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3MATHEMATICAL LITERACY

Definition
Mathematical literacy is an individual’s capacity to identify and
understand the role that mathematics plays in the world, to make
well-founded judgements and to use and engage with mathematics in
ways that meet the needs of that individual’s life as a constructive,
concerned and reflective citizen (OECD/PISA, 2003)
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4MATHEMATICAL LITERACY

Mathematical literacy has received increasing attention in
many countries over the last few years:

I driven by concerns of employers that too many students leave
school unable to function mathematically at the level needed in
the modern world of work

I it is increasingly recognised that people can only tackle many of
the challenges of modern life effectively if they are
mathematically literate in key areas (planning in personal
finance, assessment of risk, design in the home or on the
computer screen, and critical appraisal of the flood of statistical
information from advertising, politicians and the press (Steen,
Turner, Burkhardt, 2007)
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5FACTORS AFFECTING THE LEARNING PROCESS

In educational research, exploring if and how individual
characteristics and contextual factors relate to learning outcomes is
considered of great interest in order to deal with inequality issues
(Costanzo, Desimoni, 2017):

I gender differences and the impact of students’ socioeconomic conditions on
learning achievement explored by international comparative studies (IEA, OECD,
NAEP).

I the relationship between educational outcomes and other predictors, e.g.
children preschool attendance and psychological factors, such as attitudes,
students’ self-engagement and self-belief, has been largely explored in
large-scale assessment studies
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6FACTORS AFFECTING THE LEARNING PROCESS

The results achieved by each student are affected by different
components:
I The outcomes of the learning-teaching process
I Some individual characteristics of the student (gender, the field

of study attended, regularity in studies, the
economic-social-cultural context of the family of origin, etc.)

I The environment in which they live (geographical area of
residence, the economic-social-cultural context of the school,
etc.)



AIM
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7AIM OF THE TALK

Exploring the impact of student characteristics and social context on
mathematical literacy highlighting heterogeneity:
I unobserved
I territorial
I context

High heterogeneity is often more realistic for modeling the messy real
world and may give better results or identify subpopulations
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8AIM OF THE TALK

Identification of group effects in a regression model
I Unsupervised approach
I Supervised approach
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8AIM OF THE TALK

Identification of group effects in a regression model
I Unsupervised approach
I Supervised approach

Methodological framework:

Quantile regression (QR)

(Koenker R., Basset G. 1978)
(Koenker R. 2005)

(Koenker R. quantreg R package 2018)
(Davino C., Furno M., Vistocco D. 2013)

(Furno M., Vistocco D. 2018)
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9HANDLING HETEROGENEITY AMONG UNITS

Identification of group effects in a regression model

I Unsupervised approach
I Supervised approach

CLUSTERING & MODELING:
Identifying a typology in a dependence model

I Identifying groups of units characterized by similar dependence
structures

I Discovering the best model for each group

I Testing differences among groups
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10HANDLING HETEROGENEITY AMONG UNITS

Identification of group effects in a regression model

I Unsupervised approach
I Supervised approach

Research questions?

I How to identify unobserved heterogeneity?
I How to partition the units according to the dependence

relationship?
I How many groups?
I What is the best model for each group?
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11HANDLING HETEROGENEITY AMONG UNITS

Identification of group effects in a regression model

I Unsupervised approach
I Supervised approach

Comparison with alternative methods

I Estimation of different models for each group
I Introduction of a dummy variable
I Multilevel modeling



INVALSI DATA
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12INVALSI MATHEMATICS TESTS

I Sample data
I 13 grade students (at the end of

upper secondary school)
I Outcome variable: ability math

score (wle_math_score)
I Factors: school, gender, age, place

of birth, regularity, origin, area, escs
(Economic, Social and Cultural
Status) index
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13FACTORS AFFECTING MATHS ABILITY: GENDER
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14FACTORS AFFECTING MATHS ABILITY:
PLACE OF BIRTH
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15FACTORS AFFECTING MATHS ABILITY:
REGULARITY OF SCHOOL CAREER
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16FACTORS AFFECTING MATHS ABILITY:
TYPE OF SCHOOL
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17FACTORS AFFECTING MATHS ABILITY:
GEOGRAPHICAL AREA
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18FACTORS AFFECTING MATHS ABILITY: REGION
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METHODOLOGICAL FRAMEWORK
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Methodological framework
Quantile Regression
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20QUANTILE REGRESSION

QR has become a popular alternative to least squares regression for
modeling heterogeneous data

Mosteller and Tukey (1977)

What the regression curve does is give a grand summary for the
averages of the distributions corresponding to the set of X’s.
We could go further and compute several different regression curves
corresponding to the various percentage points of the distributions
and thus get a more complete picture of the set.
Ordinarily this is not done, and so regression often gives a rather
incomplete picture. Just as the mean gives an incomplete picture of a
single distribution, so the regression curve gives a correspondingly
incomplete picture for a set of distributions.

(Koenker R W and Basset G, Regression Quantiles. Econometrica 46(1), 1978)
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21QUANTILE REGRESSION

I QR gained popularity in applied economics by the end of the
90’s, when people realize the importance of heterogeneity

I Application fields:
I astrophysics
I chemistry
I ecology
I economics
I finance
I food science
I genomics
I medicine
I meteorology
I sociology
I marketing



Davino | Romano | Vistocco | Modeling heterogeneity

22CLASSICAL VS QUANTILE REGRESSION

Classical linear regression
(conditional expected value)
estimation of the conditional mean of a response variable (Y) as a function of a set X of
predictor variables

Quantile regression
(conditional quantiles)
estimation of the conditional quantiles of a response variable (Y) as a function of a set
X of predictor variables
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Classical linear regression
(conditional expected value)
estimation of the conditional mean of a response variable (Y) as a function of a set X of
predictor variables

Quantile regression
(conditional quantiles)
estimation of the conditional quantiles of a response variable (Y) as a function of a set
X of predictor variables
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23QUANTILE REGRESSION

QR allows to handle:

I heteroscedasticity
I skewness
I kurtosis
I outliers in Y

QR:

I generalizes univariates quantiles for conditional distributions
I analyses regressor effects on the whole dependent variable
I is equivariant to monotone transformations distribution

(Koenker R., Basset G. 1978) (Koenker R. 2005)

(Davino C., Furno M., Vistocco D. 2013) (Furno M., Vistocco D. 2018)
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24QUANTILE REGRESSION MODEL

yi = xiβ(θ) + εi(θ)

Qθ(ŷ|X) = Xβ̂(θ)

where
I xi a generic row of the regressor matrix X
I y: dependent variable
I 0 < θ < 1: a generic quantile
I Qθ(.|.): conditional quantile function
I ε: error term such that Qθ(ε|X) = 0.

Interpretation

β̂i (θ) =
∂Qθ(y|X)
∂xi

Rate of change in the θth quantile of the dependent variable distribution for a one-unit change in the
value of the i th regressor, taking constant all the other regressors



MAIN RESULTS
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25AIM OF THE TALK

Exploring the impact of student characteristics and social context on
mathematical literacy highlighting heterogeneity:
I unobserved
I territorial
I context

Identification of group effects in a regression model

I Unsupervised approach
I Supervised approach
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26AIM OF THE TALK

Exploring the impact of student characteristics and social context on
mathematical literacy highlighting heterogeneity:
I unobserved
I territorial
I context

Identification of group effects in a regression model

I Unsupervised approach
I Supervised approach
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27THE MAIN STEPS OF THE UNSUPERVISED
APPROACH

1. Identification of the global dependence structure

2. Identification of the best model for each unit

3. Clustering units

4. Modeling groups

5. Testing differences among groups
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28BASIC NOTATION

The data structure
I n units
I p regressors
I 1 quantitative or ordinal dependent variable
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I p regressors
I 1 quantitative or ordinal dependent variable
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The data structure
I n units
I p regressors
I 1 quantitative or ordinal dependent variable
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31THE PROPOSED APPROACH

1.Identification of the global dependence structure

Qθ(ŷ|X) = XB̂(θ) θ = 1, . . . , k

2.Identification of the best
model for each unit
I estimated values

Ŷ = XB̂(θ)

I best model identification
θbest

i : argmin
θ=1,...,k

|yi − ŷi(θ)|

I best estimates identification
ŷbest
θ
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32INVALSI RESULTS

1. Global estimation
Qθ(ŷ|X) = XB̂(θ)

2. Identification of the best
model for each unit

1. estimated values
Ŷ = XB̂(θ)

2. best model identification
θi : argmin

θ=1,...,k
|yi − ŷi(θ)|

3. best estimates identification
ŷbest
θ
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32INVALSI RESULTS

1. Global estimation
Qθ(ŷ|X) = XB̂(θ)

2. Identification of the best
model for each unit

1. estimated values
Ŷ = XB̂(θ)

2. best model identification
θi : argmin

θ=1,...,k
|yi − ŷi(θ)|

3. best estimates identification
ŷbest
θ

Distribution of the dependent variable: observed

(left panel), LS estimated (middle panel), best QR

estimated (right panel)
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33THE PROPOSED APPROACH

3. Clustering units

I finding the best partition of
the θbest vector

I identification of the group
reference quantile
gθ

best , for g = 1,G
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343. CLUSTERING UNITS

Finding the best partition of the θbest vector

I θbest is partitioned into D groups (e.g. according to the deciles)
I identification of a reference quantile for each of the D groups:

dθ
best

=

∑nd
i=1 θ

best
i

nd

(d = 1, . . . ,D)
I estimate D quantile regression models with
θ =

[
1θ

best
, . . . ,D θ

best
]
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35INVALSI RESULTS

3. Clustering units

Finding the best partition of the θbest vector: a solution

I θbest is partitioned according to its deciles (d = 1, . . . ,D)

θ−best
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36INVALSI RESULTS

3. Clustering units

Finding the best partition of the θbest vector

I θbest is partitioned according to its deciles (d = 1, . . . ,D)
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37INVALSI RESULTS

3. Clustering units

Finding the best partition of the θbest vector

I identification of a reference quantile for each of the D groups:
quantile dθ

best

0.1 0.053
0.2 0.159
0.3 0.264
0.4 0.371
0.5 0.470
0.6 0.570
0.7 0.670
0.8 0.770
0.9 0.864

I estimate D quantile regression models
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383. CLUSTERING UNITS

Finding the best partition of the θbest vector

I test whether the slopes of pairs of consecutive models are
identical

Joint Test of Equality of Slopes
Koenker R.W. and Basset G. 1982 Robust tests for heteroscedasticity based on regression

quantiles. Econometrica 50(1)

I group units if their reference quantiles do not provide significantly
different coefficients

I identification of the group reference quantile
gθ

best , for g = 1,G
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39HETEROSCHEDASTICITY TEST

Qθi (ŷ|x) = β̂0(θi) + β̂1(θi)x
Qθj (ŷ|x) = β̂0(θj) + β̂1(θj)x

H0 : β1(θi) = β1(θj)

Test Statistic:

T =

[
β̂1(θi)− β̂1(θj)

]2

var
[
β̂1(θi)− β̂1(θj)

] ∼ χ2
1gdl (1)

where var
[
β̂1(θi)− β̂1(θj)

]
=

var
[
β̂1 (θi)

]
+ var

[
β̂1 (θj)

]
− 2cov

[
β̂1 (θi) β̂1 (θj)

]
A possible solution to estimate var

[
β̂1(θi)− β̂1(θj)

]
: bootstrap
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40INVALSI RESULTS

3. Clustering units

Finding the best partition of the θbest vector

I sequentially test if the slope coefficients of the models are
identical

quantile dθ
best p-value

0.1 0.053 0.008
0.2 0.159 0.092
0.3 0.264 0.102
0.4 0.371 0.151
0.5 0.470 0.006
0.6 0.570 0.002
0.7 0.670 0.193
0.8 0.770 0.000
0.9 0.864 0.127
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41INVALSI RESULTS

3. Clustering units

Finding the best partition of the θbest vector

I group units if their reference quantiles provide not significantly
different coefficients

quantile dθ
best p-value group ng

0.1 0.053 0.008 1 898
0.2 0.159 0.092 2 3548
0.3 0.264 0.102
0.4 0.371 0.151
0.5 0.470 0.006
0.6 0.570 0.002 3 876
0.7 0.670 0.193
0.8 0.770 0.000 4 1882
0.9 0.864 0.127 5 1946
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42INVALSI RESULTS

3. Clustering units

Finding the best partition of the θbest vector

I identification of the group reference quantile
quantile dθ

best p-value group ng gθbest

0.1 0.053 0.008 1 898 0.053
0.2 0.159 0.092 2 3548 0.305
0.3 0.264 0.102
0.4 0.371 0.151
0.5 0.470 0.006
0.6 0.570 0.002 3 876 0.554
0.7 0.670 0.193
0.8 0.770 0.000 4 1882 0.705
0.9 0.864 0.127 5 1946 0.903
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43THE PROPOSED APPROACH

4. Modeling groups

Qθ(ŷ|X) = XB̂(gθ
best)

5. Testing differences among groups

I Testing if all the slope coefficients of the groups are identical
I Separate testing on each slope coefficient

Koenker R.W. and Basset G. 1982 Robust tests for heteroscedasticity based on regression

quantiles. Econometrica 50(1)
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44INVALSI RESULTS

Step 4: Modeling groups

QR coefficients with group effects

Variable OLS G1 G2 G3 G4 G5
θ = 0.053 θ = 0.305 θ = 0.554 θ = 0.705 θ = 0.903

(Intercept) 213.67 145.82 205.22 222.53 216.38 248.64
technical institute -30.08 -26.95 -28.45 -28.20 -31.85 -37.48
other lyceum -32.99 -29.94 -31.23 -32.22 -34.11 -38.24
professional institute -54.03 -49.31 -48.57 -52.42 -54.35 -64.48
male 11.03 6.10 8.73 11.98 14.36 16.57
age 0.22 1.59 -0.13 -0.07 0.89 0.35
birth_Italy 3.31 3.33 2.38 -0.18 0.11 6.31
regular career 12.45 8.89 12.30 14.12 15.67 12.45
foreigner -1.79 -2.76 -4.08 -3.57 -1.76 1.48
centre -14.54 -13.83 -15.01 -14.64 -15.34 -11.30
south-islands -30.91 -26.91 -30.92 -31.52 -32.37 -31.12
escs 3.16 1.31 2.45 3.04 3.83 4.35
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45STEP 4: MODELING GROUPS

Group 1

Observed and estimated response distributions using the reference quantile of G1
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46STEP 4: MODELING GROUPS

Group 2

Observed and estimated response distributions using the reference quantile of G2
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47STEP 4: MODELING GROUPS

Group 3

Observed and estimated response distributions using the reference quantile of G3
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48STEP 4: MODELING GROUPS

Group 4

Observed and estimated response distributions using the reference quantile of G4
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49STEP 4: MODELING GROUPS

Group 5

Observed and estimated response distributions using the reference quantile of G5
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50STEP 5: TESTING DIFFERENCES AMONG GROUPS

Testing if all the slope coefficients of the groups are
identical
p-values

p-value
G1 vs G2 0.0003
G2 vs G3 0.0000
G3 vs G4 0.0008
G4 vs G5 0.0000

Separate testing on each slope coefficient
G1 vs G2 G2 vs G3 G3 vs G4 G4 vs G5

technical institute 0.360 0.826 0.001 0.001
other lyceum 0.397 0.317 0.061 0.017
professional institute 0.733 0.007 0.136 0.000
male 0.044 0.000 0.002 0.075
age 0.316 0.958 0.377 0.749
birth_Italy 0.849 0.364 0.890 0.040
regular career 0.219 0.369 0.395 0.233
foreigner 0.604 0.764 0.178 0.063
centre 0.444 0.724 0.439 0.003
south-islands 0.002 0.497 0.303 0.358
escs 0.074 0.169 0.048 0.403
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51RECAP & PROS

Clustering units taking into account the dependence
structure
I Estimation of the group dependence structure using the whole

sample

I Impact of the regressors on the entire conditional distribution

I Clarity of the final results

I Availability of classical inferential procedures to test differences
among groups

I Number of groups defined by the procedure

I Exact solution method
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52AIM OF THE TALK

Exploring the impact of student characteristics and social context on
mathematical literacy highlighting heterogeneity:
I unobserved
I territorial
I context

Identification of group effects in a regression model

I Unsupervised approach
I Supervised approach
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53AIM OF THE TALK

Exploring the impact of student characteristics and social context on
mathematical literacy highlighting heterogeneity:
I unobserved
I territorial
I context

Identification of group effects in a regression model

I Unsupervised approach
I Supervised approach
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54THE MAIN STEPS OF THE UNSUPERVISED
APPROACH

1. Identification of the global dependence structure

2. Identification of the best model for each unit

3. Clustering units Identification of the best model for
each group

4. Modeling groups

5. Testing differences among groups
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55SUPERVISED APPROACH

3. Identification of the best model for each group

Geographical area
θbest

South 0.378
Center 0.521
North 0.610

Gender
θbest

Female 0.466
Male 0.521

School
θbest

Scientific lyceum 0.715
Technical institute 0.490
Other lyceum 0.442
Professional institute 0.253

4. Modeling groups
5.Testing differences among groups
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56SUPERVISED APPROACH: SCHOOL DIF-
FERENCES

Step 4: Modeling groups

QR coefficients with school effects

Gprof Goth Gtech Gsci
Variable Professional inst. Other lyceum Technical inst. Scientific lyc.

θ = 0.253 θ = 0.0.442 θ = 0.490 θ = 0.715
(Intercept) 162. 71 221.52 227.84 269.42
centre -13.58 -14.03 -13.70 -13.94
south-islands -28.14 -31.15 -30.93 -32.34
male 10.63 14.01 15.17 16.36
age 0.23 -2.32 -2.41 -3.66
birth_Italy -1.80 1.83 1.01 1.52
regular career 19.08 18.40 17.38 17.82
foreigner -3.74 -1.28 -0.01 -2.69
escs 6.64 8.32 9.01 9.59
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57STEP 5: TESTING DIFFERENCES AMONG GROUPS

Testing if all the slope coefficients of the groups are
identical
p-values

p-value
Gprof vs Goth 0.002
Gprof vs Gtech 0.022
Gprof vs Gsci 0.000
Goth vs Gtech 0.468
Goth vs Gsci 0.000
Gtech vs Gsci 0.000

Separate testing on each slope coefficient
Gprof vs Gsci Goth vs Gsci Gtech vs Gsci

centre 0.290 0.335 0.218
south-islands 0.169 0.780 0.673
male 0.000 0.008 0.017
age 0.103 0.394 0.450
birth_Italy 0.659 0.814 0.937
regular career 0.358 0.409 0.191
foreigner 0.870 0.877 0.457
escs 0.001 0.264 0.453



CONCLUSIONS
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58CONCLUDING REMARKS:
BACK TO MOTIVATION

Importance of knowledge of mathematics

Mathematical competence is one of the critical skills for personal
fulfilment, active citizenship, social inclusion and lifelong learning,
both nationally and internationally. (INVALSI, 2021)

Mathematical literacy, like literacy in language, is empowering
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BACK TO MOTIVATION

QR is capable of providing a more complete, more nuanced view of
heterogeneous covariate effects (Koenker et al., 2017)
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62UNSUPERVISED APPROACH / UNOBSERVED
HETEROGENEITY
OUR CONTRIBUTIONS

- Methodological aim: identifying group effect through a quantile
regression model
- Students’performance: investigating the impact of
students’features on University outcome
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63SUPERVISED APPROACH / OBSERVED
HETEROGENEITY
OUR CONTRIBUTIONS

- Methodological aim: clustering units according to the
similarities in the dependence structure
- Consumer studies: clustering groups of consumers according
to the similarities in the dependence structure among their overall
liking and the liking for different drivers
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