$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ from NA62

Riccardo Lollini

Università degli Studi di Perugia

on behalf of the NA62 Collaboration

RKF 2019 - 2nd Forum on Rare Kaon decays – May 2019

Outline

- The NA62 experiment
- Theoretical framework
- Decay in flight technique at NA62
- Signal and control regions
- Signal event sensitivity
- Expected background
- Results (2016 data)
- 2017 data sample
- Conclusions

The NA62 experiment

- Main goal: BR(K+→π+νν) with 10% precision.
- BR_{th} $(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$ [Buras et al., JHEP11(2015)033] BR_{exp} $(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = 17.3^{+11.5}_{-10.5} \times 10^{-11}$ [Phys. Rev D 79, 092004 (2009)]
- Primary beam: 400 GeV/c protons from SPS.
- Secondary beam: 75 GeV/c positively charged particles, 6% K+.
- ~200 participants from ~30 insitutes: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Sofia, Torino, TRIUMF, Vancouver UBC.

NA62 detector

NA62 detector

Theoretical framework

- FCNC loop processes: s→d coupling and highest CKM suppression.
- Theoretically clean.

Z'(5 TeV) in Constrained MFV

- Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM Analysis [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27], [Isidori et al. JHEP 0608 (2006) 064]
- Simplified Z, Z' models [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models [Isidori et al., Eur. Phys. J. C (2017) 77: 618]

Decay in flight technique at NA62

Main background sources

• The squared missing mass is the main variable used to kinematically separate signal from background:

 $m_{\rm miss}^2 = (P_K - P_\pi)^2$

15 GeV/c < P_{π^+} < 35 GeV/c

- Two signal region on each side of the $K \rightarrow \pi + \pi 0$ peak.
- Cut based analysis (mostly), blind analysis procedure.
 κ
- Requirements:
 - O(100 ps) timing between sub-detectors
 - O(10⁴) background suppression with kinematics
 - $O(10^7)$ background muon suppression $(K^+ \rightarrow \mu^+ \nu_{\mu})$
 - $O(10^7)$ photon suppression (K+ $\rightarrow \pi^+\pi^0$)

Signal and control regions

- Two signal regions kept blinded
- Kaon decays can enter the signal regions via m²_{miss} mis-reconstruction.
- The control regions are kept blinded too, to validate the procedure.

- Selection:
 - single track in final state
 - π^+ identification
 - photon rejection
 - 110 m $< z_{vertex} < 165$ m
 - $\begin{array}{ll} & 15 \mbox{ GeV/c} < p_{\pi +} < 35 \mbox{ GeV/c}, \mbox{ in order} \\ \mbox{ to have at least } E_{miss} = 40 \mbox{ GeV} \mbox{ and} \\ \mbox{ have an optimal } \pi/\mu \mbox{ separation in the} \\ \mbox{ RICH.} \end{array}$
- Performances:
 - $\epsilon(\mu^+) = 10^{-8} (64\% \pi^+ \text{ efficiency})$

$$- \epsilon(\pi^0) = 3.10^{-8}$$

$$-\sigma(m_{miss}^2) = 10^{-3} \text{ GeV}^2/c^4$$

- $\sigma_t = O(100 \text{ ps})$

Single Event Sensitivity

• N_K from K+ $\rightarrow \pi^+\pi^0$ control trigger: (1.21 \pm 0.02) \times 10¹¹

 $N_{K} = \frac{N_{\pi\pi} \cdot R}{A_{\pi\pi} \cdot BR_{\pi\pi}} \qquad (\text{R: reduction factor applied to CTRL trigger})$

- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ acceptance: $(4.0 \pm 0.1) \times 10^{-2}$
- Random veto efficiency: 0.76 ± 0.04
- Trigger efficiency: 0.87 ± 0.2

$$SES = \frac{1}{N_{K} \cdot \sum_{j} \left(A_{\pi\nu\nu}^{j} \cdot \epsilon_{trig}^{j} \cdot \epsilon_{RV}^{j}\right)}$$
$$N_{\pi\nu\nu}^{\text{expected}}(SM) = \frac{BR_{\pi\nu\nu}(SM)}{SES}$$

Source	δ SES (10^{-10})
Random veto	±0.17
Definition of $\pi^+\pi^{0}$ region	± 0.10
Simulation of π^+ interactions	± 0.09
Nĸ	± 0.05
Trigger efficiency	± 0.04
Extra activity	± 0.02
GTK pileup simulation	± 0.02
Momentum spectrum	± 0.01
Total	±0.24

 $SES = (3.15 \pm 0.01_{\text{stat}} \pm 0.24_{\text{syst}}) \cdot 10^{-10}$ $N_{\pi\nu\nu}^{\text{expected}}(\text{SM}) = 0.267 \pm 0.001_{\text{stat}} \pm 0.020_{\text{syst}} \pm 0.032_{\text{extr}}$

$K^+ \rightarrow \pi^+ \pi^0$ background

Expected in Control Region: $N_{\pi^{+}\pi^{0}(\gamma)}^{\text{expected}}(\text{CR1}) = 0.52 \pm 0.08_{\text{stat}} \pm 0.03_{\text{syst}}$

 $N_{\pi^{+}\pi^{0}(\gamma)}^{\text{expected}}(\text{CR2}) = 0.94 \pm 0.14_{\text{stat}} \pm 0.05_{\text{syst}}$

• Observed in Control Region:

 $N^{
m observed}_{\pi^+\pi^0(\gamma)}(
m CR1) = 0$

 $N_{\pi^{+}\pi^{0}(\gamma)}^{\text{observed}}(\text{CR2}) = 1$

Background expected in Signal Regions:

 $N_{\pi^{+}\pi^{0}(\gamma)}^{\text{expected}}(\text{R1+R2}) = 0.064 \pm 0.007_{\text{stat}} \pm 0.006_{\text{syst}}$

$K^+ \rightarrow \mu^+ \nu$ background

 $N_{\mu+\nu(\gamma)}^{\text{expected}}(\text{CR}) = 1.02 \pm 0.16_{\text{stat}}$

Observed in Control Region: . $N_{u+v(y)}^{\text{observed}}(\text{CR}) = 2$

Background expected in Signal Regions:

 $N_{\mu+\nu(\gamma)}^{\text{expected}}(\text{R1+R2}) = 0.020 \pm 0.003_{\text{stat}} \pm 0.003_{\text{syst}}$

Upstream background

Upstream event: any particle not originated from K dacays in the FV. They can be produced in many different ways:

- K⁺ decays before the GTK3, matched with a pile-up π^+ in the GTK;
- π^+ interactions in GTK2 or GTK3 with a pile-up K⁺ in the GTK;
- K^+ interactions in GTK2 or GTK3.

Expected in Signal Region: $N_{\text{UB}}^{\text{expected}}(\text{R1+R2}) = 0.050_{-0.030}^{+0.090}$

Expected background

Process	Expected events in R1+R2
$\mathrm{K}^+ ightarrow \pi^+ u ar{ u}$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$
Total Background	$0.15\pm0.09_{stat}\pm0.01_{syst}$
$\mathrm{K^+} ightarrow \pi^+ \pi^0(\gamma) \mathrm{IB}$	$0.064\pm0.007_{stat}\pm0.006_{syst}$
$\mathrm{K}^+ ightarrow \mu^+ u(\gamma) IB$	$0.020\pm0.003_{stat}\pm0.003_{syst}$
$\mathrm{K}^+ \to \pi^+ \pi^- \mathrm{e}^+ \nu$	$0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$
$\mathrm{K}^+ \to \pi^+ \pi^+ \pi^-$	$0.002\pm0.001_{stat}\pm0.002_{syst}$
Upstream background	$0.050^{+0.090}_{-0.030} _{stat}$

Results (2016 data)

Signal events expected in signal region (SM) $0.267 \pm 0.001_{\text{stat}} \pm 0.020_{\text{syst}} \pm 0.032_{\text{extr}}$ Background events expected in signal region $0.15 {\pm} 0.09_{stat} {\pm} 0.01_{syst}$

Results (2016 data)

The Cherenkov ring as seen by the RICH detector, with three different ring radii for the three different particle hypothesis at p = 15.3 GeV/c.

Results (2016 data)

- Upper limits on the Branching Ratio: $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) < 11 \cdot 10^{-10}$ @90%CL $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) < 14 \cdot 10^{-10}$ @95%CL
- Standard Model prediction on the Branching Ratio:

$$BR(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}) = (0.84 \pm 0.10) \cdot 10^{-10}$$

2017 data sample

- Higher beam intensity
- 2016-like selection
- Performances are comparable to 2016
 - Better pile-up treatment in IRC/SAC
 - 40% better π^0 rejection (does not depend on intensity)
 - Slightly improved usage of RICH variables.
- 2 signal regions, like in 2016
- 3 control regions used to evaluate the background
- Signal and control regions kept masked, as well as the region below the K→µv used to validate the upstream background.

Single Event Sensitivity

$$N_{K} = (1.3 \pm 0.1) \cdot 10^{12}$$
 (~10 × 2016)
 $SES = (0.34 \pm 0.04) \cdot 10^{-10}$ (scales linearly with intensity)
 $N_{\pi_{VV}}^{\text{expected}}(\text{SM}) = 2.5 \pm 0.4$

R. Lollini - RKF 2019

2017 data sample

Expected background

Process	Expected events in signal regions
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.35\pm0.02_{stat}\pm0.03_{syst}$
$K^+ \to \mu^+ \nu(\gamma)$ IB	$0.16\pm0.01_{stat}\pm0.05_{syst}$
$K^+ \to \pi^+\pi^- e^+ \nu$	$0.22\pm0.08_{stat}$
$K^+ \to \pi^+ \pi^+ \pi^-$	$0.015 \pm 0.008_{stat} \pm 0.015_{syst}$
$K^+ \to \pi^+ \gamma \gamma$	$0.005\pm0.005_{syst}$
$K^+ \to l^+ \pi^0 \nu_l$	$0.012\pm0.012_{syst}$
Upstream Background	Analysis on–going

Excellent agreement between modeled background distributions and data in the same regions: validity of background evaluation from kaon decays in the fiducial region.

Conclusions

- One event observed in region 2 in 2016
- This result is compatible with the Standard Model:

 $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) < 14 \cdot 10^{-10} \quad @95\% CL$

- Published here: [Phys. Lett. B 791 (2019) 156-166]
- The analysis of 2017 data is ongoing and results are expected very soon.
 - SES improved by a factor 10 with respect to 2016.
 - Signal over background ratio does not degrade with intensity
 - Strong effort to improve the analysis
- Branching ratio measurement expected in the next few years.

THANK YOU!

