

A COUNTERFACTUAL APPROACH TO THE EVALUATION OF SCHOOL POLICIES: METHODS AND MODELS OF ANALYSIS

Author

Andrea Bendinelli – INVALSI

What is the impact assessment?

The purpose of the evaluation of the effects is to verify the ability of an intervention to modify the behaviors or conditions of a specific target population in the desired direction (Martini e Sisti, 2009).

Effect **on** what

The first step is to define on which dimension (or which ones) the effects of the intervention are to be sought, therefore effect on what (**outcome variable**)

- <u>School weakness indicator:</u>

percentage of students at the lowest competence

Effect of what

Binary variable: training courses for a specific group of students

How to compute the outcome: test proficiency levels

How to compute the outcome: test proficiency levels

Dataset structure

MESE1 "MEASUREMENT IN STEM EDUCATION" NAPOLI, JANUARY 30TH – FEBRUARY 1st

	🚜 Istituto	뤍 indirizzo	💑 Grado	🔗 anno	Indicatore_difficoltà_std	🔗 Indicatore_difficoltà	💑 Trattato
1	RMIC000000	CLASSICO	9	2018	.33326	102,44	0
2	RMIC000000	LINGUISTICO	9	2018	,99954	140,63	0
3	RMIC000000	SCIENTIFICO	9	2018	,74046	69,77	0
4	RMIC000000	CLASSICO	10	2019	-,30714	102,44	0 .
5	RMIC000000	LINGUISTICO	10	2019	,30075	140,63	0
6	RMIC000000	SCIENTIFICO	10	2019	-,68754	69,77	0
7	RMIC000000	CLASSICO	13	2022	-,23409	102,44	0
8	RMIC000000	LINGUISTICO	13	2022	,33403	140,63	0
9	RMIC000000	SCIENTIFICO	13	2022	-1,04046	69,77	0
		γ]			Ļ	Ļ	
	Statistical units				Outcome	% students at levels (ita + :	lowest math)
		¥					
	3.089	Treated					
	3.998 Untreated						

Effect of a policy

MESE1 "MEASUREMENT IN STEM EDUCATION" NAPOLI, JANUARY 30TH – FEBRUARY 1ST

<u>Effect = factual – counterfactual</u>

the factual value is the observed value on the outcome variable after administration of the treatment in the treated group, while the counterfactual value is an unobserved value that can be estimated on the basis of the possibility of obtaining a control group

How do we compute the counterfactual?

The counterfactual can be constructed according to the possibility of finding:

- 1) a control group;
- 2) measurements of the outcome variable in <u>one or more periods</u> prior to the introduction of the treatment of both groups.

Difference-in-Difference

The method used, difference-in-difference (Angrist & Pischke, 2009; Keele, 2020), makes it possible to estimate the average percentage of students at the lowest proficiency levels (both Italian and maths) of the group of schools considered in the hypothesis in which wouldn't have received the treatment (counterfactual).

Difference-in-Difference one period

$y = \alpha + \beta T + \gamma P + \delta T P + \overline{\lambda} \overline{X} + \overline{\xi} T \overline{X} + \overline{\vartheta} P \overline{X}$

ATT (Average treat of treatment)

Difference-in-Difference one period - results

Coefficienti Coefficienti non standardizzati standardizzati Errore В standard Beta Sign. t (Costante) .680 ,119 5,722 <.001 ,230 2,720 ,007 Т .462 .170 Р -.025 .152 -.012 -.162 .871 -,138 ,027 -,057 -5,164 <,001 TP ESCS_istituto_cntr -,065 .029 -2,249 .025 -.026 Pct_Femmina_scu -.029 .006 -.072 -5.086 <.001 Pct_Straniero_scu .090 6,192 .014 .073 <.001 Pct_Posticipatario_scu -.093 -,200 -15,197<.001 .006 -44,218SCI -1,788.040 -,733 .000 CLA -1,720.051 -,498 -33,499 <.001 LI2 -,685 .043 -,247 -15,967<.001 LIN -25,846-1,205 .047 -,390 <.001 IT. -,890 .034 -,394 <.001 -26,481 T_SCI ,089 ,048 ,026 1,851 .064 T_CLA ,125 .063 .023 1,981 .048 T_LIN .096 .057 .091 .021 1,689 T_LI2 2,568 .134 .052 .033 .010 T_IT .162 .040 .055 4.058 <.001 P_SCI 7,339 .350 .048 .108 <.001 P_CLA ,224 .062 .047 3,641 <.001 ,282 P_LIN .056 ,067 5,052 <.001 P_LI2 .051 .205 .054 3,988 <.001 P_IT .248 .040 .084 6,270 <.001 AG 1 1 4 5 147 119 7 7 6 7 < 001

MESE1 "MEASUREMENT IN STEM EDUCATION" NAPOLI, JANUARY 30TH – FEBRUARY 1st

 $y = \alpha + \beta T + \gamma P + \delta T P + \bar{\lambda} \bar{X} + \bar{\xi} T \bar{X} + \bar{\vartheta} P \bar{X}$

INVALSI

R	R-quadrato	R-quadrato adattato	
,720ª	,518	,506	

Difference-in-Difference one period - results

Difference-in-Difference two periods

Difference-in-Difference two period - results

INVALSI

MESE1 "MEASUREMENT IN STEM EDUCATION" NAPOLI, JANUARY 30TH – FEBRUARY 1ST

	Coefficienti no	n standardizzati	Coefficienti standardizzati		
	в	Errore	Beta	t	Sign
(Costante)	405	121	2010	3 3 3 9	< 0.01
т	519	146	258	3 546	< 001
P1	235	160	111	1 467	143
P2	.210	.160	.099	1.313	.189
TP1	.036	.028	.013	1.301	.193
TP2	-,101	.028	036	-3,603	<.001
ESCS_istituto_cntr	,021	,029	,008	,703	,482
Pct_Femmina_scu	-,034	,006	-,086	-5,976	<,001
Pct_Straniero_scu	,062	,015	,051	4,220	<,001
Pct_Posticipatario_scu	-,076	,006	-,164	-12,449	<,001
SCI	-1,464	,040	-,600	-36,258	<,001
CLA	-1,486	,052	-,430	-28,845	<,001
LI2	-,600	,043	-,216	-13,962	<,001
LIN	-1,140	,047	-,369	-24,415	<,001
IT	-,725	,034	-,320	-21,609	<,001
T_SCI	,071	,042	,021	1,717	,086
T_CLA	,074	,054	,014	1,366	,172
T_LIN	,099	,049	,021	2,028	,043
T_LI2	,134	,045	,033	2,981	,003
T_IT	,155	,034	,052	4,502	<,001
P_SCI	,037	,050	,009	,733	,463
P_CLA	,013	,065	,002	,198	,843
P_LIN	,219	,059	,043	3,736	<,001
P_LI2	,122	,054	,027	2,257	,024
P_IT	,086	,042	,024	2,067	,039
AG	1,114	,149	,116	7,483	<,001

 $y = \alpha + \beta T + \gamma_1 P_1 + \gamma_2 P_2 + \delta_1 T P_1 + \delta_2 T P_2 + \bar{\vartheta} \bar{X} + \bar{\varphi} T \bar{X} + \bar{\lambda} P_1 \bar{X} + \bar{\xi} P_2 \bar{X}$

ATT
$$\delta_2 - 2\delta_1$$

R	R-quadrato	R-quadrato adattato		
,681ª	,464	,452		

Difference-in-Difference two period - results

Conclusion

 The statistical techniques used for impact assessment can be a useful tool for measuring the effectiveness of policies activated following the allocation of structural funds against school dropout phenomenon

2) The possibility of finding more information (even about the treatment), relating to students, would allow to isolate any confounding factors that affect the outcomes, such as participation in other curricular or extra-curricular projects

future developments

- Compute other types of models such as quantile regression to limit the impact to particular points in the distribution of the outcome variable;
- 2) cluster the units in order to differentiate the impact by school category;
- 3) ... any suggestions?

Thanks for your attention!

andrea.bendinelli@invalsi.it

