Precorso di Fisica

Pagina con raccolta di slides mostrate in questi precorsi:

https://indico.unina.it/event/48/

> DIPARTIMENTO DI AGRARIA, NAPOLI - 18/09/19

MARIO MEROLA (C.D.L. TECNOLOGIE ALIMENTARI) LUIGI CAPPIELLO (C.D.L. TECNOLOGIE ALIMENTARI)

Ricapitolazione unità di misura fondamentali e derivate

Grandezza fisica	Simbolo	Unità di misura
lunghezza	l	m
tempo	t	s
massa	m	kg
	A	
area	V	m^{2}
volume	ρ	m^{3}
densità	$\mathrm{kg} / \mathrm{m}^{3}$	

Altri esempi di grandezze derivate: accelerazione e forza

Accelerazione: $\mathrm{a}=$ velocità/tempo $=\mathrm{v} / \mathrm{t}$

- rapporto tra una grandezza derivata (velocità) ed una fondamentale (tempo)

Dimensione dell'accelerazione:

$$
[\mathrm{a}]=[\text { velocità }] /[\text { tempo }]=\left(\mathrm{m} \mathrm{~s}^{-1}\right) / \mathrm{s}=\mathrm{m} \mathrm{~s}^{-2}
$$

Forza: F = massa \times accelerazione $=\mathrm{m}$ a

- prodotto tra una grandezza fondamentale (massa) ed una derivata (accelerazione)

Dimensione della forza:

$$
[\mathrm{F}]=[\text { massa }] \times \text { accelerazione }]=\mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2}=\mathrm{N} \text { (Newton) }
$$

Ancora sul cambiamento di unità di misura (I)

- Un oggetto che viene lanciato verso l'alto con una velocità v raggiunge un'altezza massima $h=v^{2} / 2 \mathrm{~g}(\mathrm{~g}=$ $9.81 \mathrm{~m} / \mathrm{s}^{2}$ accelerazione gravitazionale). Calcolare h espressa in m nei seguenti casi: $v=5 \mathrm{~cm} / \mathrm{s}$ e $v=10 \mathrm{~km} / \mathrm{h}$.

$$
\begin{aligned}
h & =\frac{v^{2}}{2 g}=\frac{(5 \mathrm{~cm} / \mathrm{s})^{2}}{2 \cdot 9.81 \mathrm{~m} / \mathrm{s}^{2}}=\frac{25\left(10^{-2} \mathrm{~m} / \mathrm{s}\right)^{2}}{19.62 \mathrm{~m} / \mathrm{s}^{2}}= \\
& =\frac{25 \cdot 10^{-4} \mathrm{~m}^{2} / \mathrm{s}^{2}}{19.62 \mathrm{~m} / \mathrm{s}^{2}}=1.27 \cdot 10^{-4} \mathrm{~m}
\end{aligned}
$$

Ancora sul cambiamento di unità di misura (II)

Una bottiglia d'olio ha un volume di $3 / 4$ di litro. A quanti m^{3} corrisponde? A quanti millilitri corrisponde?

$$
\begin{aligned}
& 3 / 4 \mathrm{~L}=0.75 \mathrm{~L}=0.75 \cdot 10^{-3} \mathrm{~m}^{3} \\
& 3 / 4 \mathrm{~L}=0.75 \mathrm{~L}=750 \mathrm{~mL}
\end{aligned}
$$

- Se un serbatoio di automobile contiene inizialmente 8.01 litri di benzina e viene introdotta benzina alla rapidità di 28.00 litri/minuto, quanta benzina contiene il serbatoio dopo 96 secondi?
$8.01 \mathrm{~L}+28.00\left(\frac{L}{1 \text { min }}\right) \cdot 96 \mathrm{~s}=8.01 \mathrm{~L}+28.00\left(\frac{L}{60 \mathrm{~s}}\right) \cdot 96 \mathrm{~s}$
$=(8.01+28 \cdot 1.6) \mathrm{L}=52.81 \mathrm{~L}$

Ancora sul cambiamento di unità di misura (III)

- La densità dell'alluminio è $2.7 \mathrm{~g} / \mathrm{cm}^{3}$. Quant'è la sua densità se la esprimiamo in $\mathrm{Kg} / \mathrm{m}^{3}$?

$$
2.7 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}=2.7 \frac{10^{-3} \mathrm{~kg}}{10^{-6} \mathrm{~m}^{3}}=2.7 \cdot 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=2700 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Altri esercizi (alla lavagna)

- Quanti litri sono contenuti in $50 \mathrm{~m}^{3}$?
- Quanti m^{3} sono contenuti in 10kL?
- Scrivere il numero 0,00000105 in notazione scientifica.
- Scrivere il numero 10500 in notazione scientifica.
- Se percorro 200 km in 3 ore e 30 min quanto vale la velocità media in km/h?
- Una moto si sposta alla velocità costante di $25 \mathrm{~m} / \mathrm{s}$. Esprimi la sua velocità in kilometri all'ora.

Esercizi sugli ordini di grandezza

- Quante palline da ping pong entrano in una stanza ?

Esercizi sugli ordini di grandezza

- Quante palline da ping pong entrano in una stanza ?
- $\mathrm{D}=4 \mathrm{~cm} ; \mathrm{R}=0.02 \mathrm{~m} ; \mathrm{V}$ (pallina) $=4 / 3 \cdot \pi \cdot \mathrm{R}^{3}=3.2 \cdot 10^{-5} \mathrm{~m}^{3}$
$-\mathrm{V}($ stanza $)=4 \mathrm{~m} \cdot 4 \mathrm{~m} \cdot 3 \mathrm{~m}=48 \mathrm{~m}^{3}$
$-\mathrm{N}($ palline $)=\mathrm{V}($ stanza $) / \mathrm{V}($ pallina $)=48 / 3.2 \cdot 10^{5}=1.5 \cdot 10^{6}$

Esercizi sugli ordini di grandezza

- Quanti accordatori di pianoforte ci sono a New York ?
- 10^{7} abitanti ; 1 pianoforte ogni 100 abitanti, quindi 10^{5} pianoforti
- ogni pianoforte ha bisogno di una accordatura all'anno, quindi c'è bisogno di 10^{5} accordature all'anno
- ogni accordatore ha bisogno di 2 ore per accordare un piano e lavora 250 giorni / anno, quindi accorda circa 1000 pianoforti all'anno, quindi è come se avessimo 1 accordatore ogni 1000 pianoforti
$-\mathrm{N}($ accordatori $)=\frac{10^{5} \text { accordature }}{10^{3} \text { accordature }}=100$

Ulteriori esercizi

- Una persona vuole misurare la larghezza di un fiume (h) in questo modo: osserva un albero posto di fronte a lei sull'altra riva, si sposta di 100 m lungo la propria sponda finche non vede questo albero sotto un angolo di 35° rispetto alla riva del fiume. Quanto vale h ?

Ulteriori esercizi

- Una persona misura la larghezza di un fiume (h) in questo modo: osserva un albero posto di fronte a lei sull'altra riva, si sposta di 100 m lungo la propria sponda finche non vede questo albero sotto un angolo di 35° rispetto alla riva del fiume. Quanto vale h ?

$h=D \operatorname{tg} \alpha=100 \mathrm{~m} \cdot \operatorname{tg}\left(35^{\circ}\right)=100 \mathrm{~m} \cdot 0.700=70 \mathrm{~m}$

Ulteriori esercizi

- Quanti km^{3} di ghiaccio ci sono in Antartide ? Considerare la calotta di ghiaccio di forma semicircolare di spessore 3000 m e raggio 2000 km.

Ulteriori esercizi

- Quanti km^{3} di ghiaccio ci sono in Antartide ? Considerare la calotta di ghiaccio di forma semicircolare di spessore 3000 m e raggio 2000 km .

$$
\begin{aligned}
& \mathrm{S}=\pi R^{2}=3.14 \cdot\left(2 \cdot 10^{3} \cdot 10^{3} \mathrm{~m}\right)^{2}=12.6 \cdot 10^{12} \mathrm{~m}^{2} \\
& \mathrm{~V}=\frac{\mathrm{A}}{2} \cdot h=6.3 \cdot 10^{12} \mathrm{~m}^{2} \cdot 3 \cdot 10^{3} \mathrm{~m}=19 \cdot 10^{15} \mathrm{~m}^{3} \\
& =19 \cdot 10^{6} \mathrm{~km}^{3}
\end{aligned}
$$

Aree e volumi notevoli

Area $=\frac{1}{2} b h$

Esempi di fenomeni che studieremo

Moto del proiettile

La traiettoria del proiettile è completamente determinata una volta che assegnamo la velocità iniziale e l'angolo di lancio

$$
d=\frac{v_{0}^{2}}{g} \cdot \operatorname{sen}(2 \vartheta)
$$

La gittata massima corrisponde ad un angolo di lancio di 45°

Generalizzazione moto del proiettile

Moto del proiettile con resistenza dell'aria

Ogni teoria o modello ha i suoi limiti di validità, a seconda delle condizioni in cui intendiamo verificare il modello.
Esempi: lancio di un foglio di carta (resistenza dell'aria importante), lancio di un giavellotto (resistenza trascurabile)

La presenza dell'aria riduce la quota massima

TABELLA 4.1	Due palle in volo ${ }^{a}$	
	Percorso I (aria)	Percorso II (vuoto)
Gittata	$98,5 \mathrm{~m}$	177 m
Altezza massima	$53,0 \mathrm{~m}$	$76,8 \mathrm{~m}$
Tempo di volo	$6,6 \mathrm{~s}$	

Attrito

L’attrito è una "forza" ossia una causa del cambiamento dello stato di moto di un corpo. Quando lanciate un libro su un tavolo, il libro rallenta fino a fermarsi.
Potete dire che:

- il libro rallenta (cambia lo stato di moto) quindi c'è un qualcosa che lo frena (l'attrito)
- so che tra libro e tavolo c'è attrito, quindi sono sicuro che il libro rallenterà (cambia lo stato di moto)

Attrito

L'attrito è una "forza" ossia una causa del cambiamento dello stato di moto di un corpo. Quando lanciate un libro su un tavolo, il libro rallenta fino a fermarsi.
Potete dire che:

- il libro rallenta (cambia lo stato di moto) quindi c'è un qualcosa che lo frena (l'attrito)
- so che tra libro e tavolo c'è attrito, quindi sono sicuro che il libro rallenterà (cambia lo stato di moto)

Queste due affermazioni, viste nel caso particolare dell'attrito, costituiscono il senso della seconda legge di Newton

$$
\vec{F}=m \vec{a} \quad \begin{aligned}
& \mathrm{F}=\mathrm{forza} \\
& \mathrm{~m}=\text { massa } \\
& \mathrm{a}=\text { accelerazione }
\end{aligned}
$$

Attrito dovuto al fatto che le superfici a contatto non sono perfettamente lisce, ma presentano asperità

E' una forza fondamentale, senza l'attrito non potremmo nemmeno camminare!

(a)

Attrito viscoso (aria o fluidi in generale)

La resistenza dell’aria fa sì che qualsiasi corpo che cade raggiunga una velocità massima, detta velocità limite

Steve Fitchett/Taxi/Getty Images

TABELLA 6.1 Alcuni valori di velocità in aria		
Oggetto	Velocità limite $(\mathrm{m} / \mathrm{s})$	Distanza di regime* (m)
Proiettile (dallo sparo)	145	2500
Paracadutista in caduta libera (tipico)	60	430
Palla da baseball	42	210
Palla da tennis	31	115
Palla da pallacanestro	20	47
Pallina da ping pong	9	10
Goccia di pioggia (raggio $=1,5 \mathrm{~mm})$	7	6
Paracadutista con paracadute (tipico)	5	3

[^0]
Quantità di moto

Conservazione della quantità di moto

Quantità di moto

$\vec{p}=m \vec{v}$
 (massa x velocità)

Conservazione della quantità di moto

Sistema pistola + proiettile "conserva" la quantità di moto, cioè la quantità di moto rimane invariata
$\boldsymbol{m} \vec{v}$ (pistola+proi.) prima dello sparo $=\boldsymbol{m} \vec{v}$ (pistola + proi.) dopo lo sparo

$$
0=m_{1} v_{1}-m_{2} v_{2}
$$

$$
\text { quindi } m_{1} v_{1}=m_{2} v_{2}
$$

$$
\mathrm{v}_{1}=\mathrm{v}_{2} \cdot \mathrm{~m} 2 / \mathrm{m} 1
$$

$\mathfrak{m}_{\mathbb{1}} \mathbb{V}_{\mathbb{1}}$ pistola
$m_{2} v_{2}$ proiettile

Reazione vincolare

Reazione vincolare o reazione normale: "resistenza" esercitata dal tavolo sul corpo che impedisce al corpo di cadere al suolo

Reazione vincolare

La reazione vincolare permetterà di spiegare perché i dossi rallentano le macchine in corsa. E inoltre spiega la possibilità di fare il "giro della morte"

Reazione vincolare o reazione normale: "resistenza" esercitata dal tavolo sul corpo che impedisce al corpo di cadere al suolo

Gas e pressione

Cos'è la pressione ?
E' la forza esercitata da tutte le molecole di un liquido o gas sulle pareti del recipiente in cui si trova

(a)

successo ??
(b)

Fluidi e pressione

Martinetto idraulico per sollevare corpi molto pesanti attraverso l'applicazione di una pressione su un fluido

$$
F_{1}=F_{2} \cdot \frac{A_{1}}{A_{2}}
$$

Diltazione termica

Cosa è successo a questi binari ? Tutti i corpi modificano le proprie dimensioni in seguito a una variazione della loro temperatura

Energia

L’energia si trasforma da una forma ad un'altra, non si distrugge

- l'energia di un corpo in movimento (energia cinetica $=1 / 2 \mathrm{mv}^{2}$) si può trasformare in energia termica (per attrito)
- oppure si può trasformare in energia elettrica (centrali idroelettriche che sfruttano il movimento dell'acqua per produrre elettricità)
- oppure l'energia chimica della combustione si può trasformare in energia cinetica (automobile)

Energia

Se crediamo a questa "legge di conservazione dell'energia" allora come spieghiamo il bungeejumping ?

Cioè, come spieghiamo che, "dal nulla", una persona possa acquistare una grande velocità, ossia energia cinetica ?

Dobbiamo assumere l'esistenza di un'altra "forma" di energia, che si trasforma in energia cinetica: l’energia potenziale

Essa è un’energia legata alla "posizione" del corpo in esame

https://www.youtube.com/watch?v=BAdDvCwkZeo

[^0]: * Distanza attraverso la quale il corpo deve cadere da fermo per raggiungere il 95% della velocità limite.

 Fonte: Adattamento da Brancazio P.J., Sport Science, Simon \& Schuster, New York 1984.

