CLUSTERING EDUCATIONAL DATA: A HIGH SCHOOL STUDENTS' PERFORMANCE ANALYSIS

Matteo Farnè and Gioia Taraborrelli Department of Statistical Sciences, University of Bologna

Measurement in STEM Education (MESE1)

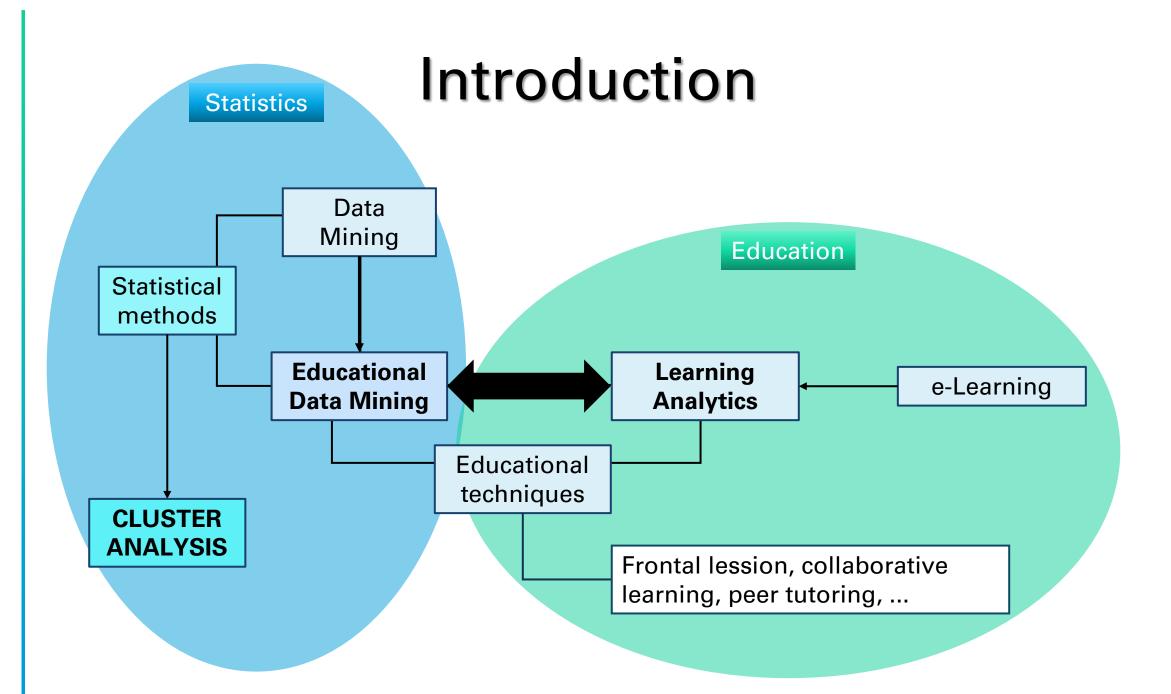
Napoli, 30-31 January 2023

Introduction

- ✓ <u>Aim of the research</u>: clustering students' performance through time using statistical methods for data mining.
- ✓ Statistical methods for educational data may have multiple purposes, which may be grossly divided in two macrocategories: uncovering hidden patterns from educational data, or measuring how and how much students learn.

✓ The first purpose is described by the label EDUCATIONAL DATA MINING, the second by the label LEARNING ANALYTICS.

Farnè, M.; Taraborrelli, G. (2023). Come sfruttare gli Educational Data? Un inquadramento di usi e metodologie di analisi. Induzioni, 62/63, 1-2, forthcoming.



Educational Data Mining

«Educational Data Mining is an emerging discipline, concerned with developing methods for exploring the unique and increasingly **large-scale data** that come from educational settings and using those methods to **better understand students**, **and the settings** which they learn in» (<u>https://educationaldatamining.org/</u>)

Some of the **Data Mining methods** applied in EDM (Villanueva et al., 2018):

- Markov Chains
- Classification algorithms
- Cluster Analysis
- Bayesian networks
- Association rules
- Linear regression

Main stakeholders in EDM (Romero, Ventura, 2010):

- Students
- Tutors and educators
- Researchers
- Schools and universities
- Organizations and administrators

Villanueva, A.; Moreno, L. G.; Salinas, M. J. (2018). Data mining techniques applied in educational environments: Literature review. Digital Education Review - Number 33, June 2018.

> Romero, C.; Ventura, S. (2010). Educational Data Mining: A Review of the State-of-the-Art. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews. 40(6), 601-618.

Educational Data Mining

Student model: how does a typical student learn?

Domain model: how is a specific subject typically learnt?

- ✓ Develop tailor-based student learning.
- ✓ Identify different student types.
- ✓ Stimulate students in a better way.
- ✓ Improve study materials.
- ✓ Personalize and monitor the learning experience.
- ✓ **Improve** efficiency and effectiveness.

Villanueva, A.; Moreno, L. G.; Salinas, M. J. (2018). Data mining techniques applied in educational environments: Literature review. Digital Education Review - Number 33, June 2018.

> Romero, C.; Ventura, S. (2010). Educational Data Mining: A Review of the State-of-the-Art. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews. 40(6), 601-618.

Educational Data Mining (Villanueva et al., 2018)

Technique \ Domain	Dropping out or Retention Analysis	VLO or VLE Analysis	Performance and students evaluation Analysis	Generation of Educational Recommendations	Learning pattern Identification	Students patterns Identification	Students related Prediction
Correlation Analysis	5	1				1	
Decision Trees	5	3	8	2	2	6	2
Regression Trees			1	2 O			
Markov Chains				1			
Classification	4	2	4		3	1	3
Clustering		7	3	5	3	9	2
Differential Sequence Mining						1	
Sequential Patterns		4	1	1	7	3	2
Bayesian Networks		2	1		1	1	6
Neural Networks	1	2	2	5 2	1		5
Association rules		8	1	7	14	9	1
Linear regression					1	5	1

Learning Analytics

«Learning Analytics (LA) is defined as the process of **analyzing educational data** which includes the measurement, collection, analysis and reporting of data on students and the school context, to **understand** and **optimize learning** and environment in which they learn» (Lang et al., 2017)

Learning Analytics methods **fit** (Reimann, 2016):

- High volume data
- Longitudinal data
- Data from different sources
- Data from different levels of learning (during time)

Most used methods in LA (Avella et al., 2016):

- Data visualization techniques
- Social Network Analysis
- Predictive Models
- Cluster Analysis
- Relationship Mining
- Discovery with Models

Lang, C., Siemens, G., Wise, A., & Gasevic, D. (2017). Handbook of learning analytics. SOLAR, Society for Learning Analytics and Research. New York, NY: SOLAR In Romero, C.; Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. WIREs Data Mining Knowl Discov. 2020;10:e1355.

> Reimann, P. (2016). Connecting learning analytics with learning research: the role of design-based research. Learning: Research and Practice, 2(2), 130–142.

Avella, J. T.; Kebritchi, M.; Nunn, S. G.; Kanai, T. (2016). Learning Analytics Methods, Benefits, and Challenges in Higher Education: A Systematic Literature <u>Review</u>. Online Learning, Volume 20 Issue 2, June 2016.

Educational Data Mining vs. Learning Analytics

Points **in common**:

✓ Education as main application
✓ Data-intensive approaches to education research
✓ Goal of enhancing educational practice

Differences: association VS prediction

Educational Data Mining	Learning Analytics		
Automated methods to analyse data	Central role of human judgement		
Reductionist focus	Holistic focus		
Automated adaptation	Support human intervention		
Learning as a research topic	Aspects of education as a research topic		

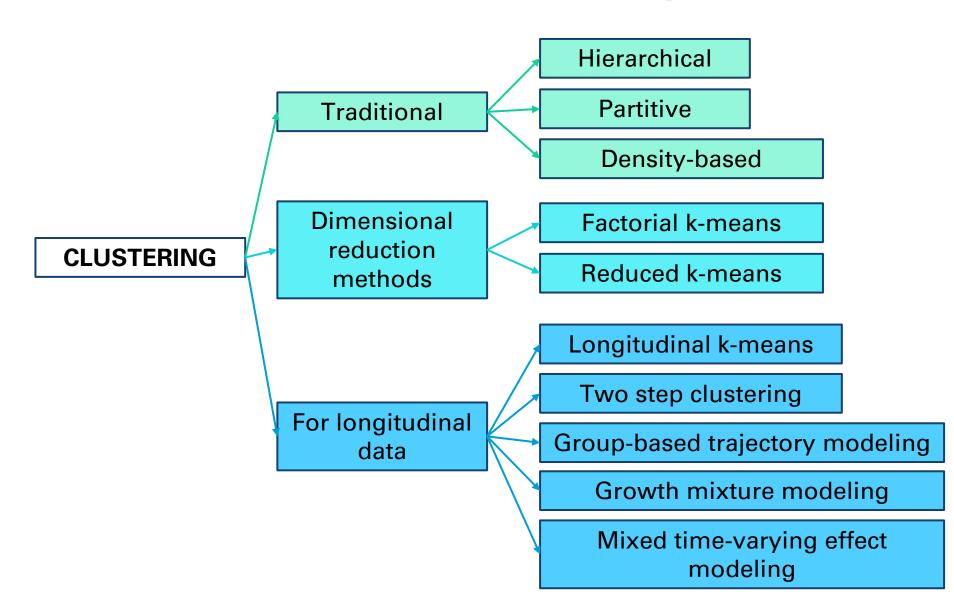
> Baker, R. S.; Inventado, P. S. (2014). Educational Data Mining and Learning Analytics. Learning Analytics (pp.61-75).

Cluster Analysis

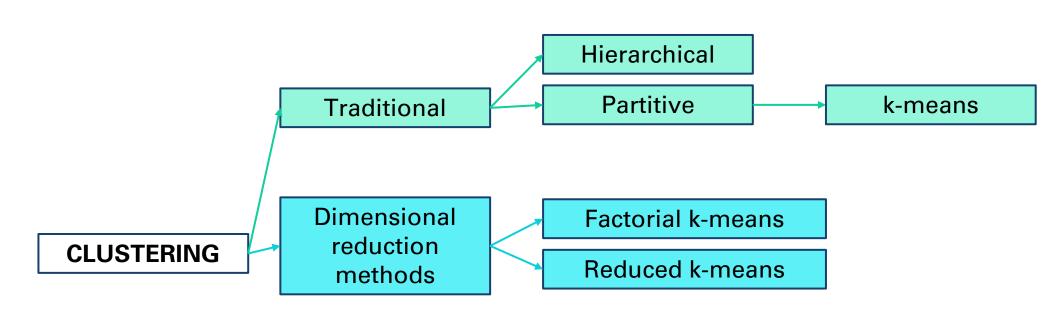
Method used for data analysis: Cluster Analysis.

«Cluster Analysis is an unsupervised learning technique aimed to group n statistical units respect to p variables in a certain number of groups, such that units which belong to the same group are similar to each other and are different to units which belong to other groups»

Cluster Analysis



Cluster Analysis



Dataset

- n = 17 students of a high school (classical studies curriculum)
- - 1st quarter of the 1st year of high school (t=1)
 - 2nd quarter of the 1st year of high school (t=2)
 - 1st quarter of the 2nd year of high school (t=3)
- p = 5 variables observed in each period (15 variables in total):
 - Grade in Maths
 - Grade in Italian
 - Grade in Greek
 - Grade in Latin
 - Hours of absence
- Analysis were carried out via R and the algorithms were applied to each sub-dataset individually.

Dataset

- n = 17 students of a high school (classical studies curriculum)
- However there was an outlier, with higher hours of absence.
 - Through trimmed k-means algorithm results were compared in each period with and without outlier, in terms of average silhouette width (ASW), which is a reliability measure of the partition of the groups obtained.
 - The outlier was removed because values of ASW were better, or at least similar, without it.
- In conclusion, n = 16 students.

Cluster Analysis techniques

- 1) Average Linkage Method (see Hastie et al., 2009)
- 2) Partitive Cluster Analysis \rightarrow k-means (MacQueen, 1967)
- 3) Reduced k-means (De Soete and Carroll, 1994)
- 4) Factorial k-means (Vichi and Kiers, 2001)

Number of groups (k)?

- ✓ k=3 groups in t=1 e t=2, k=2 in t=3 → hierarchical clustering, kmeans, reduced k-means.
- ✓ k=2 groups in each period → factorial k-means.

These methods were compared in terms of average silhouette width.

- > Hastie, T.; Tibshirani, R., Friedman, J.. (2009). *The Elements of Statistical Learning.* New York: Springer.
- > Vichi, M., & Kiers, H. A. (2001). Factorial k-means analysis for two-way data. Computational Statistics & Data Analysis, 37(1), 49-64.
- > De Soete, G., & Carroll, J. D. (1994). K-means clustering in a low-dimensional Euclidean space. In New approaches in classification and data analysis (pp. 212-219). Springer Berlin Heidelberg.
- J. B. MacQueen (1967): Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1:281-297

Results

- Membership were identical in t=1 and t=2 using average linkage, k-means and reduced k-means;
- Membership were identical using k-means e reduced kmeans (which represents a generalization of the first method);
- Average linkage generates groups with an unbalanced numerosity in t=3 (2nd year);
- Using factorial k-means the structure of data is not understood→ forced interpretation of membership of the groups. This was confirmed by the low values of ASW.

Results

- Average linkage method → partition in t=3 has an unbalanced number of members per group.
- Factorial k-means is a method too complex to be applied to the sub-datasets, which were composed of few observations (n=16) and few variables (x=5) for each subdataset.

Average linkage method - partitions

Membership in t=1 and t=2 are the same:

<u>Group 1</u> (n=9)→ students with fairly good grades overall (no failures) and many hours of absence <u>Group 2</u> (n=4) → students with high grades overall and few hours of absence <u>Group 3</u> (n=3) → students with low grades overall

and many hours of absence

Membership in t=3:

<u>Group 1</u> (n=14) \rightarrow students with few hours of absence, higher grades in Maths and Italian, lower grades in Greek and Latin <u>Group 2</u> (n=2) \rightarrow students with many hours of

absence, lower grades in Maths and Italian, higher grades in Greek and Latin

ID	Membership t=1	Membership t=2	Membership t=3
ERSA	1	1	1
LIRI	2	2	1
MABE	3	3	1
TIRA	1	1	1
TITE	1	1	1
DOCI	2	2	1
CERI	1	1	1
PITA	3	3	1
AMSA	2	2	1
NORA	2	2	1
MANA	1	1	2
BENE	1	1	1
RIRE	1	1	1
RECI	1	1	2
ETNI	3	3	1
DEAV	1	1	1

K-means clustering - partitions

Membership in t=1 and t=2 are the same:

<u>Group 1</u> (n=9) \rightarrow students with fairly good grades overall (no failures) and many hours of absence <u>Group 2</u> (n=4) \rightarrow students with high grades overall and few hours of absence <u>Group 3</u> (n=3) \rightarrow students with low grades overall

and many hours of absence $(n=3) \rightarrow students with low grades overall$

Membership in t=3:

<u>Group 1</u> (n=7) \rightarrow students with many hours of absence, lower grades in Maths and Italian, higher grades in Greek and Latin <u>Group 2</u> (n=9) \rightarrow students with few hours of absence, higher grades in Maths and Italian and lower grades in Greek and Latin

ID	Membership t=1	Membership t=2	Membership t=3
ERSA	1	1	2
LIRI	2	2	2
MABE	3	3	1
TIRA	1	1	2
TITE	1	1	2
DOCI	2	2	2
CERI	1	1	1
PITA	3	3	1
AMSA	2	2	2
NORA	2	2	2
MANA	1	1	1
BENE	1	1	1
RIRE	1	1	1
RECI	1	1	1
ETNI	3	3	2
DEAV	1	1	2

Reduced k-means – partitions

Membership in t=1 and t=2 are the same (dimension = grade point average):

<u>Group 1</u> (n=9) \rightarrow students with fairly high grades overall

<u>Group 2</u> (n=4) \rightarrow students with high grades overall <u>Group 3</u> (n=3) \rightarrow students with loe grades

Membership in t=3 (dimension = level of ability in basic subjects, i.e. Maths and Italian):

<u>Group 1</u> (n=9) → students with higher grades in basic subjects and lower grades in Greek and Latin <u>Group 2</u> (n=7) → students with lower grades in basic subjects and higher grades in Greek and Latin

Notice that the results are the same of k-means algorithm (in t=3 groups are inverted).

ID	Membership t=1	Membership t=2	Membership t=3
ERSA	1	1	1
LIRI	2	2	1
MABE	3	3	2
TIRA	1	1	1
TITE	1	1	1
DOCI	2	2	1
CERI	1	1	2
ΡΙΤΑ	3	3	2
AMSA	2	2	1
NORA	2	2	1
MANA	1	1	2
BENE	1	1	2
RIRE	1	1	2
RECI	1	1	2
ETNI	3	3	1
DEAV	1	1	1

Factorial k-means – partitions

Membership in t=1 (dimension = level of ability in basic subjects, i.e. Maths and Italian):

<u>Group 1</u> (n=11) \rightarrow students with heterogeneous performance

<u>Group 2</u> (n=5) \rightarrow students with higher grades in Maths and Italian

Membership in t=2 (dimension = grade point average):

<u>Group 1</u> (n=8) \rightarrow students with medium-low grades <u>Group 2</u> (n=8) \rightarrow students with higher grades (no failures

Membership in t=3 (dimension = difficulty in Latin):

<u>Group 1</u> (n=10) \rightarrow students with very low grades in Latin (with two exceptions however)

<u>Group 2</u> (n=6) \rightarrow students with failures only in Latin

ID	Membership t=1	Membership t=2	Membership t=3
ERSA	1	1	2
LIRI	1	2	1
MABE	1	1	1
TIRA	2	1	1
TITE	2	2	1
DOCI	1	2	1
CERI	1	1	2
PITA	1	1	2
AMSA	1	2	2
NORA	1	2	1
MANA	2	1	1
BENE	1	2	1
RIRE	2	2	1
RECI	2	1	2
ETNI	1	1	1
DEAV	1	2	2

Conclusions

- The most acceptable and understandable results were obtained through reduced k-means and k-means in terms of ASW because these methods understood better data structure (few observations and few variables).
 - ➢ Groups seem to compact from the 1st year to the 2nd year of high school → from k=3 to k=2.
 - Moreover, RKM highlights the presence of a latent dimension which justifies the obtained partition, namely, the ability in basic subjects.

Ideas for future:

- Use other (**dynamic**) statistical methods to analyse educational dataset;
- Measure the impact of teaching methodologies alternative to frontal lession, like machine-learning based ones;
- Repeat the analysis considering the whole year, and not quarters, as period of time, and gather more variables.