

DISP

Mathematics achievement at the end of upper secondary school during COVID-19 pandemic: insights from the INVALSI national assessment

Marta Desimoni, Nicoletta Nolli
Cristina Lasorsa, Rosalba Ceravolo, Alessia Mattei
INVALSI

OUTLINE

1. "Measuring" mathematics achievement at the end of secondary upper school: the INVALSI computer based assessment
2. A cohort analysis on INVALSI data: longitudinal predictors of mathematics achievement in the COVID-19 era.

conceptually defined by the INVALSI Theoretical Framework (INVALSI, 2018), in line with the National Guidelines, as well as with the main results of research findings in mathematics education, and is characterized by

Latent
variable (construct)
\checkmark "vertical" continuity (across school grades)
\checkmark "transversal" continuity (common knowledge and competences across school tracks)
operationalized through a Rasch-model-based item bank, administered through computer-based test.

The INVALSI item bank for Grade 13

* Content Domain:
- Numbers
- Space and Figures

"vertical" continuity

- Data and Forecasts
- Relationships and Functions
* Cognitive process:
- Knowing
- Problem Solving
- Arguing

The INVALSI item bank for Grade 13

* maintenance (M) items are about fundamental content knowledge and competences, in continuity with the goals of the lower secondary school and the first two years of the upper secondary school. For all school tracks.
* Recontextualization items (R): the mathematical situations are similar to those of grade 8 or 10 (for reference objects, contexts, etc.), but require the acquisition of new tools and new mathematical contents learned during the subsequent school years. For all school tracks;
* Items for Technical Institute (T) and/or Scientific Lyceum (S) (e.g. mathematical analysis).

Measurement in STEM Education (MESE1) Naples, 30-31 January, 1 February

"vertical" continuity

"transversal" continuity

Measurement in STEM Education (MESE1) Naples, 30-31 January, 1 February

An Item Bank is a large collection of test items systematically classified and stored with their associated information (metadata).

In a Rasch item bank, items are placed onto a common underlying linear scale, so that different subsets of these items produce interchangeable measures (Wolfe, 2000).

Measurement in STEM Education (MESE1)
DISP $=$ (1)

Measurement in STEM Education (MESE1)
Naples, 30-31 January, 1 February

The mathematics proficiency scale - G13

Students' locations along the latent variable continuum are described by:
\checkmark numerical scores, which quantifies «how much» of the measured latent variable is present.
$\checkmark 5$ levels describing the skills and proficiencies of students who attained scores that are within that particular segment of the scale. A described proficiency level "puts into words what the numerical score means" (Turner, 2014)

Person ability estimates

Item difficulty estimates

Measurement in STEM Education (MESE1) Naples, 30-31 January, 1 February

DISP

The mathematics proficiency scale - G13

Person ability
estimates

Item difficulty estimates
\checkmark allows to directly compare different cycles of administration (e.g. G13 COVID-COHORT vs G13 pre-COVID-COHORT), taking into account the linking error;
\checkmark Is not (yet) on the same metric of the INVALSI-mathematics scales of grades 8 and 10.
\checkmark does not (yet) allow to measure students' progresses across grades by comparing students locations on one common scale.

Subject	Grade	Overall Gap
2021-2019 (Unit:SD)		
Italian language (Reading)	2	0.12^{*}
Mathematics	2	-0.06
Italian language (Reading)	5	0.12^{*}
Mathematics	5	-0.06
English (Listening)	5	0.01
English (Reading)	5	0.03
Italian language (Reading)	8	-0.07^{*}
Mathematics	8	-0.18^{*}
English (Listening)	8	0.00
English (Reading)	8	0.00
Italian language (Reading)	13	-0.24^{*}
Mathematics	13	-0.23^{*}
English (Listening)	13	0.05
English (Reading)	13	0.06

* p<. 05 taking into account the Linking Error

Measurement in STEM Education (MESE1) Naples, 30-31 January, 1 February

DISP

Source: INVALSI (2021)
https://public.tabl eau.com/app/profi le/invalsi/viz/RAP PORTO2020-
2021_1626172845
0410/INIZIO

Lowest proficiency level

Highest proficiency level

G13-mathematics proficiency scale*

* a proficiency scale describes the extent to which the learner possesses the skills, knowledge and understanding that comprise the area (Turner, 2014)

Measurement in STEM Education (MESE1) Naples, 30-31 January, 1 February

AIM

Exploring individual and contextual predictors of students' mathematics achievement during the COVID-19 pandemic (Grade 13, s.y. 2020-2021), taking into account their prepandemic learning levels (Grade 10, s.y. 2017-2018).

Predictors at individual and higher levels will be considered, such as students' sociodemographic characteristics, learning environments characteristics, and an estimate of the duration of school closures in the s.y. 2020-2021.

The predictive role of students' educational aspirations and interest in mathematics are also considered in the study. We hypothesized that these constructs are consistent predictors of academic resilience across the challenging COVID-19 Pandemic period.

Our contribution:

$>$ explore the joint distribution of students' mathematics levels on the G10 maths proficiency scale and the G13 maths proficiency scale [1];
$>$ investigate predictors of students relative progresses in mathematics during pandemic through a multilevel approach [2].

	s.y. 2017-2018 (T1)	s.y. 2018-2019	s.y. 2019-2020	s.y. 2020-2021 (T2)
Cohort	Grade 10	Grade 11	Grade 12	Grade 13

> Data:
[1] INVALSI population data (G10+G13+questionnaire): Cases N=406,494 (missing=17.8\%)
[2] A random sample of schools ($\mathrm{n}=718$) from the INVALSI database (classes $=2,988$;
students $=41,388$)

Conditional distribution (\%) of G10-proficiency scale within the G13-proficiency levels - Pandemic Cohort

Level 1 - Grade 13

The student can use basic content knowledge and procedures mainly acquired in lower secondary school and, partly, at the end of the first two years of upper secondary school. Can answer simple questions using easily identifiable information. Can solve problems concerning familiar contexts that require simple procedures.

Level 2 - Grade 13

The student knows the basic mathematical concepts as outlined in the national guidelines in the first two years of upper secondary school. Can answer questions that require simple processing of available data (e.g., comparing various kinds of graphs). Can solve problems for which it is necessary to extrapolate data from the text and use mathematical knowledge acquired in previous grades (i.e., lower secondary school and the first two years of upper secondary school).

Group	Level Grade 10	Level Grade 13
L-L	Low (1-2)	Low (1-2)
L-IH	Low (1-2)	Intermediate to High (3-5)
IH-L	Intermediate to High (3-5)	Low (1-2)
IH-IH	Intermediate to High (3-5)	Intermediate to High (3-5)

MESE1
 Naples, 30-31 January, 1 February
 (1) FISICA "EITORE PANCIN"

Group
Level Grade 10
Level Grade 13
L-L
L-IH
IH-L
IH-IH

Low (1-2)
Low (1-2)
Intermediate to High (3-5)
Intermediate to High (3-5)

Low (1-2)
Intermediate to High (3-5)
Low (1-2)
Intermediate to High (3-5)

Multilevel analyses.

Outcome:

G13-mathematics ability estimate

Level 1:

- G10-mathematics ability estimate;
- sociodemographic characteristics;
- interest in mathematics;
- educational aspirations ($0=$ at maximum high-school diploma; $1=$ higher).

Multilevel analyses.

Level 2:

- G10-class average mathematics ability estimate;
- class-composition based on sociodemographic characteristics; class average interest in mathematics;
- prop. of stud.s aspiring to achieve a higher attainment level than uppersecondary school diploma.

Multilevel analyses.

Level 3:

- school tracks;
- G10-school average mathematics ability estimate;
- school-composition based on sociodemographic characteristics;
- school average interest in mathematics;
- prop. of stud.s aspiring to achieve a higher attainment level than uppersecondary school diploma.

Multilevel analyses.

Level 4: Italian Regions

$\checkmark \quad$ G10-region average mathematics ability estimate;
\checkmark Days of school closure in the school year 2020-21 (\%);
\checkmark Gross Domestic Product (GDP) per capita2018 (source: Italian National Istitute of Statistics, ISTAT);
$\checkmark \quad$ \% of NEET (young people neither in employment nor in education and training, source: ISTAT).

School closures caused by COVID-19 in Italy

Status by Country

Country

2020 Q1 2020 Q2 2020 Q3 2020 Q4 2021 Q1 2021 Q2 2021 Q3 2021 Q4 2022 Q1

Data by Country 2
Weeks fully closed
Weeks partially op

Source: UNESCO map on school closures (https://en.unesco.org/covid.19/educatio nnresponse) and UIS. March 2022
(https://data.uis.unesco.org)

Date

Status

Academic break
Closed due to COVID-19
Fully open
Partially open

Source: authors' elaboration with the data of the Bank of Italy Note (Bovini \& De Philippis, 2021) based on the Decree DPCMs and regional ordinances.

How G13 mathematics ability estimate during pandemic varies between students (within class), between classes (within school), between schools (within Region) and between Regions?

Results: Random intercept model

The 11\% of the variation in mathematics scores lies between Regions; 35\% lies within Region between schools; 10% lies between classes within school and 45\% between students.

How G13 mathematics ability estimate varies between classes (within school), between schools (within Regions), and between Regions during pandemic?

The range of values of the Region residuals (departure from the grand mean: 189.66) is from a reduction in mathematics ability estimate of 23 points to an increase of 19 points.

How mathematics ability estimate varies during Pandemic once the pre-pandemic baseline level (Mathematics-G10) is accounted for?

Results: Random intercept+fixed effect of MATH10 (GMC)

The range of values of the Region residuals (departure from the overall mean: 194.188) is from -11.8 points to +8.16 points.

Adjusting for MATH10 explains 55\% of variability in MATH13 score.
Large decline in the Region- (66\%) and School- (61\%) level. Large differences between students' mathematics level at the baseline (class-level reduction is 27%; student-level reduction is 21%)

Direct within and between effects

Centering: CWC(M)
(Brincks et al. 2017;
Yaremych, Preacher \& Hedeker, 2021)

Adjusting for L1-
L4 covariates explains 62% of variability in MATH13 score.

	Fixed Part	Estimate	SE	Contextual effect
	Intercept	198,026	3,256	
Student baseline	Maths 10	0,532	0,004 **	
	Female	-2,674	0,256 **	
	First Generation Immigrant	-4,44	0,645 **	
Student level	Second Generation Immigrant	-2,561	0,481 **	
	ESCS	0,174	0,126	
	Interest in mathematics	3,11	0,129 **	
	Educational aspiration	2,401	0,295 **	
Class level	Average Math-10	0,667	0,019 **	$0.136{ }^{* *}$
	Prop. Female	-4,725	1,156 **	-2.051
	Prop. FGIMM	3,305	3,874	7.745
	Prop. SGIMM	-2,204	3,079	0.358
	Average ESCS	0,644	0,796	0.47
	Average interest in mathematics	4,152	0,693 **	1.042
	Prop. educational aspiration	1,729	1,693	-0.671
School level	Average Math-10	0,713	0,028 **	0.046
	Scientific lyceum (vs Other Lycei)	4,891	1,721 **	
	Technical Institute	0,298	1,799	
	Vocational Institute	-7,278	2,298 **	
	Prop. Female	-8,482	2,277 **	-3.757
	Prop. FGIMM	-9,131	9,198	-12.436
	Prop. SGIMM	-7,777	6,808	-5.573
	Average ESCS	-2,131	1,357	-2.775
	Average interest in mathematics	2,644	1,602	-1.508
	Prop. educational aspiration	4,083	3,635	2.354
Region level	Math10_GMC	0,537	0,091 **	-0,176
	days of school_closure (\%): LOW	-2,509	1,6	
	days of school_closure (\%): HIGH	-5,361	1,709 **	
	NEET_C_ITALY	-0,658	0,18 **	
	GDP_C_ITALY	0,061	0,183	

Measurement in STEM Education (MESE1) Naples, 30-31 january, 1 February

Conclusions

> The overall differences between pre-pandemic and pandemic cohorts in Italy suggest a pandemic achievement gap in mathematics at the end of upper secondary school (INVALSI,2022; Bazoli, Marzadro, Schizzerotto \& Vergolini., 2022);
> Considering low-performers starting points (G10) in a longitudinal perspective, it emerges that although most of G13 low performers were already struggling with mathematics, about one out three moved from intermediate-high (G10 scale) to lowest levels (G13 scale).
> More encouraging results are those from another subgroup of pandemic-cohort students who maintained intermediate to high performance in mathematics (with respect to G10 and G13 scales), suggesting positive patterns of adaptation in the context of adversity due to the COVID-19 crisis.
> Future perspective: vertical scaling for monitoring progresses across upper secondary school by using a common vertical scale.

Conclusions

> Multilevel approach allows to depict an overview of the relevance of different variables in supporting students' relative progresses in mathematics during pandemic:
\checkmark socioeconomic and cultural background seems to play a minor role in predicting students' progresses from G10 to G13. However, students ESCS might play an indirect effect through other covariates and over the previous grades;
\checkmark within classes, being a student with an immigrant background and being a female is associated with relative smaller progresses in mathematics from G10 to G13 during pandemic; contextual effects also emerged for class-average baseline level;
\checkmark interest in mathematics and educational goals students set for themselves act a key role in predicting students' relative progresses in mathematics (protective factors) in the context of adversity due to the COVID-19 crisis and might be eligible target variables for intervention programs.
\checkmark Regions showing a higher disengagement of young people from the process of entering adult life, the labour market, and the possibility of accessing it through education or training (Bynner and Parsons, 2002) are more likely to report lower progresses in mathematics during pandemic, even when the Regions' school closure duration is accounted for.

Measurement in STEM Education (MESE1)

Naples, 30-31 January, 1 February

Thank you

 for
your attention

"The ability to adapt well in the face of hard times is a valuable skill for young adults. The good news is that resilience is something that can be learned" (APA, 2020).

