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INTRODUCTION

I recent years, many studies in Physics Education have explored and

discussed the possibility to investigate student answers

• to obtain information about the reasoning lines students deploy dealing with

problematic situations;

• to investigate students’ conceptual understanding.
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INTRODUCTION

Some of these studies try to find groups of homogeneous or “similar” students by

considering the ways in which they answer a questionnaire.

This goal may become increasingly difficult to achieve as the sample size

increases.

The goal is to efficiently partition a student sample to obtain groups so that the

elements of each group are similar to each other while being substantially different

from elements in other groups.
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CLUSTER ANALISYS – AN OVERVIEW

Cluster analysis (CLA) is one of the methodologies used for this purpose.

CLA methodologies are common in many fields of research, such as Information

Technology, Biology, Medicine, Archaeology, Econophysics, and Market

Research.

These methodologies allow a researcher to locate subsets, or clusters, within a

set of objects of any nature, which tend to be homogeneous “in some sense”,

without any prior knowledge of what forms those groups take (unsupervised

classification).
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CLUSTER ANALISYS – AN OVERVIEW

CLA can be carried out using various algorithms and techniques that differ

significantly in their notion of what constitutes a cluster and how to effectively find

them.

It is worth noting that in the literature the various techniques have seldom been

explored and compared when applied to study a student sample, to reveal their

mutual coherence, points of strength and weakness.
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Several research papers show that the use of cluster analysis leads to identifiable

groups of students that make sense to researchers and are consistent with

previous results obtained using more traditional methods.



CLUSTER ANALISYS – AN OVERVIEW

• The choice of criteria of similarity between students;

• The choice of clustering algorithms;

• The criteria to find the best clustering solution among all possible ones.

Many aspects of ClA have been underexplored, especially in the education

research, and require further study.

For instance
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CLUSTER ANALISYS – EDUCATION RESEARCH

We want to statistically study a set of elements (for example, a set of 

students) characterised by several properties. 

The questionnaire could be built to investigate the lines of reasoning 

implemented by students when they are proposed problematic situations.

The properties might come from the answers given to a questionnaire.
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CLASSIFICATION OF STUDENT ANSWERS 
AND DATA CODING 

CATEGORIZATION 1

SET OF STUDENT’S 
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CODING
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STRATEGIES

BINARY  MATRIX 

COMPARISON &

DISCUSSION

CATEGORIZATION K

ANSWER CATEGORIES

1

ANSWER CATEGORIES

K

CATEGORIZATION 2

ANSWER CATEGORIES

2Flow chart of the steps that can be

followed by researchers when

processing data coming from

student answers to an open-ended

questionnaire.
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CLASSIFICATION OF STUDENT ANSWERS AND DATA CODING

Answering 

Strategy

Student

S1 S2 … SN

AS1 0 0 … 0

AS2 1 0 … 1

AS3 1 ... ... ...

AS4 0 … … …

AS5 1 ... ... ...

… 0 … … …

ASM 0 1 … 0
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CORRELATION COEFFICIENT FOR BINARY DATA

ClA requires the definition of quantities as “similarity” or “distance” indexes

that are used to build the clusters.
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These indexes are defined by starting from the MxN binary matrix before

discussed.
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If these variables are non-numeric, we may use, for instance, a modified form of the

Pearson’s correlation coefficient, Rbin(ai, aj).

CORRELATION COEFFICIENT FOR BINARY DATA

where

• p(ai), p(aj) are the numbers of 1s in the arrays ai and aj,

• M is the total number the answering strategies,

• 𝐶 𝑎𝑖 , 𝑎𝑗 is obtained by counting how many times the symbol 1 is present in the same

position in the arrays ai, and aj. Τ𝑝 𝑎𝑖 ∙ 𝑝 𝑎𝑗 𝑀 is the expected value of 𝐶 𝑎𝑖 , 𝑎𝑗 .



DISTANCE MATRIX

The similarity between students i and j can be defined by choosing a metric and

calculating a distance dij.

Such a choice is often complex and depends on many factors.

If we want that two students, represented by arrays ai

and aj negatively correlated, be more dissimilar than

two uncorrelated students, a possible definition of the

distance between ai and aj, making use of the modified

correlation coefficient, Rbin(ai, aj), is:

𝑑𝑖𝑗 = 2 ∙ 1 − 𝑅𝑏𝑖𝑛 𝑎𝑖 , 𝑎𝑗

(𝐆𝐨𝐰𝐞𝐫 𝐃𝐢𝐬𝐭𝐚𝐧𝐜𝐞)
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NON-HIERARCHICAL CLUSTERING

Non-hierarchical clustering (NH-ClA) methods partition the data space into a

number of non-overlapping subsets (clusters) containing data similar to each other

according to the given criteria.
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Among the currently used NH-ClA algorithms, we will consider the 

k-means one.



K-MEANS GRAPH

It is worth noting that the data input of the k-means algorithm could be the 

MxN binary matrix. However, a formally correct application of this algorithm 

strictly requires the use of a Euclidean metric, that can not be defined with 

binary data.

To easily visualize the clusters, we would like to graphically represent in a

Cartesian plane the set of students according to all the distances characterizing

each student.
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The great number of properties (the number of answers) associated with each

student makes not possible to graphically represent in a Cartesian plane the

set of students.

A well known procedure in the specialized literature called

Multidimensional Scaling can be used to reduce the dimensionality

associated with each student.

K-MEANS GRAPH – MULTIDIMENSIONAL SCALING



Student
Studen

t
S1 S2 … SN

S1 0 d1

2

… d1n

S2 d21 0 … d2n

… … ... ... ...

Sn dn1 … … 0

MDS
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K-MEANS GRAPH – MULTIDIMENSIONAL SCALING



MULTIDIMENSIONAL SCALING

Multidimensional Scaling (MDS) methods allows one to move

from a space with a number of dimensions (one for each

property), usually much larger than 3, to one with a smaller

number of dimensions (usually two).
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MULTIDIMENSIONAL SCALING

The new representation in the reduced space is a function of the initial

representation and tries to preserve the distances between pairs of 

elements.

This MDS approach makes easier the interpretation of the data and gives

a representation based on a smaller number of properties very often

sufficiently faithful to the initial one. 
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MULTIDIMENSIONAL SCALING

There are many MDS methodologies.

It is used to obtain a graphical

representation of a set of students in a

two-dimensional space.

Through the K-means algorithm, this

representation is then partitioned into

clusters.

The one presented here refers to the Principal Component Analysis.
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MULTIDIMENSIONAL SCALING

Multidimensional Scaling (MDS) is a method used in the field of 

Natural Sciences, Engineering and Economics when you want to deal 

with problems related to multivariate analyses.
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MULTIDIMENSIONAL SCALING

Usually, in a multivariate analysis, the data are represented by a matrix.

We want to obtain a reduction of the columns of the matrix X, by 

finding a number q (q < k) of properties or artificial variables. 
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Let us consider a matrix X (n x k) (n individuals and k quantitative variables or

properties).



MULTIDIMENSIONAL SCALING

We want to get a representation of the students in a bi-dimensional space,

where the two dimensions represent two artificial properties dependent on

real properties.

It is necessary to find a function that put in relationship the space with k

dimensions with the two-dimensional one.
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MULTIDIMENSIONAL SCALING

The function can be a linear application

Let’s take into account a generic artificial variable yj as a linear combination of the

real variables x1, x2, ....,xk.

yj is a vector made of n components.

The generic element is yij (with i = 1…n) and can be expressed as

yi𝑗 = a1𝑗xi1 + a2𝑗xi2 +⋯+ ak𝑗xik

or in matricial terms

𝐲𝒋 = X𝐚𝐣

with a1j, a2j, ...., akj the coefficients in the linear combination and aj the vector (k x 1).
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MULTIDIMENSIONAL SCALING

It is easy to demonstrate that

where S is the variance/covariance matrix of the matrix X with dimension (k x k).

We want to find the aj array, also called principal component.

We want that the new artificial variables have maximum variance. 

In this way, it will have the maximum possible information contribution.

var yj = aj
TS aj
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MULTIDIMENSIONAL SCALING

It is important to note that, to have a unique solution, a constraint must be

imposed on the coefficient array aj.

The principal component can be determined by solving the following

constrained maximum problem

where a1
T a1 = 1 is the constrain.

max var y1
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MULTIDIMENSIONAL SCALING
The method of the Lagrangian function allows one to obtain the constrained

maximum.

The Lagrangian function L to be maximized is therefore given by

L = a1
TS a1 − λ a1

T a1 − 1

where l is the lagrangian multiplier.

The solution is found by the following expression

𝜕L

𝜕𝑎𝑖1
= 2S ai1 − 2𝜆 ai1 = 0
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MULTIDIMENSIONAL SCALING

The previous equation identifies a linear and homogeneous system that admits

solutions if and only if

det S − λI = 0

The k solutions of the previous equation are the eigenvalues l of the matrix S.

For instance

S a1 = λ1 a1

The array a1, which we are looking for, is an eigenvector of the matrix S.
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MULTIDIMENSIONAL SCALING

The results of the principal component analysis depend on the unit of 

measurement used for the variables.

It is a not negligible drawback because by changing the units of 

measurement we could obtain completely different results.

To get around this problem, it is customary to conduct an 

analysis on standardized variables
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MULTIDIMENSIONAL SCALING

The standardized variables z1, z2, zk where the generic z is

It has zero mean value and variance equal to 1.

Therefore, it is possible to perform a principal component analysis

by finding the eingvalues of the matrix R.

The variance/covariance matrix of the standardized variables is the 

correlation matrix.

z =
x − x

σ x
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• We apply the method previously described by finding the

eingvalues of the distance matrix.

• We calculate the distances matrix from the correlation matrix.

Each element in the matrix represents a distance (similarity) between

pairs of students.

MULTIDIMENSIONAL  SCALING

Education Research field
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K-MEANS ALGORITHM

The starting point of the k-means algorithm is the choice of the number, q, of clusters

one wants to populate and of an equal number of “seed points”.

Data (students) are then grouped on the

basis of the minimum distance between

each student and the seed points.

Starting from an initial classification,

students are iteratively attributed from

one cluster to another one, until no

significant improvement can be made.
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K-MEANS ALGORITHM

The k-means algorithm has some points of weakness. 

• at the beginning of the procedure, it is necessary to arbitrarily define the 

number, q, of clusters.

A method widely used to select this number q, is the calculation of the so-

called Silhouette Function, S.

This is usually fixed by repeating the clustering procedure for several values of 

the initial conditions and selecting those that lead to the minimum values of the 

distances between each centroid and the cluster elements.
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• the a-priori choice of the initial positions of the centroids. 



THE SILHOUETTE FUNCTION 

This function allows one to decide how good is the partition into q clusters

For each number of clusters, q, and for

each student, i, assigned to a cluster k,

with k=1, 2,..q, the value of the

Silhouette Function, Si(q), is calculated.
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THE SILHOUETTE FUNCTION 

𝑆𝑖 𝑞 =
min
𝑝,𝑝≠𝑘

σ𝑙=1
𝑁−𝑛𝑘 𝑑𝑖𝑙

𝑁 − 𝑛𝑘
− σ𝑗=1

𝑛𝑘 𝑑𝑖𝑗
𝑛𝑘

max σ
𝑗=1
𝑛𝑘 𝑑𝑖𝑗

𝑛𝑘
, min
𝑝,𝑝≠𝑘

σ
𝑙=1
𝑁−𝑛𝑘 𝑑𝑖𝑙

𝑁 − 𝑛𝑘

where the first term of the numerator is the average distance of the i-th student

in cluster k to l-th student placed in a different cluster p (p = 1,..., q), minimized

over clusters. The second term is the average distance between the i-th

student and another student j placed in the same cluster k.



K-MEANS ALGORITHM
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K-MEANS ALGORITHM
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K-MEANS ALGORITHM

Number of 

clusters

(q)

Silhouette Average value 

𝑆 𝑞

(CI)

Silhouette Average value for cluster

𝑆 𝑞 𝑘, k=1…q

(CI)

3

0.795

(0.780 – 0.805)

k

1 2 3

0.953

(0.951 – 0.956))

0.79

(0.78 – 0.81)

0.66

(0.63 – 0.68)

4

0.729

(0.711 – 0.744)

k

1 2 3 4

0.953

(0.951 – 0.956)

0.67

(0.64 – 0.69)

0.77

(0.74 – 0.79)

0.44

(0.40 – 0.47)

The Silhouette Function:  an example of use to obtain the best clustering solution
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K-MEANS ALGORITHM - THE SILHOUETTE FUNCTION 
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CHARACTERIZATION OF CLUSTERS

Once the appropriate partitioning of data has been found, the educational

researcher is interested in characterizing each cluster to make sense of what the

partition means in pedagogical terms.
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A possible way to do this is to take into account the most frequently used 

answering strategies in each cluster.

In the case of K-means clustering, the most frequently used answering 

strategies in each cluster coincide with the components of the array 

associated with the centroids in that cluster.



AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION –
THERMAL PHENOMENA

Our research sample consists of 36 freshmen attending the Undergraduate

Program in Chemical Engineering.

We administered an open-ended questionnaire made of 6 questions.

We want to analyse the lines of reasoning applied by undergraduate

students when asked to make sense of situations related to thermally

activated phenomena.

We want to investigate the explanation and generalization skills in

undergraduate Chemical Engineering students.
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1. In modern oil mills olive oil flows inside metallic pipes. These pipes are often enclosed in bigger, coaxial pipes in which hot
water flows. Explain the possible reason of this, pointing out what are the quantities needed for a description of the
proposed situation and for the construction of an explicative model.

visE kTAe =

The Questionnaire
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6. Which similarities can be identified in the previous phenomena? Is it possible to find a common physical quantity which 
characterizes all the systems you discussed in the previous questions?  

5. Can you think of other natural phenomena which can be explained by a similar model?

4. Can you give a microscopic interpretation of the  law seen in question 2)?

3. In petroleum industry additives are often added to gas oil to work as catalysts. What do you think can the role of these

additives be in the flowing of gas oil in a pipe?

2. In chemistry it is well known from Eyring's absolute rate theory that the viscosity of a fluid follows the following law:

Describe each listed quantity, clarifying its physical meaning and the relations with the other quantities.

AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION –
THERMAL PHENOMENA



In this case it is as if we had 6 possible values or properties that characterize each 

student.

So The MDS allow us to move from a space with six dimensions to a space with 

two dimensions (two cartesian coordinates for each student).

At the end of the coding procedure, we obtained one shared list of M = 55 typical 

answers given by the students when tackling the questions. 
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AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION –
THERMAL PHENOMENA



We can plot the student sample as reported in

the figure and then we can apply the k-means

algorithm to find possible clusters.

k-means graphs. Each point in this Cartesian plane represents a student. 

C1

C2

C3

Points labelled C1e
post, C2e

post, C3e
post are the 

cluster centroids 
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<S>= 0.72 (C.I. = 0.63 … 0.78) 

AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION –
THERMAL PHENOMENA



Cluster centroid C1e
post C2e

post C3e
post

More frequently 

given answers

1K, 2F, 3L-3M, 

4I, 5I, 6K

1K, 2F, 3I, 4H, 

5D, 6G 

1H, 2E, 3J, 4F, 

5E, 6H

Number of 

students

6  12 18

<Sk(3)> 0.64 0.69 0.77

An overview of results obtained by applying the k-means algorithm.

The codes used for the most frequently given answers refer to the answering

strategies for the questionnaire items
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AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION –
THERMAL PHENOMENA



Cluster C1

Students are clearly able to explain the situations and problems proposed in the

questionnaire relating them to a functioning mechanisms based on the idea of thermal

activation (1K-3L/M-4I-5I-6K).
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Characterisation of student sample

AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION –
THERMAL PHENOMENA
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Cluster C2 and C3

• Students are still anchored to memories of past studies (3I/J, 5D).

• Students show to be able to explain the flow process in mathematical terms (1H, students in

C3) or by citing a functioning mechanism (1K, 2F, students in C2).

• They (both C2 and C3) discuss the role of an additive by considering the energy gap

concept but frequently do not relate it to interaction between molecules (3I/J). However, in

some cases, the Arrhenius-like expression for viscosity is interpreted in terms of interaction

between molecules.

• They seem to possess generalization skills, even if in some cases limited to familiar

contexts (5D/E-6G/H).

Characterisation of student sample

AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION –
THERMAL PHENOMENA



AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

In the hierarchical clustering algorithm (H-ClA), each student is initially considered

as a separate cluster.
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Then, the two “closest” students are linked as a cluster and this process is

continued (in a stepwise manner) to join

• one student with another one;

• a student with a cluster;

• a cluster with another cluster,

until all the students are combined into one single cluster as one moves up the

hierarchy.



AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

The results of hierarchical clustering are graphically displayed as a tree, referred

to as the hierarchical tree or dendrogram.
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The term ‘closest’ is identified by a specific rule coincident with a so called

linkage algorithm.

Hence, for different linkage algorithm the corresponding distance between a

student and a cluster or a cluster and another cluster is differently computed.

http://en.wikipedia.org/wiki/Dendrogram


AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

The choice of a linkage algorithms is one of the most relevant aspects of H_ClA,

because different algorithms may generate different dendrograms and, so, different

results.

Linkage algorithms

Among the many linkage algorithms described in the literature, the following have 

been taken into account in education studies: 
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• Single 

• Complete 

• Average 

• Weighted average. 
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Each linkage defines the distance between two clusters by 

defining a new metric (called "ultrametric") and influences the 

interpretation of the word "closest". 

AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

Linkage algorithms



AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

Single linkage, also called nearest neighbor linkage, links two clusters r and s by

using the smallest distance between the students in r and those in s.

Linkage algorithms
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Complete linkage, also called farthest neighbor linkage, uses the largest distance

between the students in r and the ones in s.
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AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

Linkage algorithms

Weighted average linkage uses a recursive definition for the distance between two

clusters.

If cluster r was created by combining clusters p and q, the distance between r and

another cluster s is defined as the average of the distance between p and s and

the distance between q and s.

Average linkage links two clusters r and s by using the average distance between

the students in r and those in s.



AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

When the source data are in binary form (as in our case), the single and complete

linkage algorithms do not give a smooth progression of the distances.

Linkage algorithms

For this reason, when the source data are in binary form, the workable linkage 

algorithms actually reduce to the average or weighted average ones.

MESE 1,  NAPLES 30, 31 JANUARY AND 1 FEBRUARY



AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

The cophenetic coefficient is a measure of how faithfully a dendrogram preserves 

the pairwise distances between the original un-modeled data points.

where:

• dij is the distance between elements i and j in D.

• dij is the ultrametric distance between elements i and j in D, i.e., the height of the link at which the two 

elements i and j are first joined together.

• <D> and <D> are the average values of D and D, respectively.

Cophenetic correlation coefficient 

𝑐𝑐𝑜𝑝ℎ =
σ𝑖<𝑗 𝑑𝑖𝑗 − 𝐷 ∙ 𝛿𝑖𝑗 − Δ

σ𝑖<𝑦 𝑑𝑖𝑗 − 𝐷
2
∙ σ𝑖<𝑗 𝛿𝑖𝑗 − Δ

2
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AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

In fact, as a Pearson-like correlation coefficient, it tries to quantify

the “goodness” of a possible linear relationship between D and D

under the hypothesis that these two matrices are statistically

independent.

Cophenetic correlation coefficient 
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However

This hypothesis of linear relationship between D and D is not generally

verified, and in many cases the relationship between D and D may not be

monotonic.

Moreover

even in the case of a linear relationship between the corresponding values

of the two matrices (and therefore a high value of the cophenetic coefficient),

the difference between these may not be small.

AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

Cophenetic correlation coefficient 



AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

Merigot et al. (2010) discuss a method based on measuring the distance between the two

matrices D and D.

෍

𝑖

෍

𝑗

𝑑𝑖𝑗 − 𝛿𝑖𝑗
2

which is inspired by the well-known Frobenius norm and is a matrix 2-norm.

It is worth noting that the use of a matrix norm does not need any hypothesis on the relationship between 

the distance and the ultrametric distance.

So, we proposed the following definition of distance

between two corresponding elements of D and D

MESE 1,  NAPLES 30, 31 JANUARY AND 1 FEBRUARY

Distance coefficient 

The metric proposed by the authors is, in many cases, not effective because it returns the

same distance values for different types of linkage, thus failing to discriminate between

them.



AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

Reading a dendrogram and finding clusters in it can be a rather complex and arbitrary

process.
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AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

There is not a widely accepted criterion that can be applied to determine the

distance values to be chosen for identifying the clusters.

Different criteria, named stopping criteria, aimed at finding the optimal

clustering solution are discussed in the literature.

Stopping criteria
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AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

“Inconsistency Coefficient” (Ik) 

“Variation Ratio Criterion” (VRC) 

“Cluster Differentiation Coefficient” (CDC)

Stopping criteria
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AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

To find clusters that can be considered

distinct from each other.

Stopping criteria - Inconsistency 

Coefficient
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If a link of two clusters is “appreciably”

higher than the links below it, the link is

inconsistent and two clusters can be

considered disconnected.



AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

We consider two clusters, s and t, whose distance value is reported in matrix D

and that converge in a new link, k, (with k = 1, 2, … N-1). 

Stopping criteria - Inconsistency Coefficient
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by considering a number of link below the link k equal to n.

If we indicate by δ(k) the height in the dendrogram of such a link, its inconsistency 

coefficient is calculated as follows

𝐼𝑘 =
𝛿 𝑘 − 𝛿 𝑘 𝑛

𝜎𝑛 𝛿 𝑘



AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

Cowgill et al. (1999) obtain the best clustering solution to a given problem by using the so 

called Variation Ratio Criterion (VRC). 

with WGSS (Within Group Squared Sum) , BGSS (Between Group Squared Sum)

Stopping criteria – Variation Ratio Criterion

For a given configuration of N elements in q clusters, this 

value is defined as

𝑉𝑅𝐶 = ൘
𝐵𝐺𝑆𝑆

𝑞 − 1

𝑊𝐺𝑆𝑆

𝑁 − 𝑞
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This criterion gives a coefficient that relates the best clustering solution to two 
factors

• high cluster separation 

• high cluster compactness. 



AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

In order to quantify the information in a clustering, let’s take into account the product 

between

• the number of clusters 

• their distinctness 

Stopping criteria – Cluster Differentiation Coefficient 
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By taking into account the product between the number of clusters and the cluster

distinctness we have a non-monotonic behavior with respect to the number of

clusters.

Its maximum value give us the maximum information about the sample.



AGGLOMERATIVE HIERARCHICAL CLUSTERING ALGORITHM

We define the Cluster Differentiation Coefficient (CDC) as follows

𝐶𝐷𝐶 =
4∙𝑞

𝑁2∙𝑙∙ 𝑞
2

∙ σ𝑖=1…𝑞σ𝑗=1…𝑞 𝑛𝑖∙ 𝑛𝑗 ∙ 𝛩𝑖𝑗

Stopping criteria – Cluster Differentiation Coefficient 
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where ni and nj are the number of elements in clusters i and j, respectively, Q is the

“distinctness” of clusters i and j, defined as the number of components of cluster i and j

centroids that are different each other, l is the total number of centroid components and 𝑞
2

is

the number of combinations of q elements taken two at a time.
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The sample consists of 117 Italian students (aged 18–19) attending the last year

of their 5-year secondary school course. They have completed a questionnaire

made up of six open-ended questions on the concept of models and modelling.

A list of 43 typical students’ answering strategies has been prepared according 

to the coding procedure already described.

We analyse a binary matrix  composed of 43 rows and 117 columns. 

AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION -
MODELS AND MODELLING
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1. Models are widely used in the sciences, but what is, in your opinion, a model in physics? 

2. What is a mathematical model?

3. Are models human creations or do they already exist 

in nature?

4. What are the main characteristics of a model?

5. Can any natural phenomena be described or explained by a model? Explain your answer.

6. Can a natural phenomenon always be expressed by 

mathematical formulas? Explain your answer.

AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION -
MODELS AND MODELLING

The Questionnaire
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Linkage/Criterion Cophenetic 2-norm

Single 0.76 5603

Complete 0.69 3528

Average 0.83 1793

Weighted Average 0.81 1889

Cophenetic and 2-norm distance values for different linkage methods.

AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION -
MODELS AND MODELLING
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AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION -
MODELS AND MODELLING
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AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION -
MODELS AND MODELLING
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Dendrogram plot of our sample in which four clusters (solution 4-A) are clearly 

highlighted. 

• α1 ∪ α2

• β1 ∪ β2

• γ 

• δ ∪ ε

AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION -
MODELS AND MODELLING
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Cluster a = a1a2 b = b1b2 g de

Most 

frequently 

given answers 

1A, 2C, 3D, 

4A, 5A, 6B

1C, 2D, 3B, 

4E, 5B, 6E

1C, 2E-G, 

3D-E, 4F, 

5E, 6G

1E, 2H, 3F, 

4H, 5G, 6H

Number of 

students
36 37 28 16

An overview of results obtained by H-ClA method: four cluster solution.

AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION -
MODELS AND MODELLING
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I want now to discuss how is possible to compare hierarchical

and non-hierarchical analysis methods to study their differences

and possible coherence aspects.

AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION -
COMPARING CLUSTERING METHODS
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As Meila et al. (2007) point out:

A criterion called Variation of Information (VI) can be applied.

It measures the difference in information shared between two particular

partitions of data and the total information content of the two partitions.

AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION -
COMPARING CLUSTERING METHODS

“Just as one cannot define a best clustering method out of 

context, one cannot define a criterion for comparing 

clusters that fits every problem.” 



MESE 1,  NAPLES 30, 31 JANUARY AND 1 FEBRUARY

VI values can be normalized to the 0 – 1 range.

A value equal to 0 indicates very similar clustering results, and a value equal to

1 corresponds to very different ones.

The smaller the distance between the two clustering

solutions, the more these are coherent with each other, and

vice versa.

AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION -
COMPARING CLUSTERING METHODS
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It is possible to conclude that the best

agreement can be found for the 4-A clustering

results of the H-CLA method.
2 3 4 5 6 7
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AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION -
COMPARING CLUSTERING METHODS

It is worth noting that this result supports our previous decision to consider solution

4-A as the best H-CLA one.

This graph reports the values of VI for the

comparison between the 3-cluster solution

with k-means algorithm and many NH-ClA

cluster solutions.

Models and Modelling



MESE 1,  NAPLES 30, 31 JANUARY AND 1 FEBRUARY

Cluster Cl1 Cl2 Cl3
Most frequently given 

answers

1C, 2B, 3B, 4F, 

5E, 6G
1A, 2C, 3B-C-D, 4A, 5A, 6B

1E, 2H, 3F, 4H, 

5G, 6H

Number of students 67 37 13

An overview of results obtained by k-means method: 3-cluster solution

Cluster a = a1a2 b = b1b2 g de

Students in 

k-means cluster
(31)Cl2+(5)Cl1 (33)Cl1+(4)Cl2 (28)Cl1 (13)Cl3 +(2)Cl2+(1)Cl1

Most frequently 

given answers 
1A, 2C, 3D, 

4A, 5A, 6B

1C, 2D, 3B, 

4E, 5B, 6E

1C, 2E-G, 

3D-E, 4F, 

5E, 6G

1E, 2H, 3F, 4H, 5G, 6H

Redistribution of students placed in k-means clusters into H-ClA clusters

AN EXAMPLE OF RESEARCH IN PHYSICS EDUCATION -
COMPARING CLUSTERING METHODS
Models and Modelling
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It is possible to conclude that the NH-ClA method we discussed here allows

the researcher to easily obtain and visualize in a 2-D graph a global view of

student behavior with respect to the answers to a questionnaire and to obtain a

first characterization of student behavior in terms of their most frequently used

answering strategies.

CONCLUSION - COMPARING CLUSTERING METHODS

The H-ClA method, on the other hand, although producing a graph that is

not as easy to read as the one produced with the other method, allows the

researcher to obtain results coherent with the NH-ClA ones and that may offer

a finer grain detail of student behavior.



Onofrio Rosario Battaglia
Dipartimento di Fisica e Chimica – Emilio Segrè, University of Palermo, Palermo, Italy
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