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FIG. 1: (color online) Sketch of the Kitaev chain with a
π−junction at the top point U . Red (blue) circles represent
γA(B) type MFs. Yellow ellipses signal strong coupling.

protected states would be the smoking gun evidence for
the existence of the MBS in this device. It is a weird case
that the breaking of the discrete symmetry (P) enforces
the time reversal symmetry to be restored.

Model Hamiltonian

We start considering a N-sites Kitaev chain of unitary
lattice spacing and full length L = 2N , with real inter
site hopping t. When folded in the shape of a ring the
system displays mirror symmetry across the vertical line
connecting points U and D between the top and the bot-
tom (see Fig. 1).

Our device can be described as two N-sites Majorana
wires (left (ℓ) and right (r)), coupled at the top of the
ring U by the weak electron tunneling of energy Γ. At
chemical potential µ = 0, in the presence of an electro-
magnetic vector potential A⃗, the gauge invariant Hamil-
tonian reads as H = Hℓ +Hr, with:

Hα =
N−1
∑

j=1

(

−
t

2
eigαjc†αjcαj+1 +

∆

2
ei(φαj+φαj+1)/2 cαj cαj+1 + h.c.

)

. (1)

Here α labels the ℓ and r side of the ring, cαj are spinless
Dirac fermions at the site j and ∆ is the superconducting
pairing, generating an effective p-wave superconductivity.
The phases gαj acquired in the hopping between the j site
and its nearest neighbor and the gauge invariant phase
φαj are defined as:

gαj = −
e

!c

∫ αj+1

αj
A⃗ · d⃗l , (2)

φαj = θαj −
2e

!c

∫ αj

ℓ1
A⃗ · d⃗l , (3)

where θαj is the phase of the superconducting order pa-
rameter.
At the top point U of the ring (see Fig.1) there is a

tunnel junction which allows for the fractional Josephson
coupling:

HU = −Γ
(

c†ℓ1crN + h.c.
)

, (4)

(Γ << t). For sake of further investigations, we explicitly
consider also the hopping term at the bottom point in the
ring D, where the ℓ and r chains are matched:

HD = −u t
(

c†ℓNcr1 + h.c.
)

. (5)

Here we will keep the dimensionless parameter u (which
may be complex) as a variable, to discuss also the limiting
case of u = 0, which corresponds to the ring cut at D,
with open ends.
The spinless Dirac fermions can be expressed in terms

of two species of Majorana fermions at each site of the
ring γα

A/Bj , such that:

γα
Bj = cαje

iφαj/2 + c†αje
−iφαj/2 , (6)

γα
Aj = −i

(

cαje
iφαj/2 − c†αje

−iφαj/2
)

. (7)

A π−Josephson Junction requires ∆ having opposite
signs at U, between ℓ1 and rN . In the gauge in which
∆ is real, the OP ∆ has to vanish somewhere along the
ring and we choose this point to be D with no loss of
generality. As a first step, to make the approach as sim-
plest as possible, deep in the topological phase, we will
adopt the Kitaev approximation, |∆| = t [1]all along the
chain and we choose ∆ = t in the ℓ region and ∆ = −t
in the r region of the ring. Thus, the chain Hamiltonian
becomes:

Hℓ +Hr = −i
t

2

N−1
∑

j=1

[

γℓ
Bjγ

ℓ
Aj+1 − γr

Ajγ
r
Bj+1

]

. (8)

Topological Quantum Computation 

Majorana Fermions
Quantum Materials 

Engineer artificial materials to simulate 


other materials!

Physical quantum annealer: D-Wave

߾؉

߿؉

ࢪʞɠ࢙ðɠǩȣࢩ

ࢪƌȴʿȣ࢙ðɠǩȣࢩ

The last born: D-Wave 2000Q (2017)

• n = 2048

• ⌧min = 5 µs
• T = 15mK

• Chimera graph

• Noise: �(!) = �LF(!) + �HF(!)

Environment and dissipation

As a physical object, D-Wave interacts with its surroundings!
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corresponds to full-filling of each set of degenerate superlattice bands, 
where θ≈ /A a3 (2 )2 2  is the area of the moiré unit cell, a =  0.246 nm 
is the lattice constant of the underlying graphene lattice and θ is the 
twist angle. In Supplementary Video, we present an animation of the 
way in which the band structure in the mini Brillouin zone of TBG 
evolves as the twist angle varies from θ =  3° to θ =  0.8°, calculated using 
a continuum model for one valley12.

Special angles, namely the ‘magic angles’, exist, at which the Fermi 
velocity drops to zero; the first magic angle is predicted12 to be 
θmagic

(1)  ≈ 1.1°. Near this twist angle, the energy bands near charge neu-
trality, which are separated from other bands by single-particle gaps, 
become remarkably flat. The typical energy scale for the entire band-
width is about 5–10 meV (Fig. 1c)12,18. Experimentally confirmed con-
sequences of the flatness of these bands are high effective mass in the 
flat bands (as observed in quantum oscillations) and correlated insu-
lating states at half-filling of these bands, corresponding to n =  ± ns/2, 
where n =  CVg/e is the carrier density defined by the gate voltage Vg (C 
is the gate capacitance per unit area and e is the electron charge)18. 
These insulating states are a result of the competition between Coulomb 

energy and quantum kinetic energy, which gives rise to a correlated 
insulator at half-filling that has characteristics consistent with Mott-like 
insulator behaviour18. The doping density that is required to reach the 
Mott-like insulating states is ns/2 ≈ (1.2–1.6) × 1012 cm−2, depending 
on the exact twist angle. Here we report transport data that clearly 
demonstrate that superconductivity is achieved as the material is doped 
slightly away from the Mott-like insulating state in magic-angle TBG. 
We observed superconductivity across multiple devices with slightly 
different twist angles, with the highest critical temperature that we 
achieved being 1.7 K.

Superconductivity in magic-angle TBG
In Fig. 1a we show the typical device structure of fully encapsulated 
TBG devices. The two sheets of graphene originate from the same 
exfoliated flake, which permits a relative twist angle that is controlled 
precisely to within about 0.1°–0.2° (refs 17, 20, 21). The encapsulated 
TBG stack is etched into a ‘Hall’ bar and contacted from the edges22. 
Electrical contacts are made from non-superconducting materials 
(thermally evaporated Au on a Cr sticking layer) to avoid any potential 
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Figure 1 | Two-dimensional superconductivity in a graphene 
superlattice. a, Schematic of a typical twisted bilayer graphene 
(TBG) device and the four-probe (Vxx, Vg, I and the bias voltage Vbias) 
measurement scheme. The stack consists of hexagonal boron nitride 
on the top and bottom, with two graphene bilayers (G1, G2) twisted 
relative to each other in between. The electron density is tuned by a 
metal gate beneath the bottom hexagonal boron nitride layer. b, Four-
probe resistance Rxx =  Vxx/I (Vxx and I are defined in a) measured in two 
devices M1 and M2, which have twist angles of θ =  1.16° and θ =  1.05°, 
respectively. The inset shows an optical image of device M1, including the 
main ‘Hall’ bar (dark brown), electrical contact (gold), back gate (light 
green) and SiO2/Si substrate (dark grey). c, The band energy E of TBG  
at θ =  1.05° in the first mini Brillouin zone of the superlattice. The  
bands near charge neutrality (E =  0) have energies of less than 15 meV.  

d, The DOS corresponding to the bands shown in c, for energies of  
−10 to +10 meV (blue; θ =  1.05°). For comparison, the purple lines show 
the total DOS of two sheets of freestanding graphene without interlayer 
interaction (multiplied by 103). The red dashed line shows the Fermi 
energy EF at half-filling of the lower branch (E <  0) of the flat bands, 
which corresponds to a density of n =  −ns/2, where ns is the superlattice 
density (defined in the main text). The superconductivity is observed 
near this half-filled state. e, Current–voltage (Vxx–I) curves for device 
M2 measured at n =  −1.44 × 1012 cm−2 and various temperatures. At 
the lowest temperature of 70 mK, the curves indicate a critical current 
of approximately 50 nA. The inset shows the same data on a logarithmic 
scale, which is typically used to extract the Berezinskii–Kosterlitz–
Thouless transition temperature (TBKT =  1.0 K in this case), by fitting to a 
Vxx ∝ I3 power law (blue dashed line).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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proximity effects. The carrier density n is tuned by applying a voltage 
to a Pd/Au bottom gate electrode. In Fig. 1b we show the longitudi-
nal resistance Rxx as a function of temperature for two magic-angle 
devices, M1 and M2, with twist angles of 1.16° and 1.05°, respectively. 
At the lowest temperature studied of 70 mK, both devices show zero 
resistance, and therefore a superconducting state. The critical temper-
ature Tc as calculated using a resistance of 50% of the ‘normal’-state 
(non-superconducting) value is approximately 1.7 K and 0.5 K for the 
two devices that we studied in detail. In Fig. 1c, d we show a single- 
particle band structure and density of states (DOS) near the charge 
neutrality point calculated for θ = 1.05°. The superconductivity in both 
devices occurs when the Fermi energy EF is tuned away from charge 
neutrality (EF = 0) to be near half-filling of the lower flat band (EF < 0, 
as indicated in Fig. 1d). The DOS within the energy scale of the flat 
bands is more than three orders of magnitudes higher than that of 
two uncoupled graphene sheets, owing to the reduction of the Fermi 
velocity and the increase in localization that occurs near the magic 
angle. However, the energy at which the DOS peaks does not gener-
ally coincide with the density that is required to half-fill the bands. 
In addition, we did not observe any appreciable superconductivity 
when the Fermi energy was tuned into the flat conduction bands 
(EF > 0). In Fig. 1e we show the current–voltage (I–Vxx, where Vxx 
is the four-probe voltage, as defined in Fig. 1a) curves of device M2 
at different temperatures. We observe typical behaviour for a two- 
dimensional superconductor. The inset shows a tentative fit of the 
same data to a Vxx ∝ I3 power law, as is predicted in a Berezinskii–
Kosterlitz–Thouless transition in two-dimensional superconductors23. 
This analysis yields a Berezinskii–Kosterlitz–Thouless transition tem-
perature of TBKT ≈ 1.0 K at n = −1.44 × 1012 cm−2, where, as before, 

n is the carrier density induced by the gate and measured from the 
charge neutrality point (which is different from the actual carrier  
density involved in transport, as we show below).

In contrast to other known two-dimensional and layered super-
conductors, the superconductivity in magic-angle TBG requires the 
application of only a small gate voltage, corresponding to a minimal 
density of only 1.2 × 1012 cm−2 from charge neutrality, an order of mag-
nitude lower than the value of 1.5 × 1013 cm−2 in LaAlO3/SrTiO3 inter-
faces and of 7 × 1013 cm−2 in electrochemically doped MoS2, among 
others24. Therefore, gate-tunable superconductivity can be realized 
in a high-mobility system without the need for ionic-liquid gating or 
chemical doping. In Fig. 2a we show the two-probe conductance of 
device M1 versus n at zero magnetic field and at a 0.4-T perpendic-
ular magnetic field. Near the charge neutrality point (n = 0), a typical 
V-shaped conductance is observed, which originates from the renor-
malized Dirac cones of the TBG band structure. The insulating states 
centred at approximately ±3.2 × 1012 cm−2 (which corresponds to ns 
for θ = 1.16°) are due to single-particle bandgaps in the band structure 
that correspond to filling ±4 electrons in each superlattice unit cell. In 
between, there are conductance minima at ±2 and ±3 electrons per 
unit cell. These minima are associated with many-body gaps induced by 
the competition between the Coulomb energy and the reduced kinetic 
energy due to confinement of the electronic state in the superlattice 
near the magic angle; these gaps give rise to insulating behaviour near 
the integer fillings18. One possible mechanism for the gaps is similar 
to the gap mechanism in Mott insulators, but with an extra two-fold 
degeneracy (for the case of ±2 electrons) from the valleys in the origi-
nal graphene Brillouin zone17,18,25,26. In the vicinity of −2 electrons 
per unit cell (n ≈ −1.3 × 1012 cm−2 to n ≈ −1.9 × 1012 cm−2) and at a 
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Figure 2 | Gate-tunable superconductivity in magic-angle TBG. 
a, Two-probe conductance G2 = I/Vbias of device M1 (θ = 1.16°) measured 
in zero magnetic field (red) and at a perpendicular field of B⊥ = 0.4 T 
(blue). The curves exhibit the typical V-shaped conductance near charge 
neutrality (n = 0, vertical purple dotted line) and insulating states at the 
superlattice bandgaps n = ±ns, which correspond to filling ±4 electrons 
in each moiré unit cell (blue and red bars). They also exhibit reduced 
conductance at intermediate integer fillings of the superlattice owing to 
Coulomb interactions (other coloured bars). Near a filling of −2 electrons 
per unit cell, there is considerable conductance enhancement at zero field 
that is suppressed in B⊥ = 0.4 T. This enhancement signals the onset of 

superconductivity. Measurements were conducted at 70 mK; Vbias = 10 µV. 
b, Four-probe resistance Rxx, measured at densities corresponding to 
the region bounded by pink dashed lines in a, versus temperature. Two 
superconducting domes are observed next to the half-filling state, which 
is labelled ‘Mott’ and centred around −ns/2 = −1.58 × 1012 cm−2. The 
remaining regions in the diagram are labelled as ‘metal’ owing to the 
metallic temperature dependence. The highest critical temperature 
observed in device M1 is Tc = 0.5 K (at 50% of the normal-state resistance). 
c, As in b, but for device M2, showing two asymmetric and overlapping 
domes. The highest critical temperature in this device is Tc = 1.7 K.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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corresponds to full-filling of each set of degenerate superlattice bands, 
where θ≈ /A a3 (2 )2 2  is the area of the moiré unit cell, a =  0.246 nm 
is the lattice constant of the underlying graphene lattice and θ is the 
twist angle. In Supplementary Video, we present an animation of the 
way in which the band structure in the mini Brillouin zone of TBG 
evolves as the twist angle varies from θ =  3° to θ =  0.8°, calculated using 
a continuum model for one valley12.

Special angles, namely the ‘magic angles’, exist, at which the Fermi 
velocity drops to zero; the first magic angle is predicted12 to be 
θmagic

(1)  ≈ 1.1°. Near this twist angle, the energy bands near charge neu-
trality, which are separated from other bands by single-particle gaps, 
become remarkably flat. The typical energy scale for the entire band-
width is about 5–10 meV (Fig. 1c)12,18. Experimentally confirmed con-
sequences of the flatness of these bands are high effective mass in the 
flat bands (as observed in quantum oscillations) and correlated insu-
lating states at half-filling of these bands, corresponding to n =  ± ns/2, 
where n =  CVg/e is the carrier density defined by the gate voltage Vg (C 
is the gate capacitance per unit area and e is the electron charge)18. 
These insulating states are a result of the competition between Coulomb 

energy and quantum kinetic energy, which gives rise to a correlated 
insulator at half-filling that has characteristics consistent with Mott-like 
insulator behaviour18. The doping density that is required to reach the 
Mott-like insulating states is ns/2 ≈ (1.2–1.6) × 1012 cm−2, depending 
on the exact twist angle. Here we report transport data that clearly 
demonstrate that superconductivity is achieved as the material is doped 
slightly away from the Mott-like insulating state in magic-angle TBG. 
We observed superconductivity across multiple devices with slightly 
different twist angles, with the highest critical temperature that we 
achieved being 1.7 K.

Superconductivity in magic-angle TBG
In Fig. 1a we show the typical device structure of fully encapsulated 
TBG devices. The two sheets of graphene originate from the same 
exfoliated flake, which permits a relative twist angle that is controlled 
precisely to within about 0.1°–0.2° (refs 17, 20, 21). The encapsulated 
TBG stack is etched into a ‘Hall’ bar and contacted from the edges22. 
Electrical contacts are made from non-superconducting materials 
(thermally evaporated Au on a Cr sticking layer) to avoid any potential 
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Figure 1 | Two-dimensional superconductivity in a graphene 
superlattice. a, Schematic of a typical twisted bilayer graphene 
(TBG) device and the four-probe (Vxx, Vg, I and the bias voltage Vbias) 
measurement scheme. The stack consists of hexagonal boron nitride 
on the top and bottom, with two graphene bilayers (G1, G2) twisted 
relative to each other in between. The electron density is tuned by a 
metal gate beneath the bottom hexagonal boron nitride layer. b, Four-
probe resistance Rxx =  Vxx/I (Vxx and I are defined in a) measured in two 
devices M1 and M2, which have twist angles of θ =  1.16° and θ =  1.05°, 
respectively. The inset shows an optical image of device M1, including the 
main ‘Hall’ bar (dark brown), electrical contact (gold), back gate (light 
green) and SiO2/Si substrate (dark grey). c, The band energy E of TBG  
at θ =  1.05° in the first mini Brillouin zone of the superlattice. The  
bands near charge neutrality (E =  0) have energies of less than 15 meV.  

d, The DOS corresponding to the bands shown in c, for energies of  
−10 to +10 meV (blue; θ =  1.05°). For comparison, the purple lines show 
the total DOS of two sheets of freestanding graphene without interlayer 
interaction (multiplied by 103). The red dashed line shows the Fermi 
energy EF at half-filling of the lower branch (E <  0) of the flat bands, 
which corresponds to a density of n =  −ns/2, where ns is the superlattice 
density (defined in the main text). The superconductivity is observed 
near this half-filled state. e, Current–voltage (Vxx–I) curves for device 
M2 measured at n =  −1.44 × 1012 cm−2 and various temperatures. At 
the lowest temperature of 70 mK, the curves indicate a critical current 
of approximately 50 nA. The inset shows the same data on a logarithmic 
scale, which is typically used to extract the Berezinskii–Kosterlitz–
Thouless transition temperature (TBKT =  1.0 K in this case), by fitting to a 
Vxx ∝ I3 power law (blue dashed line).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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proximity effects. The carrier density n is tuned by applying a voltage 
to a Pd/Au bottom gate electrode. In Fig. 1b we show the longitudi-
nal resistance Rxx as a function of temperature for two magic-angle 
devices, M1 and M2, with twist angles of 1.16° and 1.05°, respectively. 
At the lowest temperature studied of 70 mK, both devices show zero 
resistance, and therefore a superconducting state. The critical temper-
ature Tc as calculated using a resistance of 50% of the ‘normal’-state 
(non-superconducting) value is approximately 1.7 K and 0.5 K for the 
two devices that we studied in detail. In Fig. 1c, d we show a single- 
particle band structure and density of states (DOS) near the charge 
neutrality point calculated for θ = 1.05°. The superconductivity in both 
devices occurs when the Fermi energy EF is tuned away from charge 
neutrality (EF = 0) to be near half-filling of the lower flat band (EF < 0, 
as indicated in Fig. 1d). The DOS within the energy scale of the flat 
bands is more than three orders of magnitudes higher than that of 
two uncoupled graphene sheets, owing to the reduction of the Fermi 
velocity and the increase in localization that occurs near the magic 
angle. However, the energy at which the DOS peaks does not gener-
ally coincide with the density that is required to half-fill the bands. 
In addition, we did not observe any appreciable superconductivity 
when the Fermi energy was tuned into the flat conduction bands 
(EF > 0). In Fig. 1e we show the current–voltage (I–Vxx, where Vxx 
is the four-probe voltage, as defined in Fig. 1a) curves of device M2 
at different temperatures. We observe typical behaviour for a two- 
dimensional superconductor. The inset shows a tentative fit of the 
same data to a Vxx ∝ I3 power law, as is predicted in a Berezinskii–
Kosterlitz–Thouless transition in two-dimensional superconductors23. 
This analysis yields a Berezinskii–Kosterlitz–Thouless transition tem-
perature of TBKT ≈ 1.0 K at n = −1.44 × 1012 cm−2, where, as before, 

n is the carrier density induced by the gate and measured from the 
charge neutrality point (which is different from the actual carrier  
density involved in transport, as we show below).

In contrast to other known two-dimensional and layered super-
conductors, the superconductivity in magic-angle TBG requires the 
application of only a small gate voltage, corresponding to a minimal 
density of only 1.2 × 1012 cm−2 from charge neutrality, an order of mag-
nitude lower than the value of 1.5 × 1013 cm−2 in LaAlO3/SrTiO3 inter-
faces and of 7 × 1013 cm−2 in electrochemically doped MoS2, among 
others24. Therefore, gate-tunable superconductivity can be realized 
in a high-mobility system without the need for ionic-liquid gating or 
chemical doping. In Fig. 2a we show the two-probe conductance of 
device M1 versus n at zero magnetic field and at a 0.4-T perpendic-
ular magnetic field. Near the charge neutrality point (n = 0), a typical 
V-shaped conductance is observed, which originates from the renor-
malized Dirac cones of the TBG band structure. The insulating states 
centred at approximately ±3.2 × 1012 cm−2 (which corresponds to ns 
for θ = 1.16°) are due to single-particle bandgaps in the band structure 
that correspond to filling ±4 electrons in each superlattice unit cell. In 
between, there are conductance minima at ±2 and ±3 electrons per 
unit cell. These minima are associated with many-body gaps induced by 
the competition between the Coulomb energy and the reduced kinetic 
energy due to confinement of the electronic state in the superlattice 
near the magic angle; these gaps give rise to insulating behaviour near 
the integer fillings18. One possible mechanism for the gaps is similar 
to the gap mechanism in Mott insulators, but with an extra two-fold 
degeneracy (for the case of ±2 electrons) from the valleys in the origi-
nal graphene Brillouin zone17,18,25,26. In the vicinity of −2 electrons 
per unit cell (n ≈ −1.3 × 1012 cm−2 to n ≈ −1.9 × 1012 cm−2) and at a 
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Figure 2 | Gate-tunable superconductivity in magic-angle TBG. 
a, Two-probe conductance G2 = I/Vbias of device M1 (θ = 1.16°) measured 
in zero magnetic field (red) and at a perpendicular field of B⊥ = 0.4 T 
(blue). The curves exhibit the typical V-shaped conductance near charge 
neutrality (n = 0, vertical purple dotted line) and insulating states at the 
superlattice bandgaps n = ±ns, which correspond to filling ±4 electrons 
in each moiré unit cell (blue and red bars). They also exhibit reduced 
conductance at intermediate integer fillings of the superlattice owing to 
Coulomb interactions (other coloured bars). Near a filling of −2 electrons 
per unit cell, there is considerable conductance enhancement at zero field 
that is suppressed in B⊥ = 0.4 T. This enhancement signals the onset of 

superconductivity. Measurements were conducted at 70 mK; Vbias = 10 µV. 
b, Four-probe resistance Rxx, measured at densities corresponding to 
the region bounded by pink dashed lines in a, versus temperature. Two 
superconducting domes are observed next to the half-filling state, which 
is labelled ‘Mott’ and centred around −ns/2 = −1.58 × 1012 cm−2. The 
remaining regions in the diagram are labelled as ‘metal’ owing to the 
metallic temperature dependence. The highest critical temperature 
observed in device M1 is Tc = 0.5 K (at 50% of the normal-state resistance). 
c, As in b, but for device M2, showing two asymmetric and overlapping 
domes. The highest critical temperature in this device is Tc = 1.7 K.
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The emergence of half-filling states is not expected in the absence of 
interactions between electrons and appears to be correlated with the 
narrow bandwidth near the first magic angle. In our experiment, sev-
eral separate pieces of evidence support the presence of flat bands. First, 
we measured the temperature dependence of the amplitude of 
Shubnikov–de Haas oscillations in device D1, from which we extracted 
the effective mass of the electron, m* (Fig. 3b; see Methods and 
Extended Data Fig. 3 for analysis). For a Dirac spectrum with eight-fold 
degeneracy (spin, valley and layer), we expect that ⁎= / πm h n v(8 )2

F
2 , 

which scales as 1/vF . The large measured m* near charge neutrality in 
device D1 indicates a reduction in vF by a factor of 25 compared to 
monolayer graphene (4 ×   104 m s− 1 compared to 106 m s− 1). This large 
reduction in the Fermi velocity is a characteristic that is expected for flat 
bands. Second, we analysed the capacitance data of device D2 near the 
Dirac point (Fig. 3a) and found that vF needs to be reduced to about 
0.15v0 for a good fit to the data (Methods, Extended Data Fig. 1b). Third, 
another direct manifestation of flat bands is the flattening of the con-
ductance minimum at charge neutrality above a temperature of 40 K 
(thermal energy kT =  3.5 meV), as seen in Fig. 3c. Although the con-
ductance minimum in monolayer graphene can be observed clearly even 
near room temperature, it is smeared out in magic-angle TBG when the 
thermal energy kT becomes comparable to vFkθ/2 ≈   4 meV—the energy 
scale that spans the Dirac-like portion of the band (Fig. 1c)24–26.

Owing to the localized nature of the electrons, a plausible explanation 
for the gapped behaviour at half-filling is the formation of a Mott-like 
insulator driven by Coulomb interactions between electrons27,28. To 
this end, we consider a Hubbard model on a triangular lattice, with 
each site corresponding to a localized region with AA stacking in the 
moiré pattern (Fig. 1i). In Fig. 3d we show the bandwidth of the E >   0 
branch of the low-energy bands for 0.04° <   θ <   2° that we calculated 
numerically using a continuum model of TBG6. The bandwidth W is 
strongly suppressed near the magic angles. The on-site Coulomb energy 
U of each site is estimated to be e2/(4π εd), where d is the effective linear 

dimension of each site (with the same length scale as the moiré period), 
ε is the effective dielectric constant including screening and e is the 
electron charge. Combining ε and the dependence of d on twist angle 
into a single constant κ, we write U =  e2θ/(4π ε0κa), where a =  0.246 nm 
is the lattice constant of monolayer graphene. In Fig. 3d we plot the 
on-site energy U versus θ for κ =  4–20. As a reference, κ =  4 if we 
assume ε =  10ε0 and d is 40% of the moiré wavelength. For a range of 
possible values of κ it is therefore reasonable that U/W >   1 occurs near 
the magic angles and results in half-filling Mott-like gaps27. However, 
the realistic scenario is much more complicated than these simplistic 
estimates; a complete understanding requires detailed theoretical anal-
yses of the interactions responsible for the correlated gaps.

The Shubnikov–de Haas oscillation frequency fSdH (Fig. 3b) also 
supports the existence of Mott-like correlated gaps at half-filling. Near 
the charge neutrality point, the oscillation frequency closely follows 
fSdH =  φ0| n| /M where φ0 =  h/e is the flux quantum and M =  4 indicates 
the spin and valley degeneracies. However, at | n|  >   ns/2, we observe 
oscillation frequencies that corresponds to straight lines, fSdH =  φ0(| n|   
−   ns/2)/M, in which M has a reduced value of 2. Moreover, these lines 
extrapolate to zero exactly at the densities of the half-filling states, n =   
±  ns/2. These oscillations point to small Fermi pockets that result from 
doping the half-filling states, which might originate from charged 
quasi particles near a Mott-like insulator phase29. The halved degener-
acy of the Fermi pockets might be related to the spin–charge separation 
that is predicted in a Mott insulator29. These results are also supported 
by Hall measurements at 0.3 K (Extended Data Fig. 4; see Methods for 
discussion), which show a ‘resetting’ of the Hall densities when the 
system is electrostatically doped beyond the Mott-like states.

The half-filling states at ±  ns/2 are suppressed by the application 
of a magnetic field. In Fig. 4a, b we show that both insulating phases 
start to conduct at a perpendicular field of B =  4 T and recover normal 
conductance by B =  8 T. A similar effect is observed for an in-plane 
magnetic field (Extended Data Fig. 5d). The insensitivity to field  
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T =  0.3 K. The Dirac point is located at n =  0. The lighter-shaded regions 
are superlattice gaps at carrier density n =  ±  ns =  ±  2.7 ×   1012 cm− 2. The 
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the density locations of half-filling states in the four different devices. 

See Methods for a definition of the error bars. b, Minimum conductance 
values in the p-side (red) and n-side (blue) half-filling states in device 
D1. The dashed lines are fits of exp[−  ∆ /(2kT)] to the data, where 
∆  ≈   0.31 meV is the thermal activation gap. c, d, Temperature-dependent 
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α≈ 0.2 eVÅ  
ESO = α2m* / (2!2 ) ≈ 50 μeV (m* = 0.015me).  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rather than by microtubule reorganization. Thus,
polarization of the DVaxis is independent of the
formation of the microtubule array that defines
the AP axis, as previously proposed.
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Signatures of Majorana Fermions in
Hybrid Superconductor-Semiconductor
Nanowire Devices
V. Mourik,1* K. Zuo,1* S. M. Frolov,1 S. R. Plissard,2 E. P. A. M. Bakkers,1,2 L. P. Kouwenhoven1†

Majorana fermions are particles identical to their own antiparticles. They have been theoretically
predicted to exist in topological superconductors. Here, we report electrical measurements on
indium antimonide nanowires contacted with one normal (gold) and one superconducting
(niobium titanium nitride) electrode. Gate voltages vary electron density and define a tunnel
barrier between normal and superconducting contacts. In the presence of magnetic fields on the
order of 100 millitesla, we observe bound, midgap states at zero bias voltage. These bound states
remain fixed to zero bias, even when magnetic fields and gate voltages are changed over
considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires
coupled to superconductors.

All elementary particles have an anti-
particle of opposite charge (for example,
an electron and a positron); the meet-

ing of a particle with its antiparticle results in
the annihilation of both. A special class of par-
ticles, called Majorana fermions, are predicted
to exist that are identical to their own anti-
particle (1). They may appear naturally as ele-

mentary particles or emerge as charge-neutral
and zero-energy quasi-particles in a supercon-
ductor (2, 3). Particularly interesting for the
realization of qubits in quantum computing are
pairs of localized Majoranas separated from each
other by a superconducting region in a topolog-
ical phase (4–11).

On the basis of earlier and later semiconductor-
based proposals (6, 7), Lutchyn et al. (8) and
Oreg et al. (9) have outlined the necessary in-
gredients for engineering a nanowire device that
should accommodate pairs of Majoranas. The
starting point is a one-dimensional (1D) nano-
wire made of semiconducting material with
strong spin-orbit interaction (Fig. 1A). In the
presence of a magnetic field B along the axis

of the nanowire (i.e., a Zeeman field), a gap is
opened at the crossing between the two spin-
orbit bands. If the Fermi energy m is inside this
gap, the degeneracy is twofold, whereas outside
the gap it is fourfold. The next ingredient is to
connect the semiconducting nanowire to an
ordinary s-wave superconductor (Fig. 1A). The
proximity of the superconductor induces pairing
in the nanowire between electron states of oppo-
site momentum and opposite spins and induces
a gap, D. Combining this twofold degeneracy
with an induced gap creates a topological super-
conductor (4–11). The condition for a topolog-
ical phase is EZ > (D2 + m2)1/2, with the Zeeman
energy EZ = gmBB/2 (g is the Landé g factor, mB
is the Bohr magneton). Near the ends of the
wire, the electron density is reduced to zero, and
subsequently, m will drop below the subband
energies such that m2becomes large. At the points
in space where EZ = (D2 + m2)1/2, Majoranas arise
as zero-energy (i.e., midgap) bound states—one
at each end of the wire (4, 8–11).

Despite their zero charge and energy, Ma-
joranas can be detected in electrical measure-
ments. Tunneling spectroscopy from a normal
conductor into the end of the wire should re-
veal a state at zero energy (12–14). Here, we
report the observation of such zero-energy peaks
and show that they rigidly stick to zero energy
while changing B and gate voltages over large
ranges. Furthermore, we show that this zero-
bias peak (ZBP) is absent if we take out any
of the necessary ingredients of the Majorana
proposals; that is, the rigid ZBP disappears for
zero magnetic field, for a magnetic field par-
allel to the spin-orbit field, or when we take
out the superconductivity.

1Kavli Institute of Nanoscience, Delft University of Technology,
2600 GA Delft, Netherlands. 2Department of Applied Physics,
Eindhoven University of Technology, 5600 MB Eindhoven,
Netherlands.
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rather than by microtubule reorganization. Thus,
polarization of the DVaxis is independent of the
formation of the microtubule array that defines
the AP axis, as previously proposed.
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Nanowire Devices
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Majorana fermions are particles identical to their own antiparticles. They have been theoretically
predicted to exist in topological superconductors. Here, we report electrical measurements on
indium antimonide nanowires contacted with one normal (gold) and one superconducting
(niobium titanium nitride) electrode. Gate voltages vary electron density and define a tunnel
barrier between normal and superconducting contacts. In the presence of magnetic fields on the
order of 100 millitesla, we observe bound, midgap states at zero bias voltage. These bound states
remain fixed to zero bias, even when magnetic fields and gate voltages are changed over
considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires
coupled to superconductors.

All elementary particles have an anti-
particle of opposite charge (for example,
an electron and a positron); the meet-

ing of a particle with its antiparticle results in
the annihilation of both. A special class of par-
ticles, called Majorana fermions, are predicted
to exist that are identical to their own anti-
particle (1). They may appear naturally as ele-

mentary particles or emerge as charge-neutral
and zero-energy quasi-particles in a supercon-
ductor (2, 3). Particularly interesting for the
realization of qubits in quantum computing are
pairs of localized Majoranas separated from each
other by a superconducting region in a topolog-
ical phase (4–11).

On the basis of earlier and later semiconductor-
based proposals (6, 7), Lutchyn et al. (8) and
Oreg et al. (9) have outlined the necessary in-
gredients for engineering a nanowire device that
should accommodate pairs of Majoranas. The
starting point is a one-dimensional (1D) nano-
wire made of semiconducting material with
strong spin-orbit interaction (Fig. 1A). In the
presence of a magnetic field B along the axis

of the nanowire (i.e., a Zeeman field), a gap is
opened at the crossing between the two spin-
orbit bands. If the Fermi energy m is inside this
gap, the degeneracy is twofold, whereas outside
the gap it is fourfold. The next ingredient is to
connect the semiconducting nanowire to an
ordinary s-wave superconductor (Fig. 1A). The
proximity of the superconductor induces pairing
in the nanowire between electron states of oppo-
site momentum and opposite spins and induces
a gap, D. Combining this twofold degeneracy
with an induced gap creates a topological super-
conductor (4–11). The condition for a topolog-
ical phase is EZ > (D2 + m2)1/2, with the Zeeman
energy EZ = gmBB/2 (g is the Landé g factor, mB
is the Bohr magneton). Near the ends of the
wire, the electron density is reduced to zero, and
subsequently, m will drop below the subband
energies such that m2becomes large. At the points
in space where EZ = (D2 + m2)1/2, Majoranas arise
as zero-energy (i.e., midgap) bound states—one
at each end of the wire (4, 8–11).

Despite their zero charge and energy, Ma-
joranas can be detected in electrical measure-
ments. Tunneling spectroscopy from a normal
conductor into the end of the wire should re-
veal a state at zero energy (12–14). Here, we
report the observation of such zero-energy peaks
and show that they rigidly stick to zero energy
while changing B and gate voltages over large
ranges. Furthermore, we show that this zero-
bias peak (ZBP) is absent if we take out any
of the necessary ingredients of the Majorana
proposals; that is, the rigid ZBP disappears for
zero magnetic field, for a magnetic field par-
allel to the spin-orbit field, or when we take
out the superconductivity.
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Topological quantum computation 
Anyonic quasiparticles (Majorana Fermions)



3

for i ̸= 0 or the I2 identity matrix for i = 0. They refer
to the Nambu and spin degrees of freedom respectively.
We will calculate numerically the low lying part of the

spectrum of the Hamiltonian of Eq.5 following an ap-
proach a’la Blonder Tinhkam Klapwijk [13].
In order to simplify calculations we will work in the

limit L/ξ << 1. This assumption is physically rea-
sonable for most of the etherostructures (per l’YBCO
non tanto vero!!!), moreover, as shown in [3], it does
not alter the generality of our results affecting them
only quantitatively and not qualitatively. Matching
conditions on the wavefunction and on its first deriva-
tive, in this limit, reduces to ψ(0−) = ψ(0+) and
∂xψ(x)|x=0− = ∂xψ(x)|x=0+ . In agreement with [3, 4],
depending on the hamiltonian parameters we find a topo-
logically non-trivial phase whose boundary states are Ma-
jorana Fermions and a topologically trivial phase, where
no Majorana states are present. The latter is adia-
batically deformable to the usual Andreev physics [13]
whereas the former deserves more attention.

FIG. 2: default2

The characteristic signature of the topological nontriv-
ial phase is the presence of odd number of crossings in
the Andreev spectrum in contrast with the TP trivial
phase where number of crossings is even as required by
2π periodicity of the Hamiltonian.
The conditions on the Hamiltonian parameters to have

Majorana Fermions in the case of s-wave superconductiv-
ity have been derived here [3]. In our case it can be shown
that topologically protected zero energyMajorana Bound
states appear as long as B2 > µ2 + max(|∆L|2, |∆R|2).
Throughout the paper we will focus on this limit.
As usual, the occurrence of MBS can be revealed by

the dispersion relation of Andreev levels. For αR < π/4

the Andreev levels show a single crossing at φ = π. This
is consistent with what found with conventional s-wave
superconductivity.
Interestingly enough, the Andreev spectrum shows an

unexpected behavior when αR > π/4 i.e. when the effec-
tive induced gaps have opposite signs. In this case the
zero energy Majorana state moves from φ = π to φ = 0.
This can be naively interpreted with the following ar-
gument: when α < π/4 the gaps ∆L and ∆R have the
same sign, therefore, in order to realize the gap inversion
between the two regions S1 and S2, necessary for the
topological protection, we need a to introduce a phase
difference π between the two order parameter which is
unnecessary in the case α > π/4 where the two gaps
have already opposite signs and the Majorana Fermion
localizes at φ = 0.
However this naive argument does not forbid, in prin-

ciple, the presence of MF’s at φ ̸= 0,π provided that the
gap inversion condition is realized. This is prevented,
however, by symmetry arguments.
In order to have MF’s the effective Hamiltonian pre-

serving particle-hole invariance has to be real: this con-
dition is only realized at φ = 0,π.
In Fig. 3 the dispersion relation of Majorana Bound

states is shown as a function of the phase difference be-
tween the superconducting pads φ. Independently of the
relative strength of the two gaps the MF’s are forced
to be at φ = 0,π. However the shape of the disper-
sion relation changes and, more interestingly, the cur-
rent increases with the gaps reaching its maximum when
α = 0orπ/2 i.e. when ∆L = ±∆R (maximum gaps).
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FIG. 1: (color online) Sketch of the Kitaev chain with a
π−junction at the top point U . Red (blue) circles represent
γA(B) type MFs. Yellow ellipses signal strong coupling.

protected states would be the smoking gun evidence for
the existence of the MBS in this device. It is a weird case
that the breaking of the discrete symmetry (P) enforces
the time reversal symmetry to be restored.

Model Hamiltonian

We start considering a N-sites Kitaev chain of unitary
lattice spacing and full length L = 2N , with real inter
site hopping t. When folded in the shape of a ring the
system displays mirror symmetry across the vertical line
connecting points U and D between the top and the bot-
tom (see Fig. 1).

Our device can be described as two N-sites Majorana
wires (left (ℓ) and right (r)), coupled at the top of the
ring U by the weak electron tunneling of energy Γ. At
chemical potential µ = 0, in the presence of an electro-
magnetic vector potential A⃗, the gauge invariant Hamil-
tonian reads as H = Hℓ +Hr, with:

Hα =
N−1
∑

j=1

(

−
t

2
eigαjc†αjcαj+1 +

∆

2
ei(φαj+φαj+1)/2 cαj cαj+1 + h.c.

)

. (1)

Here α labels the ℓ and r side of the ring, cαj are spinless
Dirac fermions at the site j and ∆ is the superconducting
pairing, generating an effective p-wave superconductivity.
The phases gαj acquired in the hopping between the j site
and its nearest neighbor and the gauge invariant phase
φαj are defined as:

gαj = −
e

!c

∫ αj+1

αj
A⃗ · d⃗l , (2)

φαj = θαj −
2e

!c

∫ αj

ℓ1
A⃗ · d⃗l , (3)

where θαj is the phase of the superconducting order pa-
rameter.
At the top point U of the ring (see Fig.1) there is a

tunnel junction which allows for the fractional Josephson
coupling:

HU = −Γ
(

c†ℓ1crN + h.c.
)

, (4)

(Γ << t). For sake of further investigations, we explicitly
consider also the hopping term at the bottom point in the
ring D, where the ℓ and r chains are matched:

HD = −u t
(

c†ℓNcr1 + h.c.
)

. (5)

Here we will keep the dimensionless parameter u (which
may be complex) as a variable, to discuss also the limiting
case of u = 0, which corresponds to the ring cut at D,
with open ends.
The spinless Dirac fermions can be expressed in terms

of two species of Majorana fermions at each site of the
ring γα

A/Bj , such that:

γα
Bj = cαje

iφαj/2 + c†αje
−iφαj/2 , (6)

γα
Aj = −i

(

cαje
iφαj/2 − c†αje

−iφαj/2
)

. (7)

A π−Josephson Junction requires ∆ having opposite
signs at U, between ℓ1 and rN . In the gauge in which
∆ is real, the OP ∆ has to vanish somewhere along the
ring and we choose this point to be D with no loss of
generality. As a first step, to make the approach as sim-
plest as possible, deep in the topological phase, we will
adopt the Kitaev approximation, |∆| = t [1]all along the
chain and we choose ∆ = t in the ℓ region and ∆ = −t
in the r region of the ring. Thus, the chain Hamiltonian
becomes:

Hℓ +Hr = −i
t

2

N−1
∑

j=1

[

γℓ
Bjγ

ℓ
Aj+1 − γr

Ajγ
r
Bj+1

]

. (8)
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for i ̸= 0 or the I2 identity matrix for i = 0. They refer
to the Nambu and spin degrees of freedom respectively.
We will calculate numerically the low lying part of the

spectrum of the Hamiltonian of Eq.5 following an ap-
proach a’la Blonder Tinhkam Klapwijk [13].
In order to simplify calculations we will work in the

limit L/ξ << 1. This assumption is physically rea-
sonable for most of the etherostructures (per l’YBCO
non tanto vero!!!), moreover, as shown in [3], it does
not alter the generality of our results affecting them
only quantitatively and not qualitatively. Matching
conditions on the wavefunction and on its first deriva-
tive, in this limit, reduces to ψ(0−) = ψ(0+) and
∂xψ(x)|x=0− = ∂xψ(x)|x=0+ . In agreement with [3, 4],
depending on the hamiltonian parameters we find a topo-
logically non-trivial phase whose boundary states are Ma-
jorana Fermions and a topologically trivial phase, where
no Majorana states are present. The latter is adia-
batically deformable to the usual Andreev physics [13]
whereas the former deserves more attention.

FIG. 2: default2

The characteristic signature of the topological nontriv-
ial phase is the presence of odd number of crossings in
the Andreev spectrum in contrast with the TP trivial
phase where number of crossings is even as required by
2π periodicity of the Hamiltonian.
The conditions on the Hamiltonian parameters to have

Majorana Fermions in the case of s-wave superconductiv-
ity have been derived here [3]. In our case it can be shown
that topologically protected zero energyMajorana Bound
states appear as long as B2 > µ2 + max(|∆L|2, |∆R|2).
Throughout the paper we will focus on this limit.
As usual, the occurrence of MBS can be revealed by

the dispersion relation of Andreev levels. For αR < π/4

the Andreev levels show a single crossing at φ = π. This
is consistent with what found with conventional s-wave
superconductivity.
Interestingly enough, the Andreev spectrum shows an

unexpected behavior when αR > π/4 i.e. when the effec-
tive induced gaps have opposite signs. In this case the
zero energy Majorana state moves from φ = π to φ = 0.
This can be naively interpreted with the following ar-
gument: when α < π/4 the gaps ∆L and ∆R have the
same sign, therefore, in order to realize the gap inversion
between the two regions S1 and S2, necessary for the
topological protection, we need a to introduce a phase
difference π between the two order parameter which is
unnecessary in the case α > π/4 where the two gaps
have already opposite signs and the Majorana Fermion
localizes at φ = 0.
However this naive argument does not forbid, in prin-

ciple, the presence of MF’s at φ ̸= 0,π provided that the
gap inversion condition is realized. This is prevented,
however, by symmetry arguments.
In order to have MF’s the effective Hamiltonian pre-

serving particle-hole invariance has to be real: this con-
dition is only realized at φ = 0,π.
In Fig. 3 the dispersion relation of Majorana Bound

states is shown as a function of the phase difference be-
tween the superconducting pads φ. Independently of the
relative strength of the two gaps the MF’s are forced
to be at φ = 0,π. However the shape of the disper-
sion relation changes and, more interestingly, the cur-
rent increases with the gaps reaching its maximum when
α = 0orπ/2 i.e. when ∆L = ±∆R (maximum gaps).
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FIG. 1. Structure and general properties of LAO/STO JJs.
(a) shows a sketch of the constriction layout used to realize the
junctions. An atomic force microscope image of a typical constriction
is shown in (b). W and L indicate the width and the length of the
constriction, respectively, with the current flowing along the x axis.
Typical I -V characteristics of a LAO/STO JJ (w = L = 200 nm)
acquired at T = 50 mK are shown in (c). (d) shows IcRN vs Vg

extracted from these measurements (using a V = 5 µV criterion for
the Ic).

a larger L/w ratio compared to that of device 1, hence it
shows a different gate voltage response. All the data shown
in Fig. 2 exhibit a double-peak structure, indicated by the
arrows, evolving with the temperature and with Vg . Since
we performed measurements on JJs with a slightly different
geometry and using two different cryogenic and acquisition
setups (see the Supplemental Material), we can confidently
exclude geometrical and/or instrumental artifacts as the source
of the observed behaviors.

The presence of two peaks in the conductance data indicates
a two-gap superconducting state. We fit the conductance curves
using a superconducting two-gap model [solid red lines in
Figs. 2(b) and 2(c), discussed in detail in the Supplemental
Material]. In Figs. 3(a) and 3(b) we show the results of
the fits as a function of the temperature. The temperature
behavior of the lowest-energy gap !1 [Fig. 3(b)] is consistent
with that of a BCS-like superconducting gap (solid red line)
[11] having !1(T = 0)/kBT1 = 1.7 and T1 = 110 mK. The
second gap !2 [Fig. 3(a)] shows a marked decrease around
90–100 mK but does not close at T1. At the same time, the
conductance curves measured for T > T1 still show a clear
peak at zero bias [Fig. 2(a)], associated with the persistence
of a superconducting channel we attribute to !2. The fit
of the conductance curves using a two-superconducting-gap
model is in good agreement with the temperature behavior
of Ic extracted from the I -V curves, shown in Fig. 3(c). The
Ic(T ) data can be reproduced assuming the presence of two
superconducting channels with two different energy scales:
one associated with !1 with T1 = 110 mK and a second one
(contributing about 16% to the total critical current at 50 mK),
associated with !2 with T2 = 250 mK (solid red line; more
details on the fitting procedure and parameters can be found
in the Supplemental Material).

FIG. 2. Conductance dI/dV vs voltage V curves of LAO/STO
JJs. The data in (a) were acquired for device 1 keeping fixed the
gate voltage at Vg = 12 V and changing the temperature. The same
data after subtraction of the background are reported in (b) (see
Supplemental Material for details). (c) shows dI/dV vs V curves
of device 2 acquired at T = 50 mK as a function of Vg , after
subtraction of the background. Red lines in (b) and (c) are the fit
of the conductance curves performed using a two-gap model. The
data in (b) and (c) are plotted starting from V = 26 µV as the fit
cannot take into account the Josephson peak in the conductance.

Figures 3(d) and 3(e) show the values of !2 and !1
respectively as a function of the gate voltage extracted from
the fit in Fig. 2(c) (referring to device 2 measured at T = 50
mK). Interestingly, both gap values increase with decreasing
gate voltage, thus not following the phase diagram traced by
the IcRN product in the underdoped region [i.e.. for Vg < 0
V, Fig. 3(f)]. The same behavior was found for the single gap
reported in Ref. [10] (see Ref. [18]). In the optimally and
slightly overdoped region, on the other hand, !1 and !2 scale
in accordance with the IcRN product. In summary, the analysis
of the conductance data and of the Ic vs T behavior indicates
that both features are real superconducting gaps.

From the two-gap fit model, we can also extract the
ratio between the partial density of states at the Fermi
level, associated to the two gaps ν = N2(0)/N1(0) = #12/#21
[19], where #12 and #21 are the interchannel scattering rates
obtained from the conductance curve fits (Fig. 2). The inset
of Fig. 3(d) shows that ν increases with the gate voltage; this
means that the electric field effect increases the density of
states N2 more than N1. We point out that the field effect tuned
Rashba SOC in the 2DEG at the LAO/STO interface increases

140502-2
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Annealing machines

Environment: decoherence and relaxation 
Any physical object interacts with the 
environment. 
How the  QA is affected by the environment?



QUBO and Ising models
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• Map a QUBO on an Ising Hamiltonian

• Locate its ground state

• Read the ground state configuration

• However. . . How can we reach the Ising system’s ground state?
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Exploring the landscape 
adiabatically reducing 

thermal fluctuations

How to find the ground state?

T(t) = T0(1 − t/tf ) + Tfint/tf
Appropriate choice of T0 and 

Tfin can drive the system 
through the GS

Not very efficient for NP 
hard problems! 

• Many almost equally deep 
minima  

• Separated by thin and high 
energy barriers 

Thermal annealing
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quantum fluctuations!
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H(t) = H0(1 − t/tf ) + Hfint/tf
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FIG. 1: (color online) Sketch of the Kitaev chain with a
π−junction at the top point U . Red (blue) circles represent
γA(B) type MFs. Yellow ellipses signal strong coupling.

protected states would be the smoking gun evidence for
the existence of the MBS in this device. It is a weird case
that the breaking of the discrete symmetry (P) enforces
the time reversal symmetry to be restored.

Model Hamiltonian

We start considering a N-sites Kitaev chain of unitary
lattice spacing and full length L = 2N , with real inter
site hopping t. When folded in the shape of a ring the
system displays mirror symmetry across the vertical line
connecting points U and D between the top and the bot-
tom (see Fig. 1).

Our device can be described as two N-sites Majorana
wires (left (ℓ) and right (r)), coupled at the top of the
ring U by the weak electron tunneling of energy Γ. At
chemical potential µ = 0, in the presence of an electro-
magnetic vector potential A⃗, the gauge invariant Hamil-
tonian reads as H = Hℓ +Hr, with:

Hα =
N−1
∑

j=1

(

−
t

2
eigαjc†αjcαj+1 +

∆

2
ei(φαj+φαj+1)/2 cαj cαj+1 + h.c.

)

. (1)

Here α labels the ℓ and r side of the ring, cαj are spinless
Dirac fermions at the site j and ∆ is the superconducting
pairing, generating an effective p-wave superconductivity.
The phases gαj acquired in the hopping between the j site
and its nearest neighbor and the gauge invariant phase
φαj are defined as:

gαj = −
e

!c

∫ αj+1

αj
A⃗ · d⃗l , (2)

φαj = θαj −
2e

!c

∫ αj

ℓ1
A⃗ · d⃗l , (3)

where θαj is the phase of the superconducting order pa-
rameter.
At the top point U of the ring (see Fig.1) there is a

tunnel junction which allows for the fractional Josephson
coupling:

HU = −Γ
(

c†ℓ1crN + h.c.
)

, (4)

(Γ << t). For sake of further investigations, we explicitly
consider also the hopping term at the bottom point in the
ring D, where the ℓ and r chains are matched:

HD = −u t
(

c†ℓNcr1 + h.c.
)

. (5)

Here we will keep the dimensionless parameter u (which
may be complex) as a variable, to discuss also the limiting
case of u = 0, which corresponds to the ring cut at D,
with open ends.
The spinless Dirac fermions can be expressed in terms

of two species of Majorana fermions at each site of the
ring γα

A/Bj , such that:

γα
Bj = cαje

iφαj/2 + c†αje
−iφαj/2 , (6)

γα
Aj = −i

(

cαje
iφαj/2 − c†αje

−iφαj/2
)

. (7)

A π−Josephson Junction requires ∆ having opposite
signs at U, between ℓ1 and rN . In the gauge in which
∆ is real, the OP ∆ has to vanish somewhere along the
ring and we choose this point to be D with no loss of
generality. As a first step, to make the approach as sim-
plest as possible, deep in the topological phase, we will
adopt the Kitaev approximation, |∆| = t [1]all along the
chain and we choose ∆ = t in the ℓ region and ∆ = −t
in the r region of the ring. Thus, the chain Hamiltonian
becomes:

Hℓ +Hr = −i
t

2

N−1
∑

j=1

[

γℓ
Bjγ

ℓ
Aj+1 − γr

Ajγ
r
Bj+1

]

. (8)

Topological Quantum Computation


Majorana Fermions
Quantum Materials
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