# The search for variable AGN with GAIA

Maria Isabel Carnerero Martin & Claudia M. Raiteri

INAF-Osservatorio Astrofisico di Torino







#### **GAIA: INSTRUMENTS**

- ASTROMETRY

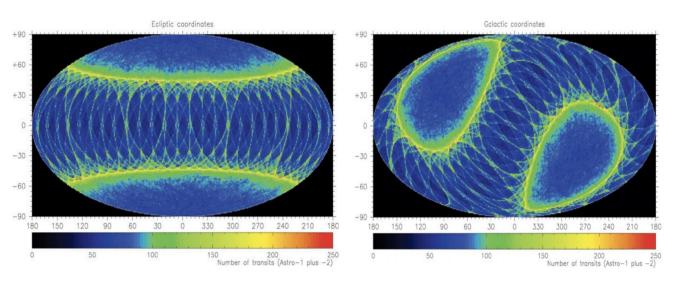
Sky Mappe

SPECTROSCOPY (BP, RP, RVS)
 R~ 20-90 847-874 nm R=11,500



# Blue Photometer CCDs Radial-Velocity Spectrometer CCDs Star motion in 10 s

Focal Plane



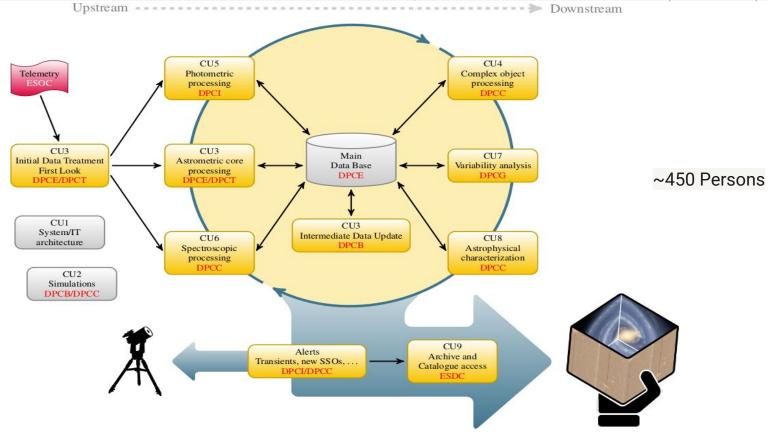





#### **GAIA: INSTRUMENTS**

- ASTROMETRY
- SPECTROSCOPY (BP, RP, RVS)
   R~ 20-90 847-874 nm R=11,500



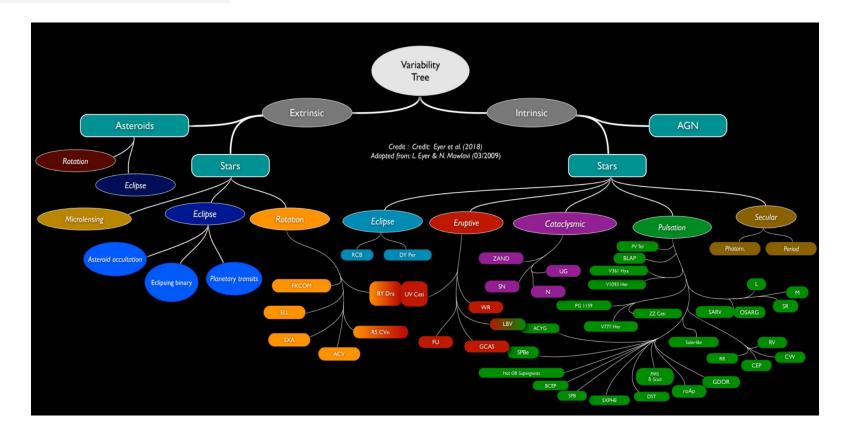

First 5 years of mission  $N \sim 70 (G, G_{BP}, G_{RP})$   $N \sim 40 (RVS)$ 







# Gaia Data Processing and Analysis Consortium (DPAC)



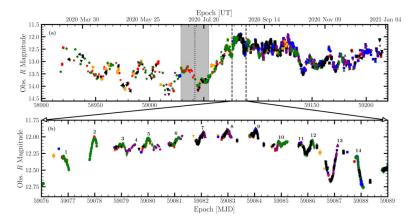




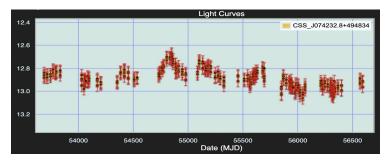



#### Variable Sources

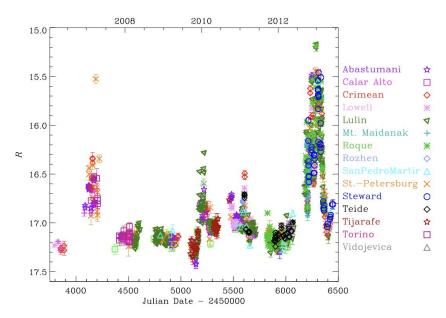







# Variability


Temporal variability at several scales (month-years but sometimes days, hours...).



BL Lacertae, Jorstad S. G. et al 2022, Nature, 609, 265



Mrk 79, Catalina Sky Server



OJ 248, Carnerero, M. I. et al, 2015, MNRAS.450.2677C







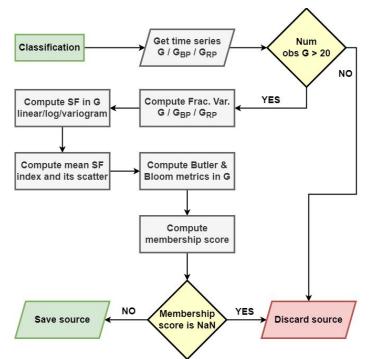
#### Gaia Data Release 3:

#### The first Gaia catalogue of variable AGN

Maria I. Carnerero<sup>1</sup>, Claudia M. Raiteri<sup>1</sup>, Lorenzo Rimoldini<sup>2</sup>, Deborah Busonero<sup>1</sup>, Enrico Licata<sup>1</sup>, Nami Mowlavi<sup>2,3</sup>, Isabelle Lecoeur-Taïbi<sup>2</sup>, Marc Audard<sup>2,3</sup>, Berry Holl<sup>2,3</sup>, Panagiotis Gavras<sup>4</sup>, Krzysztof Nienartowicz<sup>5</sup>, Grégory Jevardat de Fombelle<sup>2</sup>, Ruth Carballo<sup>6</sup>, Gisella Clementini<sup>7</sup>, Ludovic Delchambre<sup>9</sup>, Sergei Klioner<sup>8</sup>, Mario G. Lattanzi<sup>1</sup>, and Laurent Eyer<sup>3</sup>

The goal of this work was the creation of a catalogue of variable AGN, whose selection was based on Gaia data only, and as pure as possible.








# Variability parameters

We defined some mandatory metrics, values are listed in the Gaia-DR3 vari\_AGN table.

- fractional\_variability\_g
- structure\_function\_index
- structure\_function\_index\_scatter
- qso\_variability
- non\_qso\_variability
- vari\_agn\_membershipscore









# Variability parameters- Fractional variability

A common parameter to characterize variability is the mean fractional variation

fractional\_variability\_g = 
$$\frac{\sqrt{\text{MAD}^2(F) - \langle \sigma_F^2 \rangle}}{\text{median}(F)}$$

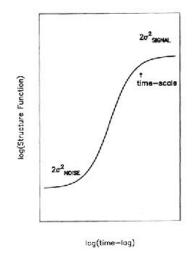
MAD median absolute deviation

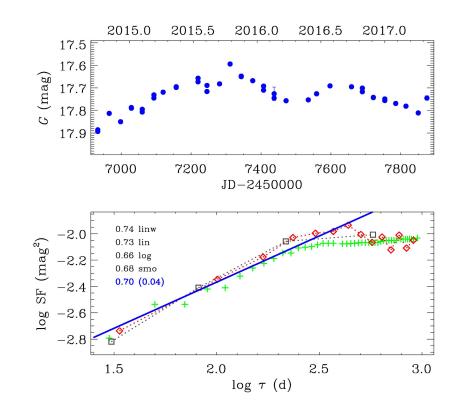
 $<\sigma_F^2>$  mean of the squared flux uncertainties

median(F) median flux for all N observations

To mitigate the effect of outliers, we modified the standard fractional variability definition, adopting for the flux statistics the median instead of the mean, and the median absolute deviation instead of the standard deviation






#### Variability parameters - Structure Function index

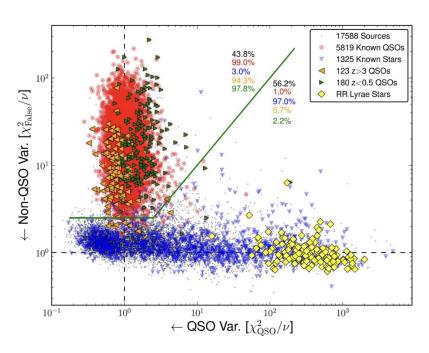
Mean difference in flux densities versus time separation (e. g. Simonetti et al. 1985)

$$SF_{Sim}(\tau) = \langle [mag(t) - mag(t + \tau)]^2 \rangle$$











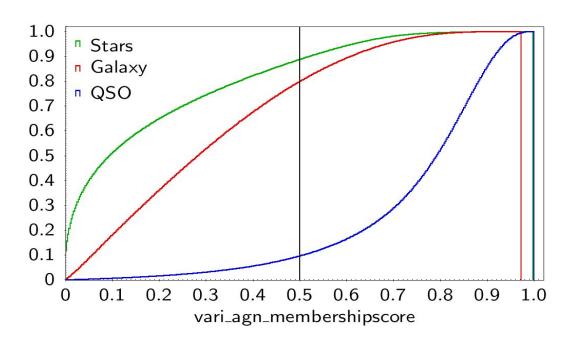

### Variability parameters - Butler & Bloom parameters

#### qso\_variability and non\_qso\_variability





Butler & Bloom 2011, AJ, 141, 93B








#### Variability parameters - membershipscore

we calculated the membership score with the inverse of the Mahalanobis distance D based on five parameters (fractional\_variability\_g, structure\_function\_index, qso\_variability, non\_qso\_variability, and abbe\_mag\_g\_fov)

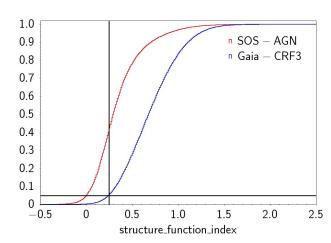


More than 90% of AGN have values greater than 0.5

Only 10% of variable stars have values greater than 0.5

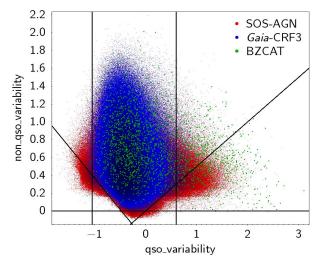
Only 20% of *galaxies* have values greater than 0.5








#### Selection procedure


Application of a sequence of filters tailored on the *Gaia-CRF3* sample. The goal was to obtain a variable AGN sample as pure as possible, with the minimum loss of *Gaia-CRF3* sources.

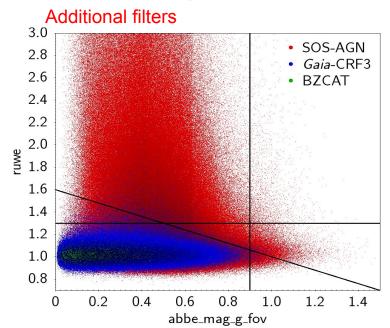
#### **Structure Function Index > 0.25**



SOS-AGN — 10 536 184 / 6 286 047 Gaia-CRF3 — 1 112 764 / 1 055 586

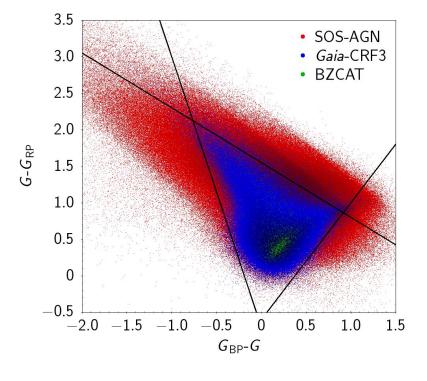
#### Butler & Bloom metrics (qso\_variability vs non\_qso\_variability)




SOS-AGN — 6 286 047 / 5 992 038 Gaia-CRF3 — 1 055 586 / 1 047 334








# Selection procedure



**ruwe (renormalised unit weight error):** gives an estimate of the suitability of the single-star astrometric model for a given source

**abbe:** half of the ratio of the mean square difference between consecutive data points in the light curve to its variance.

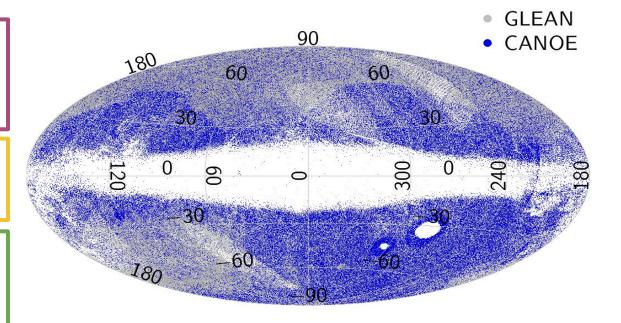


SOS-AGN — 5 992 038 / 3 881 285

Gaia-CRF3 — 1 047 334 / 1 030 304

#### Selection procedure

Cut on the astrometric parameters


- PARALLAX/ERR < 5</li>
- PROPER MOTION/ERR < 5</li>

Cut on the environment

- numdensity100asec < 0.01

Cut on spurious effects

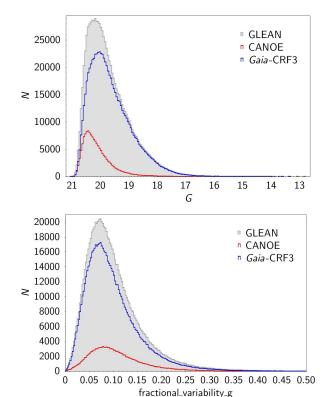
- Ihm\_corr\_g < 0.8 (scan angle)
- variability\_probability

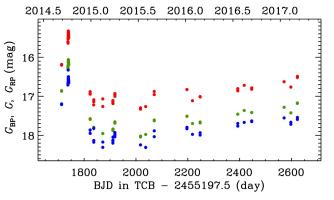


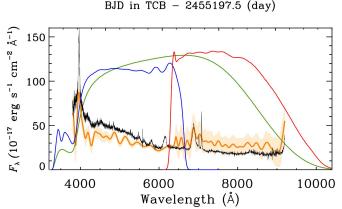
#### RESULT

**GLEAN** (*Gaia* variabLE AgN) final sample: 872228 sources

CANOE (CANdidates tO Explore) sample: 150017 sources not in Gaia-CRF3, 21735 new identifications




# The Gaia variable AGN sample.

GLEAN: 872228 sources CANOE: 150017 sources







#### **RP**

G

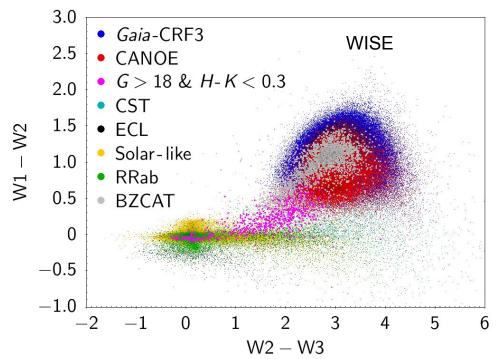
BP

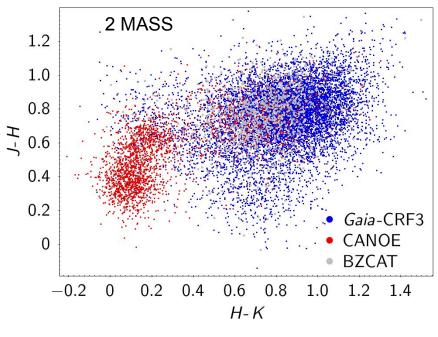
#### **SDSS** spectrum

Gaia low resolution spectrum with its uncertainty

Gaia passbands (BP, G, RP)






# The Gaia variable AGN sample.

XM with WISE and 2MASS catalogues

GLEAN: 872228 sources CANOE: 150017 sources





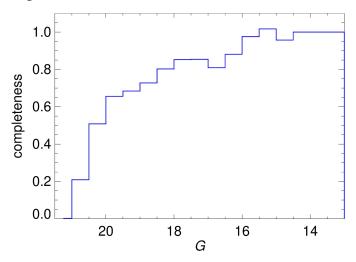






# Completeness and Purity

Completeness with respect to Gaia-CRF3: 51%


# Results of the XM of the GLEAN and CANOE samples with large AGN catalogues

| Catalogue              | $N_{\mathrm{cat}}$ | $N_{\rm match,ini}$ | $N_{\rm match,fin}$ | Ratio | $N_{\rm match,new}$ | Reference |
|------------------------|--------------------|---------------------|---------------------|-------|---------------------|-----------|
| WISE C75               | 20 907 127         | 925 988             | 602 782             | 0.65  | 28 574              | 1         |
| WISE R90               | 4 543 530          | 788 714             | 526 388             | 0.67  | 4 569               | 1         |
| Gaia-unWISE            | 2734464            | 1 363 764           | 819677              | 0.60  | 108 345             | 2         |
| Gaia-DR2               | 2690021            | 1 025 599           | 652 900             | 0.64  | 85 662              | 3         |
| Gaia-CRF3              | 1614173            | 1 141 892           | 722 211             | 0.63  | 0                   | 4         |
| SDSS DR16Q Superset v3 | 1 440 615          | 295 426             | 196 907             | 0.67  | 1 360               | 5         |
| AllWISE AGN            | 1 354 775          | 494 067             | 323 225             | 0.65  | 2316                | 6         |
| MILLIQUAS              | 1 115 619          | 411742              | 273 422             | 0.66  | 5 545               | 7         |
| SDSS DR16Q v4          | 750 414            | 291 484             | 195 946             | 0.67  | 1 201               | 5         |
| LQAC5                  | 592 809            | 259 127             | 174 076             | 0.67  | 89                  | 8         |
| LQRF                   | 100 165            | 81 560              | 61 159              | 0.75  | 40                  | 9         |
| BROS                   | 88 211             | 6304                | 4510                | 0.72  | 304                 | 10        |
| APOP (QSO)             | 86 821             | 72 107              | 54 407              | 0.63  | 33                  | 11        |
| LAMOST5                | 52 453             | 38 341              | 29 188              | 0.76  | 92                  | 12        |
| 2QZ                    | 49 425             | 19 254              | 13 794              | 0.72  | 184                 | 13        |
| e-ROSITA               | 21 952             | 5 122               | 3 3 1 9             | 0.65  | 289                 | 14        |
| OCARS                  | 13 589             | 6 5 4 1             | 5 099               | 0.78  | 147                 | 15        |
| Seyfert                | 11 101             | 7 802               | 5 5 7 8             | 0.71  | 26                  | 16        |

Note: (1) Assef et al. (2018); (2) Shu et al. (2019); (3) Bailer-Jones et al. (2019); (4) Gaia Collabora, in et al. (2022b); (5) Lyke et al. (2020); (6) Secrest et al. (2015); (7) Flesch (2021); (8) Souchay et al. (2019); (9) Andrei et al. (2009); (10) Itoh et al. (2020); (11) Qi et al. (2015); (12) Yao et al. (2019); (13) Croom et al. (2004); (14) Liu et al. (2021); (15) Malkin (2018); (16) Rakshit et al. (2017)

#### completeness

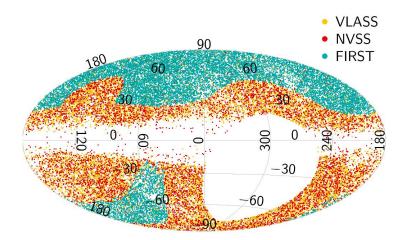
# The GLEAN completeness versus G magnitudes

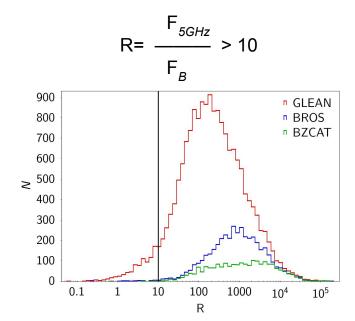


Purity: 21735/872228= 0.025 -> less than 3% possible contamination?

We reasonably estimate the sample purity around 95%






# XM with radio catalogues

A fraction of AGN is radio-loud. This fraction is generally assumed to be around 10%, but depends on both redshift and luminosity

| Name         | Band (GHz) | Sky (%) | $N_{\rm cat}$ | $N_{\rm cross}$ |
|--------------|------------|---------|---------------|-----------------|
| FIRST        | 1.4        | 25.6    | 946432        | 13 133          |
| <b>VLASS</b> | 3.0        | 82      | 3 381 277     | 31 378          |
| NVSS         | 1.4        | 82      | 1773484       | 11 041          |





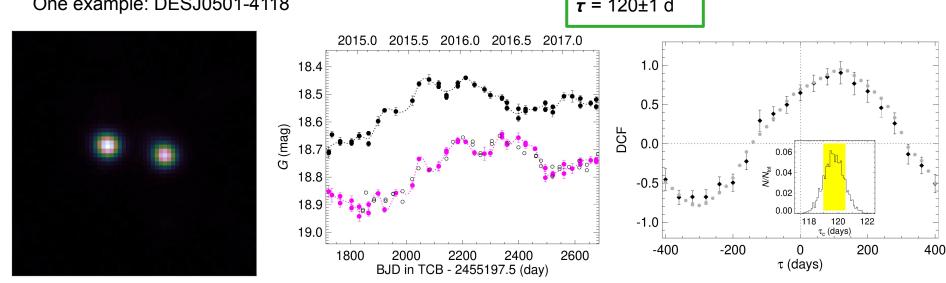
Distribution of the radio-loudness parameter R for the 17399 GLEAN sources with radio counterparts in 2 radio bands (blazars: 2058 in BZCAT5 and 4209 in BROS)

The number of radio-loud sources in our GLEAN sample is of the order of 4%








#### **Lensed Quasars**

The GLEAN sample includes more than a hundred known gravitationally lensed quasars.

We investigated the possibility to derive robust measurements of the time lag between the observed flux variations corresponding to the various images of a lensed guasar. Difficult task!

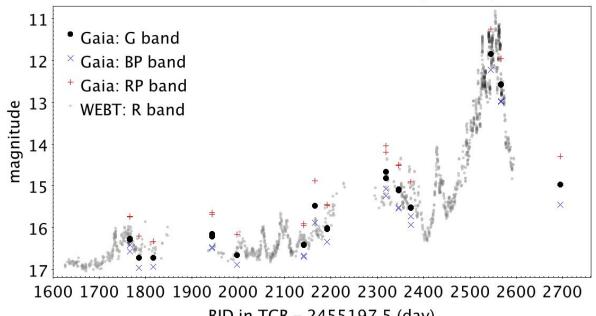
One example: DESJ0501-4118

$$\tau$$
 = 120±1 d

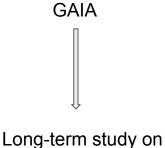












#### Whole Earth Blazar Telescope (WEBT; https://www.oato.inaf.it/blazars/webt))

Long-term and short-term study on a few sources

#### Gaia DR3 2730046556694317312 (CTA 102)



BJD in TCB - 2455197.5 (day)



the AGN population





# FOR DR4 (66 months of data)

New variability parameters:

**beyond1st:** Percentage of points beyond one st. dev. from the weighted mean.

flux\_percentile\_ratio\_mid20: Ratio of flux percentiles (60th-40th) over (95th-5th)

linear\_tren: Slope of a linear fit to the light-curve fluxes

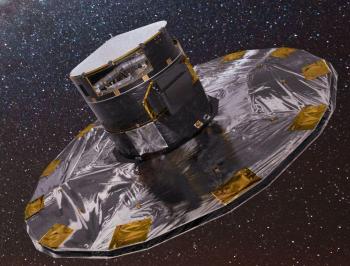
max\_slope: Maximum absolute flux slope between two consecutive observations

median\_absolute\_deviation: Median discrepancy of the fluxes from the median flux

median\_buffer\_range\_percentage: Percentage of fluxes within 20% of the amplitude from the median.

small\_kurtosis: Kurtosis of the fluxes, reliable down to a small number of epochs

....








# Thank you for your attention!!!

Suggestions are welcome.

