Investigation of Systems Thinking Skills of students aged 11 to 14 years old

Sara Zanella sara.zanella2@education.unibz.it

Measurement in STEM Education (MESE1) Naples, 30-31 January, 1 February

CONTEXT

Systems Thinking Assessment (STA)

PhD thesis, validated, Rasch analysis, think aloud interview.

Cyprus Greek

Age, kind of item

Students experience supposed to be similar to italian/european student regarding the items

29 cross items 4 category: Definition of the system Interactions in the system Flows in the system Balance in the system

Abilities in the categories

[3] Κωνσταντινίδη, Κυριακή Χ. (2015)

Categoria	Abilità	Domanda
1 Definizione del sistema	1 Identificare gli elementi base del sistema.	1, 2
	2 Identificare i limiti temporali.	5, 6, 9
	3 Identificare i confini.	11, 15, 16
	4 Definire e identificare sistemi.	/
	5 Riconoscere che un sistema mostra fenome-	. /
	ni emergenti.	
2 Interazioni nel sistema	1 Riconoscere l'effetto del comportamento	17, 20
	delle parti sul comportamento di altre parti	l
	del sistema.	
	2 Riconoscere l'effetto del comportamento	3, 23, 25
	del sistema sul comportamento delle sue	ŧ
	parti.	
	3 Suggerire cambiamenti per generare com-	21, 22, 24
	portamenti specifici (riconoscere la causa	i -
	e/o le soluzioni).	
	4 Riconoscere i comportamenti del sistema	. /
	(fenomeni emergenti) come indicazioni di	Ĺ
	interazioni dentro il sistema.	
3 Flussi nel sistema	1 Riconoscere i flussi lineari dei cambiamen-	8, 18, 19
	ti di materia o di energia all'interno di un	Ĺ
	sistema.	
	2 Riconoscere i flussi circolari di materia	12, 13, 14
	all'interno di un sistema.	
4 Dinamiche nel sistema	1 Riconoscere i cicli rinforzanti (aumenta A	4, 7, 10
	\rightarrow aumenta B, aumenta B \rightarrow aumenta A).	1
	2 Riconoscere i cicli bilancianti (aumenta A	26, 27
	\rightarrow aumenta B, aumenta B \rightarrow diminuisce	•
	A).	

Systems Thinking Assessment Italia (STAI)

Systems Thinking Assessment (STA) [3] -> Systems Thinking Assessment Italia (STAI)

Sampling

Province of Trento Lower Secondary School Asked for availability to all the schools of Trentino

Fall 2020 – Spring 2021

Table: selected sample

Table: number of test collected in 9 schools

Grade	Participants
1	509
2	251
3	306
All	1066

Grade	Age	Male *	Female *	Numerosity
1	11-12	123	117	240
2	12-13	118	114	232
3	13-14	123	114	237
All	11-14	364	345	709

* Based on residents in Province of Trient on 1st January 2021 (GeoIstat)

Analysis

Rasch analysis Anova of the abilities of the students Anova of the difficulty of the items Response frequency analysis

Rasch analysis: STAI test reliability

How well the model fits the actual value?

Person Reliability	0,734
Item Reliability	0,754

R > 0,7

* Software Jamovi, SnowIRT module

[2] Boone W. J. (2020) [4] Testa I. et al (2020). Students' answers show more or less randomness than expected?

Domanda	Infit	Outfit	Domanda	Infit	Outfit
I1	0.974	1.009	I15	1.042	1.048
I2	0.983	0.962	I16	0.982	0.989
I3	1.080	1.118	I17	0.898	0.880
I4	1.030	1.044	I18	0.975	0.970
I5	1.071	1.143	I19	1.081	1.100
I6	1.203	1.412	120	0.962	0.954
17	0.953	0.888	I21	0.936	0.858
18	0.954	0.921	122	0.974	0.969
19	0.949	0.942	123	1.056	1.067
I10	1.013	1.018	I24	0.958	0.954
I11	1.097	1.209	125	0.946	0.933
I12	0.968	0.959	126	0.937	0.930
I13	1.065	1.133	127	0.928	0.919
I14	0.949	0.885			

 0,7 < MNSQ (Infit, Outfit) < 1,3 [predicibility, variability]

Item and Person

Rasch analysis

Anova of the abilities of the students

Groups		Numerosity
	All	709
G ₁	First grade	240
G ₂	Second grade	232
G ₃	Third grade	237

The **null hypothesis** for the calculation of variance predicts that all group averages are equal ($\mu_1 = \mu_2 = \mu_3$), i.e. that there is no variability between the first, second and third classes.

The **alternative hypothesis** is that at least one mean is different.

The aim is therefore to test whether the variability within (**within the class group**) depends only on chance (individual differences) and whether the variability between (**between class groups**) is the result of a different ability of the three groups G_1 , G_2 and G_3 or of the treatment.

[1] Barbaranelli C. (2010).

Anova of the abilities of the students

$$F = \frac{S_{between}^2}{S_{within}^2} = 16,7$$
 (p-value <0,001)

Significative differences between at least two groups

Tukey	Post-Hoc Test			
		G_1	G_2	G_3
G_1	Differenza della media	-	-0.187	-0.452
	p-value	-	0.048*	$<.001^{***}$
G_2	Differenza della media		-	-0.266
	p-value		-	0.002^{**}
G_3	Differenza della media			-
	p-value			-

• p<.05, ** p<.01, *** p<.001

*SPSS, Matlab

Anova of the abilities of the students: results

Students have ST competence (regarding this test) Personal experience Slight improvement from the first class to the third class Not depending from school

Proposal of activities to all grades

Anova of the difficulty of the items

Aspects	Numerosity (!)
All	27
Definition of the system	8
Interactions in the system	8
Flow in the system	6
Dynamics in the system	5

The **null hypothesis** for the calculation of variance predicts that all averages are equal ($\mu_1 = \mu_2 = \mu_3 = \mu_4$), i.e. that there is no variability between them.

The **alternative hypothesis** is that at least one mean is different. The aim is therefore to test whether there is variability within, i.e. whether questions of different difficulty can be identified within the category.

The variability between can provide information regarding the difficulty of the categories (which categories are more difficult and which are easier).

Anova of the difficulty of the items

Interval – Independence –	Normality –	Homogeneity
---------------------------	-------------	-------------

Media	-0.30	
Mediana	-0.30	
Media-Mediana	0.00	
Skewness (asimmetria)	0.29	-1 <s<+1< td=""></s<+1<>
Std err Skewness	0.45	
Skewness/Std err Skewness	0.65	-2 <se<+2< td=""></se<+2<>
Kurtosis	-0.66	-7 <k<+7< td=""></k<+7<>
Std err Kurtosis	0.87	

Aspetto	Varianza (S^2)
Totale	0.872
Definizione	1.130
Interazione	0.661
Flusso	1.064
Dinamiche	0.154
	p-value (significatività)
Test di Levene	0.184

p-value > 0,05

		Def	Int	Flu	Din
Def	Differenza della media	-	0.754	0.621	1.233
·	p-value	-	0.356	0.582	0.103
Int	Differenza della media		-	-0.133	0.479
	p-value		-	0.993	0.785
Flu	Differenza della media			-	0.612
	p-value			-	0.677
Din	Differenza della media				-
	p-value				-

* p<.05, ** p<.01, *** p<.001

Low significance

$$F = \frac{S_{between}^2}{S_{within}^2} = 2,104 \text{ (p-value=0,127)}$$

*SPSS, Matlab

Anova of the difficulty of the items: results

Differences due to the within variance Test not able to discriminate categories Need to re-do the analysis

Response frequency analysis

NOTIONS in SYSTEMS THINIKING

Elements in a system **Emerging elements** Time frame Boundary Space frame Mechanism and system Interactions Polarity Intensity Non-linearity **Future prediction** In flow Out flow Flow intensity **Reinforcing** loop **Balancing** loop

THANK YOU FOR YOUR ATTENTION

Sara Zanella sara.zanella2@education.unibz.it

Investigation of Systems Thinking Skills of students aged 11 to 14 years old.

Bibliography

[1] Barbaranelli, C. (2010). Analisi dei dati. Tecniche multivariate per la ricerca psicologica e sociale. Edizioni universitarie di lettere economia diritto.

[2] Boone, W. J. (2020). Rasch Basics for the Novice. Rasch Measurement. Application in Quantitative Educational Research (pp. 9-30). Springer.

[3] Κωνσταντινίδη, Κυριακή Χ. (2015): Ανάπτυξη και ερευνητική επικύρωση ενός δοκιμίου αξιολόγησης της συστημικής σκέψης παιδιών ηλικίας 10-14 χρόνων. Konstantinidi, K. (2015). Development and research validation of a test system for assessing systemic thinking in children aged 10-14 years. [Doctoral dissertation, University of Cyprus]. Gnosis Institutional Repository.

[4] Testa, I., Capasso, G., Colantonio, A., Galano, S., Marzoli, I., Scotti, U. d. U., and Serroni, G. (2020). Validation of University Entrance Tests Through Rasch Analysis. Rasch Measurement. Application in Quantitative Educational Research (pp. 99 124). Springer.