

MgII radius-luminosity relation: applications to the BLR structure and cosmology

Michal Zajaček

B. Czerny, N. Khadka, M. L. Martínez-Aldama, S. Panda, R. Prince, B. Ratra, M. Naddaf

Faculty of Science, Masaryk University The Restless Nature of AGN * 10 years later June 27, 2023 - Napoli

Reverberation mapping of galactic nuclei

Different wavelengths probe different scales of an accretion flow

Reverberation mapping of galactic nuclei – results

- **•** mean radius of the BLR: $R_{
 m BLR} \sim c au_{
 m rest}$
- the virial mass of the SMBH: $M_{\rm vir} = \frac{f_{\rm vir}c\tau_{\rm rest}FWHM^2}{G}$

radius-luminosity relation: $R_{
m BLR} = CL_{
m mon}^{\gamma} o au = eta + \gamma \log L_{
m mon}$

The power-law slope is expected to be close to 0.5. This follows from simple photoionization theory of a BLR cloud:

$$U=rac{Q_{
m ion}(H)}{4\pi R^2 c n_{
m e}}\,, Q_{
m ion}(H)=\int_{
u_i}^{+\infty}rac{L_
u}{h
u}{
m d}
u$$

Under the assumption $Un_{\rm e}$ ~konst. for different sources, we can derive $R \propto L^{1/2}$

H β **Radius-luminosity relation**

- H β broad line was mostly used to obtain time delays for lower-redshift sources (0.0023 $\leq z \leq$ 0.89).
- Earlier data had a small scatter (lower accreting, variable sources), later the scatter increased due to the presence of higher-accreting sources.

Bentz+13 (71 sources) and Martinez-Aldama+2019 (117 sources)

- Czerny+2019, Zajaček+2020, and Zajaček+2021 construct first robust MgII radius-luminosity relations using higher-redshift, luminous sources in the range $0.0033 \le z \le 1.89$.
- 10 sources (2xNGC 4151, 6 SDSS-RM, CT252 and CTS C30.10: $\tau = 562^{+116}_{-68}$ days)

M. Zajaček • RM QSOs • The Restless Nature of AGN * 10 years later June 27, 2023 - Napoli

- Zajaček+2020 add one more measurement (HE 0413, z = 1.37648, $\tau = 302.6^{+28.7}_{-33.1}$ days) and show that the departure is correlated with the accretion rate
- Correlation: $\dot{\mathcal{M}} = 26.2(L_{44}/\cos\theta)^{3/2}m_7^{-2}$, $\Delta \tau = \log(\tau_{\rm obs}/\tau_{RL})$

- In Zajaček+2021, we perform reverberation mapping of the quasar HE 0435 (z = 1.2231, $\tau = 296^{+13}_{-14}$ days)
- 57+6 SDSS-RM (Homayouni+20, Shen+16), 2xNGC4151 (Metzroth+06), CT 252 (Lira+18), CTS C30.10, HE 0414, HE 0435: 69 sources

N 108 244 1 N	0.422 ± 0.055	1.574 ± 0.002		0.1771	0.00	0.2012	0.70
$K_1 \log L_{44} + K_2 \log FWHM_3 + K_3$	0.43 ± 0.06	-0.13 ± 0.31	1.44 ± 0.17	0.1986	0.80	0.2007	0.78
$K_1 \log L_{44} + K_2 \log R_{\text{Fe II}} + K_3$	0.45 ± 0.05	0.84 ± 0.29	1.28 ± 0.08	0.1734	0.85	0.1718	0.84
$K_1 \log L_{44} + K_2 \log F_{var} + K_3$	0.39 ± 0.06	-0.38 ± 0.18	0.99 ± 0.19	0.1861	0.83	0.1863	0.82

Combining 69 sources with 25 OzDES measurements (Yu+23), we obtain 94 measurements with the redshift range of $0.0041 \le z \le 1.89$ (see Prince+2023)

MgII R-L relation and the 2D and 1D likelihood distributions

Comparison of MgII and Fell R-L relations

- first UV FeII R-L relation based on 4 measurements presented in Prince+(2023)
- comparison with optical FeII and MgII R-L relations
- NGC 5548: UV FeII time delay by Maoz+1993, MgII by Clavel+1991

Optical and UV FeII R-L relations vs. MgII R-L relation

Comparison of MgII and FeII R-L relations: distribution

R-L relations + wavelength-resolved RM (Prince+22,23)

First constrained HIL radius-luminosity relation, $0.001064 \le z \le 3.368$, 38 sources were collected and analyzed by Kaspi et al. (2021).

Taken from Cao, Zajaček et al. (2022)

Datasets RM QSO data

applied for simultaneously constraining R-L relation as well as cosmological model parameters. A better established BAO+H(z) combined sample was used as a comparison sample.

Sample	Source number	Redshift range	Reference
$H\beta$ RM QSOs	118	$0.0023 \le z \le 0.89$	Khadka+22
MgII RM QSOs	69/78	$0.0033 \le z \le 1.89$	Khadka+21
CIV RM QSOs	38	$0.001064 \le z \le 3.368$	Cao+22
BAO	12	$0.122 \le z \le 2.334$	Cao & Ratra 2022
H(z)	32	$0.07 \le z \le 1.965$	

Table: Overview of used RM QSO data and the BAO+H(z) comparison sample. BAO+H(z) data are adopted from Tables 1 and 2 in Cao & Ratra 2022, MNRAS, vol. 513, p. 5686-5700.

RM QSOs as standardizable candels

- 1. Perform reverberation mapping \rightarrow continuum-broad line time lag τ_{obs}
- 2. Use radius–luminosity (R-L) relation to calculate theoretical time lags $\tau_{\rm th}$

$$\log\left(\frac{\tau_{\rm th}}{\rm day}\right) = \beta + \gamma \log\left[\frac{\mathcal{L}_{\rm mon}(z, \mathbf{p})}{10^{44}\, {\rm erg\,s^{-1}}}\right],$$

 $L_{\rm mon} = 4\pi D_{\rm L}(z, \mathbf{p})^2 \lambda F_{\lambda}$, where the luminosity distance is a function of the cosmological expansion rate $H(z, \mathbf{p})$, which depends on the considered cosmological model.

3. Maximize likelihood function to find simultaneously R-L relation (β , γ) and cosmological model parameters p

RM QSOs as standardizable candels

3. Maximize likelihood function

$$lnLF = -\frac{1}{2} \sum_{i=1}^{N} \{ \frac{[\log \tau_i^{\text{obs}} - \log \tau_i^{\text{th}}]^2}{s_i^2} + ln(2\pi s_i^2) \}$$
$$s_i^2 = \sigma_{\log \tau_{\text{obs},i}}^2 + \gamma^2 \sigma_{\log F_{3000,i}}^2 + \sigma_{\text{int}}^2$$

$$H(z) = H_0 \sqrt{\Omega_{m0}(1+z)^3 + \Omega_{k0}(1+z)^2 + \Omega_{DE}(z)},$$

For ACDM and XCDM: $\Omega_{DE}(z) = \Omega_{DE0}(1+z)^{1+\omega_X} \phi$ CDM (Peebles & Ratra 1988, Ratra & Peebles 1988):
 $V(\phi) = \frac{1}{2} \kappa m_p^2 \phi^{-\alpha}$ represents scalar field potential energy density

$$\Omega_{\rm DE} = \Omega_{\phi}(z, \alpha) = \frac{8\pi\rho_{\phi}}{32m_{\rm p}^2H_0^2}$$

Constraints from MgII sample

Likelihood distributions and contours for **flat (left)** and **non-flat** (**right)** ACDM model (see Khadka, Yu, Zajaček et al. 2021).

Constraints from MgII+CIV+BAO+H(z) sample

Consistent with BAO+H(z) – exemplary likelihood distributions for non-flat $\wedge \text{CDM}$

CIV and MgII quasars and their combination (Cao, Zajaček et al. 2022)

16/23

Constraints from MgII+CIV+BAO+H(z) sample

Consistent with BAO+H(z) – exemplary likelihood distributions for non-flat $\wedge \text{CDM}$

CIV and MgII quasars analyzed jointly with BAO+H(z) (Cao, Zajaček et al. 2022) \rightarrow **quasars slightly tighten the constraints** ($\sim 0.1\sigma$ at most) M. Zajaček • RM QSOs • The Restless Nature of AGN * 10 years later June 27, 2023 - Napoli 17/23

$\mathbf{H}\beta$ sample

lower-redshift sample

constraints in $\sim 2\sigma$ tension with BAO+H(z) (preference for decelerated expansion)

Likelihood contours for **flat (left)** and **non-flat (right)** ACDM model (see Khadka, Martinez-Aldama, Zajaček et al. 2022). M. Zajaček • **RM QSOs** • The Restless Nature of AGN * 10 years later June 27, 2023 - Napoli 18/23

Putting it all together

 Hubble diagram combining Hβ, MgII, and CIV RM QSOs with the maximum-likelihood flat ΛCDM model.

Figure: Hubble diagram of RM quasars (H β , MgII, and CIV) with the black solid line showing the inferred flat Λ CDM model with $H_0 = 68.86 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$ and $\Omega_{\rm m0} = 0.295$.

Conclusions

- MgII line is significantly variable and responds to the UV continuum emission,
- MgII R-L relation shows a significant correlation but is flatter than both Hβ and UV FeII relations,
- MgII (and CIV) R-L relation is independent of a cosmology model, and thus can be applied to standardize RM quasars,
- cosmological constraints from reverberation-mapped quasars are weaker in comparison with BAO+H(z) data,
- for MgII and CIV quasars, constraints are consistent with BAO+H(z) (Khadka et al. 2021, Cao et al. 2022). However, for H β quasars, there is $\sim 2\sigma$ tension with BAO+H(z) constraints (Khadka et al. 2022),
- the joint analysis MgII+CIV+BAO+H(z) leads to mildly tighter cosmological constraints (at most $\sim 0.1\sigma$) in comparison with BAO+H(z) sample alone (Cao et al. 2022).

R - L vs. $L_X - L_{UV}$ relation

- a sample of 58 X-ray detected reverberation-mapped quasars
- systematic differences between the two relations
- $L_X L_{UV}$ shows preference for high Ω_{m0}

Left: $L_X - L_{UV}$ relation; Right: R - L relation (Khadka, Zajaček et al., MNRAS in print)

R - L vs. $L_X - L_{UV}$ relation

a sample of 58 X-ray detected reverberation-mapped quasarssystematic differences between the two relations

■ $L_X - L_{UV}$ shows preference for high Ω_{m0}

Likelihood distributions for ACDM (Khadka, Zajaček et al., MNRAS in print)

R - L vs. $L_X - L_{UV}$ relation

- normally, both relations should give the same luminosity distance to the same source
- however, we obtain non-zero median luminosity distance difference $\log D_{L,L_X-L_{UV}} \log D_{L,R-L}$, systematically positive

Simple formula for UV/X-ray colour index: $E_{X-UV} = 2.172(1 - \gamma') < (\log D_{L,L_X-L_{UV}} - \log D_{L,R-L})_{ext} >$

M A S A R Y K U N I V E R S I T Y