(s̄L�µbL)(µ̄L�
µ
µL) (20)

1

CL sin ✓ cos ✓ sin�ei↵bs =
e
i↵bs

⇤2
bs

, (1)

n̂ ⇠ 3q (2)

C
MFV
ij ⇠

⇣
1+ aYuY

†
u + bYdY

†
d
+ . . .

⌘

ij

(3)

U(2)3 = U(2)q ⇥ U(2)u ⇥ U(2)d (4)

C =

0

@
Cdd Cds Cdb
C⇤
ds

Css Csb
C⇤
db

C⇤
sb

Cbb

1

A (5)

LEFT
NP = Cij(d̄

i

L�µd
i

L)(µ̄L�
µ
µL) (6)

LEFT
NP = C n̂in̂

⇤
j (d̄

i

L�µd
i

L)(µ̄L�
µ
µL) (7)

Cij = C n̂in̂
⇤
j (8)

⇠ gµVts

⇤2
(b̄L�↵sL)(µ̄L�

↵
µL) (9)

⇠ gµVcb

⇤2
(b̄L�↵cL)(⌫̄

µ

L
�
↵
µL) (10)

⇠ g⌧Vcb

⇤2
(b̄L�↵cL)(⌫̄

⌧

L�
↵
⌧L) (11)

|✏1,3|2 = (12)

L4�Fermi ⇠
c  

⇤2
t

 ̄SM SM ̄ 
E.⇤HC�! ⇠ y �  ̄SM SM �+ . . . (13)

⇤t & ⇤HC (14)

�B(B ! K
⇤
⌫⌫) / (15)

LBSM =
2c

⇤2
(c̄L�µbL)(⌧̄L�

µ
⌫⌧ ) + h.c. (16)

1

⇤2
bsµ

=
�
q

bs

⇤2
qqµ

(17)

Cbsµ

v2
=
�
q

bs

v2
Cqµ (18)

1

⇤2
bsµ

(s̄L�µbL)(µ̄L�
µ
µL) (19)

�
µ

bs
⌧ 1 ⇤qqµ ⌧ ⇤bsµ Cbsµ =

v
2

⇤2
bsµ

(20)

1

discussion in Ref. [89], so Eq. (3.16) is imposed at the matrix level. If also the scalar HC
currents were kept, a slightly more general condition can be derived, see Ref. [68] for a
detailed discussion of this point.

TheGF flavour symmetry and its spurions (3.4,3.5) dictate the structure of the Yukawa
matrices. At leading order in the spurions and up to possible O(1) factors multiplying
each term one has [104] (in L̄R notation):

yu ⇠ yt

✓
�Yu Vq

0 1

◆
, yd ⇠ yb

✓
�Yd Vq

0 1

◆
, ye ⇠ y⌧

✓
�Ye Vl

0 1

◆
. (3.17)

In the left-handed quark sector this can be put in correspondence with the CKM matrix
elements:

Vq = aq

✓
V ⇤
td

V ⇤
ts

◆
, (3.18)

where aq is an O(1) parameter. As shown in Section 5, in order to fit the flavour anomalies
while avoiding dangerous e↵ects involving electrons, the left-handed lepton spurion can
be taken approximately as

Vl ⇡

✓
0
�⌧µ

◆
, (3.19)

where �⌧µ ⌧ 1.

3.3 S1,3 LQ couplings

The operators responsible for generating the leptoquark couplings to fermions are

LF �
1

⇤2
t

⇥
(q̄cLc1,ql✏lL + ēcRc1,euuR) ( ̄Q�5 L) +

�
q̄cLc3,ql✏�

AlL
�
( ̄Q�5�

A L)
⇤
+ h.c. .

(3.20)

Also in this case one can introduce a set of spurions of G to keep track of the explicit
breaking of the global symmetry (see App. C.3):

 ̄a
Q�5 L =  ̄�a

S1
�5 ,

 ̄a
Q�

A�5 L =  ̄�A,a
S3

�5 ,
(3.21)

where the index a runs in the fundamental of SU(3)c while A is in the adjoint of SU(2)w.
Below ⇤HC one can write the couplings of both scalar LQ to SM fermions as6

L
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c
R�

u
1u

a
R) Tr[�

a
S1
(U � U †)] + h.c.

+i
f

4

�
g3q̄

c,a
L �3✏�
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u
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↵i(ē
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R ui

R)S1 � g3�3,i↵(q̄
c i
L ✏�Al↵L)S

A
3 + h.c.+O(�2) ,

6In presence of EWSB, a factor of cos ✓

2 should muliply all terms in the last line of Eq. (3.22). Since
this is ⇡ 1 up to a small O(⇠) correction, I neglect it in the following.
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discussion in Ref. [89], so Eq. (3.16) is imposed at the matrix level. If also the scalar HC
currents were kept, a slightly more general condition can be derived, see Ref. [68] for a
detailed discussion of this point.

TheGF flavour symmetry and its spurions (3.4,3.5) dictate the structure of the Yukawa
matrices. At leading order in the spurions and up to possible O(1) factors multiplying
each term one has [104] (in L̄R notation):
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In the left-handed quark sector this can be put in correspondence with the CKM matrix
elements:

Vq = aq
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where aq is an O(1) parameter. As shown in Section 5, in order to fit the flavour anomalies
while avoiding dangerous e↵ects involving electrons, the left-handed lepton spurion can
be taken approximately as
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0
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, (3.19)

where �⌧µ ⌧ 1.
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Also in this case one can introduce a set of spurions of G to keep track of the explicit
breaking of the global symmetry (see App. C.3):
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where the index a runs in the fundamental of SU(3)c while A is in the adjoint of SU(2)w.
Below ⇤HC one can write the couplings of both scalar LQ to SM fermions as6
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2 should muliply all terms in the last line of Eq. (3.22). Since
this is ⇡ 1 up to a small O(⇠) correction, I neglect it in the following.
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The doublet is given by 
CKM elements up to 
corrections

• A generic prediction, also found in models with partial compositeness, is the correla-
tion, up to O(1) factors, of the unit vector n̂ with the third line of the CKM matrix:
n̂ = (O(Vtd),O(Vts),O(1)). We can parametrize such a scenario in full generality as

n̂ /
�
abde

i↵bd |Vtd|, abse
i↵bs |Vts|, 1

�
(29)

where abd and abs are O(1) real parameters and the normalisation is fixed by the
condition ||n̂||

2 = 1. The area in the (�, ✓) plane corresponding to values |abs,bd| 2

[0.2� 5] is shown as a meshed-red one in the plots of Figs. 1,2,3. In the case of scalar
or vector leptoquarks, such a prediction holds if Vq`, Vq ¯̀ are not present, or do not
exceed the size of Vqd.

• In some cases, the above correlation between n̂ and the CKM matrix becomes precise
for the first two components: n̂1/n̂2 = Vtd/Vts, up to corrections of order ms/mb. We
then have

n̂ /
�
cU2e
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V

⇤
td, cU2e
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⇤
ts, 1

�
. (30)

where cU2 � 0. This is the case i) in Z
0 and V

0 models, independently of the flavon
structure and ii) in scalar and vector leptoquark models, if |Vq`| ,

��Vq ¯̀

�� ⌧ |Vq| |V`|

(“minimally broken U(2)5”). Comparing with the parametrization (7), one gets:

tan� =
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|Vtd|
, tan ✓ ⇡ cU2|Vtd| , ↵bd = � arg(Vtd) + � , ↵bs = � arg(Vts) + � .

(31)

Let us now focus on the second case. The 95%CL limit in the plane (�, cU2), from our
global fit of bsµµ clean observables (see App. A.1) and the other didjµµ ones (Tab. 3) is
shown in Fig. 5-Left. The relevant observable in the excluded region is KL ! µ

+
µ
�. For

positive (negative) values of C+ we obtain a limit cU2 & �13 (. 43).
Another interesting point is that, within the parametrization (30), one has RK ⇡ R⇡ (up

to O(ms/mb) corrections), where:

RM ⌘
Br(B ! Mµ

+
µ
�)[1,6]

Br(B ! Me+e�)[1,6]
(M = K, ⇡), (32)

so that a comparison between the two observables could in principle rule out, in this context,
the V

0 and Z
0 cases, as well as minimally broken U(2)5. Assuming no NP in the electron

channels, we also have4:

R⇡ =
Br(B ! ⇡µ

+
µ
�)[1,6]

Br(B ! ⇡µ+µ�)SM[1,6]
. (33)

The RHS of Eq. (33) is, experimentally, (cf. Table 3):

Br(B ! ⇡µ
+
µ
�)exp[1,6]

Br(B ! ⇡µ+µ�)SM[1,6]
= 0.70± 0.30, (34)

4Using the LFU ratios (32) is of course advisable from the theoretical point of view. Unfortunately, there
are no measurements of Br(B ! ⇡e+e�), at present.
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ROFV & U(2)3 symmetry

U(2) flavour symmetry

SM Yukawa couplings exhibit an approximate U(2)3 flavour symmetry:


1. Good approximation of SM spectrum: mlight ~ 0, VCKM ~ 1 
 
  Breaking 
  pattern:


2. The assumption of a single spurion Vq connecting the 3rd generation with 
the other two ensures MFV-like FCNC protection


3. The most general symmetry that gives “CKM-like” interactions in a model-
independent way
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Figure 5: Region excluded at 95%CL in a global fit of bsµµ clean observables and the other
didjµµ ones listed in Tab. 4, assuming the structure of Eq. (28), in the plane (�, cU2). The
relevant observable in the excluded region is KL ! µ

+
µ
�. The range |cU2| 2 [0.2 � 5] is

highlighted as the meshed red region. Blue lines indicate the size of the overall coe�cient
|CL|

�1/2 (in TeV), as extracted from the fit. Solid (dashed) lines are for positive (negative)
values of CL.

size of the e↵ect. The anomalies require in fact a breaking of µ-e lepton universality, whose
size is associated to the size of U(2)l breaking. A sizeable breaking is necessary in order to
account for a NP e↵ect as large as suggested by the B-meson anomalies. A detailed analysis
of the implications of the anomalies for lepton flavor breaking and for processes involving
other lepton families is outside the scope of this work.

We now focus on the case of minimally broken U(2)5, Eq. (29). The 95%CL limit in
the plane (�, cU2), from our global fit of bsµµ clean observables (see App. A) and the other
didjµµ ones (Tab. 4) is shown in Fig. 5-Left. The relevant observable in the excluded region
is KL ! µ

+
µ
�. For positive (negative) values of C+ we obtain a limit cU2 & �20 (. 65),

which are well outside the natural region predicted by the flavor symmetry.
Another interesting point is that, within the parametrization (28), one has

RK ⇡ R⇡. (31)

up to O(ms/mb) corrections, where:

RH ⌘
Br(B ! Hµ

+
µ
�)[1,6]

Br(B ! He+e�)[1,6]
(H = K, ⇡), (32)

so that a comparison between the two observables could in principle rule out, in this context,
the V

0 and Z
0 cases, as well as minimally broken U(2)5. Assuming no NP in the electron

15

• A generic prediction, also found in models with partial compositeness, is the correla-
tion, up to O(1) factors, of the unit vector n̂ with the third line of the CKM matrix:
n̂ = (O(Vtd),O(Vts),O(1)). We can parametrize such a scenario in full generality as

n̂ /
�
abde

i↵bd |Vtd|, abse
i↵bs |Vts|, 1

�
(29)

where abd and abs are O(1) real parameters and the normalisation is fixed by the
condition ||n̂||

2 = 1. The area in the (�, ✓) plane corresponding to values |abs,bd| 2

[0.2� 5] is shown as a meshed-red one in the plots of Figs. 1,2,3. In the case of scalar
or vector leptoquarks, such a prediction holds if Vq`, Vq ¯̀ are not present, or do not
exceed the size of Vqd.

• In some cases, the above correlation between n̂ and the CKM matrix becomes precise
for the first two components: n̂1/n̂2 = Vtd/Vts, up to corrections of order ms/mb. We
then have

n̂ /
�
cU2e

i�
V

⇤
td, cU2e

i�
V

⇤
ts, 1

�
. (30)

where cU2 � 0. This is the case i) in Z
0 and V

0 models, independently of the flavon
structure and ii) in scalar and vector leptoquark models, if |Vq`| ,

��Vq ¯̀

�� ⌧ |Vq| |V`|

(“minimally broken U(2)5”). Comparing with the parametrization (7), one gets:

tan� =
|Vts|

|Vtd|
, tan ✓ ⇡ cU2|Vtd| , ↵bd = � arg(Vtd) + � , ↵bs = � arg(Vts) + � .

(31)

Let us now focus on the second case. The 95%CL limit in the plane (�, cU2), from our
global fit of bsµµ clean observables (see App. A.1) and the other didjµµ ones (Tab. 3) is
shown in Fig. 5-Left. The relevant observable in the excluded region is KL ! µ

+
µ
�. For

positive (negative) values of C+ we obtain a limit cU2 & �13 (. 43).
Another interesting point is that, within the parametrization (30), one has RK ⇡ R⇡ (up

to O(ms/mb) corrections), where:

RM ⌘
Br(B ! Mµ

+
µ
�)[1,6]

Br(B ! Me+e�)[1,6]
(M = K, ⇡), (32)

so that a comparison between the two observables could in principle rule out, in this context,
the V

0 and Z
0 cases, as well as minimally broken U(2)5. Assuming no NP in the electron

channels, we also have4:

R⇡ =
Br(B ! ⇡µ

+
µ
�)[1,6]

Br(B ! ⇡µ+µ�)SM[1,6]
. (33)

The RHS of Eq. (33) is, experimentally, (cf. Table 3):

Br(B ! ⇡µ
+
µ
�)exp[1,6]

Br(B ! ⇡µ+µ�)SM[1,6]
= 0.70± 0.30, (34)

4Using the LFU ratios (32) is of course advisable from the theoretical point of view. Unfortunately, there
are no measurements of Br(B ! ⇡e+e�), at present.
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Figure 5: Region excluded at 95%CL in a global fit of bsµµ clean observables and the other
didjµµ ones listed in Tab. 3, assuming the structure of Eq. (30), in the plane (�, cU2). The
relevant observable in the excluded region is KL ! µ

+
µ
�. In this plot we allow cU2 to

reach values beyond the O(1) expected ones. The blue lines indicate the overall scale of the
operator (in TeV), as extracted from the fit.

showing no tension neither with the SM prediction, nor with the U(2)5 prediction RK ⇡ R⇡.
Another prediction of this setup is for the branching ratio of B0

! µ
+
µ
�. In this case the

relation with RK(⇤) depends on the phase �, but this dependence is very mild in the whole
range shown in Fig. 5. We can thus provide the following predictions:

RK(⇤) ⇡ R⇡ ⇡
Br(B0

! µ
+
µ
�)

Br(B0 ! µ+µ�)SM
, (35)

up to O(2%) corrections. Such corrections are however negligible when compared to the-
expected precision in the measurements of these relations, which is at best of ⇡ 4%, c.f.
Tab. 6.

6 Future Prospects

Future measurements by LHCb, Belle-II, and other experiments are expected to improve
substantially the precision of most of the observables studied in the present work. We
collect in Table 6 the relevant prospects.

First of all, the anomalous observables themselves, RK and RK⇤ , are expected to be tested
with sub-percent accuracy by LHCb with 300fb�1 of luminosity. Furthermore, a larger set
of observables sensitive to the same partonic transition b ! sµ

+
µ
� will be measured (such

as R�, RpK and RP 0
5
(q2) for example [37]). This will allow to confirm or disprove the present

anomalies and to pinpoint the relevant New Physics scale ⇤0 with high accuracy.
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