

Resolving the BLR with VLTI/GRAVITY

Daryl Joe Santos, Taro Shimizu, Jinyi Shangguan, Richard Davies, Yixian Cao, Eckhard Sturm, Dieter Lutz, and the GRAVITY Collaboration The Restless Nature of AGN @ University of Naples, Jun. 26-30, 2023

GRAVITY-AGN Project: Goals and Questions

Main goal: To directly measure BLR structure and BH masses with GRAVITY and view in the context of AGN scaling relations (e.g., R-L relation) previously derived by other methods.

What can we learn about the BLRs of GRAVITY-observed AGNs? Where do GRAVITY-observed AGNs lie in the R-L relation?

Ultimate goal: Investigate R-L relation, study AGNs, and measure BH masses at **higher redshift**

Background	Results	Future Prospects	Conclusions
------------	---------	------------------	-------------

We have spatially resolved the BLRs of our 4 new targets

Photocenter fitting results, independent of any BLR models, indicate that we have spatially resolved their BLRs

However, photocenter fitting is not enough!

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

BLR Model Fitting

BLR Model based on Pancoast+14

The BLR is a collection of noninteracting clouds encircling the central SMBH.

BLR radius BH mass Tangential and radial velocities of each cloud

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

Background Results	Future Prospects	Conclusions
--------------------	------------------	-------------

GRAVITY BLR sizes vs. Classical R-L relation from Bentz+13

R-L relation: Lower BLR sizes at higher luminosities

Conclusion similar to works using RM campaigns that find lower BLR sizes at higher luminosities and/or higher accretion rates (e.g., Du & Wang, 2019)

More luminous (more massive) AGNs more difficult to observe with RM due to longer observation periods

Virial Factors of GRAVITY-observed AGNs

From GRAVITY observations $GM_{BH} = f_{FWHM} R_{BLR}^{\downarrow} (\Delta V)^2$

$$< f_{FWHM} > = 1.26 \pm 0.28$$

Similar with previous works' <f> calculated by assuming evidence outside RM (e.g., AGNs following quiescent galaxies' M-σ relation) (e.g., Onken+04, Woo+10, Park+12)

Pearson correlation p-value ~ 0.3 \rightarrow no significant trend

Santos, Daryl Joe

Observing z~2 quasars with GRAVITY Wide

Santos, Daryl Joe

Background	Results	Future Prospects	Conclusions

Location of LAMOST J0920 in the R-L Relation

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

RNoAGN @ Naples

Slide 10/13

Future Prospects: GRAVITY+

Future Prospects: GRAVITY+

Future Prospects: GRAVITY+

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

RNoAGN @ Naples

Slide 12/13

Santos, Daryl Joe

RNoAGN @ Naples

Slide 13/13

Resolving the BLR and investigating the R-L relation with VLTI/GRAVITY

Back-up slides

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions	
BLR Model				
BLR Model based	on Pancoast+14	The BLR is a collection of nor encircling the central SMBH.	-interacting clouds	
θ'/θ_{o}	D PA	BLR physical structure des several parameters that di clouds' position and motio	ctate the n (all angles are in radians).	
Angular cloud density Radial cloud density	β	$R_{\rm BLR}$ Mean radius of the BLR F Minimum radius of the BLR in units of $R_{\rm BLR}$ β Unit standard deviation of BLR radial profile θ_o Angular thickness measured from the mid-plane i Inclination angle PA Position angle of the line of nodes on sky (east of nort κ γ Clustering of the clouds at the edge of the disk ξ Mid-plane transparency $M_{\rm BH}$ Black hole mass $f_{\rm clip}$ Fraction of clouds in bound elliptical orbits $f_{\rm dev}$ Angular location for radial orbit distribution $\sigma_{\rho,crite}$ Radial standard deviation for cricular orbit distribution $\sigma_{\rho,radial}$ Radial standard deviation for radial orbit distribution $\sigma_{r,radial}$ Radial standard deviation for radial orbit distribution σ_{ratial} Radial standard deviation for radial orbit dis	LogUniform(10^{-4} , 10 pc) Uniform($0, 1$) Uniform($0, 2$) Uniform($0, 2/2$) Uniform($0, \pi/2$) Uniform($0, 2\pi/2$) Uniform($0, 5, 0, 5$) Uniform($0, 1$) LogUniform($10^5, 10^{10} M_{\odot}$) Uniform($0, 1$) Uniform($0, 1$) Uniform($0, 1$) Uniform($0, 1$) Uniform($0, 0, 1$) LogUniform($0, 001, 0, 1$) LogUniform($0, 001$	
	R _{min} R _{BLR} r	A_{emit} Central wavelength of the emission line f_{peak} Peak flux of the normalised line profile $(x_{\text{o}}, y_{\text{o}})$ Offset of the origin of the BLR	Norm(2,2896,0,002 µm) Uniform(0,05,0,065) Uniform(-1, 1 mas)	

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions
 Derivation of Let P_{cont} (orig. continuum pho at the origin = (0,0), and similar P_{cont} where w_i = flux (weight) of individ 	BLR Offset Model ptocenter) and P_{BLR} (BLR photocenter ar to the center of mass formula: $P_{nt} = \frac{\Sigma w_i r_i}{\Sigma w_i}$ Jual clouds.	Fainter side W _l = flux on the right side of the hot dust	Brighter side W _r = flux on the right side of the hot dust
• P'_{cont} = new continuum photo	ocenter		uuse
• If the not dust is composed of fluxes, W_l and W_r , we have: $P'_{cont} = \frac{\Sigma w_l r_l + \Sigma w_r r_r}{\Sigma w_l + \Sigma w_r}$ $= \frac{1}{\pi (W_l + W_r)} \left(W_l R_{dust} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} cos\theta d\theta + \frac{2(W_r R_{dust} - W_l R_{dust})}{\pi (W_l + W_r)} = \frac{2R_{dus}}{\pi (W_l + W_r)} \right)$	$-W_r R_{dust} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} cos\theta d\theta \Big) *$ $\frac{t}{V_l + W_r} *Because r_r$ (symmetry in y	Since $R_{off} = P'_{cont} - P_{BLR} = R$ $R_{off} = \frac{1}{\pi} \left(\frac{W_r - V_r}{W_r + V_r} \right)$ $\rightarrow f = \frac{R_{off}}{R_{dust}} =$ To calculate W_r/W_l , we have: $= -r_l$ y-axis) $\frac{W_r}{W_l} = \frac{2 + V_r}{2 - V_r}$	P'_{cont} , we have: $\frac{W_l}{W_l} 2R_{dust}$ $\frac{2}{\pi} \frac{W_r - W_l}{W_r + W_l}$

Santos, Daryl Joe

Backyrounu	Targets	Methous	Results & Conclusions
	- 100	• • - •	

Differential Phase

Differential phase (Δφ) – relative position of the fringe phase along wavelengths (measured wrt the hot dust continuum photocenter)

Santos, Daryl Joe

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions	
Differential Phase				

Differential phase (Δφ) – relative position of the fringe phase along wavelengths (measured wrt the hot dust continuum photocenter)

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions	
Differential Phase				

Differential phase (Δφ) – relative position of the fringe phase along wavelengths (measured wrt the hot dust continuum photocenter)

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions	
Differential Phase				

Differential phase (Δφ) – relative position of the fringe phase along wavelengths (measured wrt the hot dust continuum photocenter)

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions
------------	---------	---------	----------------------------------

Asymmetries in the BLR Model

Parameters that can reproduce asymmetric differential phase signals

BLR emission anisotropy (κ)

 $w = 0.5 + \kappa \cos \varphi$,

where w = weighting/relative strength of a cloud's emission φ = angle b/w LoS and BH

κ= -0.5 → preferential emission from the far side of the BLR from the observer

κ= +0.5 → preferential emission from the near side of the BLR from the observer

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions
------------	---------	---------	----------------------------------

Asymmetries in the BLR Model

Parameters that can reproduce asymmetric differential phase signals

BLR mid-plane transparency (ξ)

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions
------------	---------	---------	-----------------------

Asymmetries in the BLR Model

Parameters that can reproduce asymmetric differential phase signals

BLR mid-plane transparency (ξ)

Santos, Daryl Joe

Background	largets	Methods	Results & Conclusions		

BLR Asymmetry of Mrk 509

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

RNoAGN @ Naples

7

Ś

velocity (10³ km

-2 O

Background	-	Targets	Methods Results & Conclusions		isions	
	BL	R Asymmet	ry of P	PDS 456		
K -0.47	Near side +0.5	Larger clouds larger к Smaller cloud smaller к	s → Is →	1000 (b) 750 (b) 500 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 456 • • • • • • • • • •	/ (10 ³ km s ⁻¹)
W/ obscuration	0.77 V/o obscuration	More clouds b midplane \rightarrow w obscuration Fewer clouds midplane \rightarrow w obscuration	elow ∛ ⁄o below ⁄ith	-250 -500 -750 -1000 -1000 -750 -500 -250 Δ	² ² ² ² ² ² ² ²	-2 COS velocity

ation obscuration

RNoAGN @ Naples

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions
	BLR Fitting Resu	lts for all 4 AGNs	
0.4 (a) Mrk 509 (a) 0.2 0.0 0.0	1.1 0.4 (b) PDS 456 1.4 1.2 1.0 NJ point 0.9 0.0 0.1 0.8 NJ point 0.8		

Target	log R _{BLR} [ld]	$\log{\rm M_{BH}} [{\rm M_{\odot}}]$
Mrk 509	$1.74^{+0.16}_{-0.12}$	$7.74_{-0.15}^{+0.21}$
PDS 456	$2.38^{+0.19}_{-0.27}$	$8.02^{+0.23}_{-0.28}$
Mrk 1239	$1.56^{+0.24}_{-0.53}$	$7.22^{+0.39}_{-0.68}$
IC 4329A	$0.92^{+0.14}_{-0.20}$	$8.18^{+0.18}_{-0.22}$

Santos, Daryl Joe

Importance of Differential Phase in BLR Fitting

Results & Conclusions

Methods

Figure shows posterior distribution of BLR radius (left column) and BH mass (right column) with (orange histogram) and without (blue histogram) phase data.

Posterior distribution derived with phase data has much clearer peaks \rightarrow better fitting

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

Phase signals of Mrk 1239 and IC 4329A act as a limit

Are the differential phase spectra of Mrk 1239 and IC 4329A and their corresponding model-derived differential phase spectra reliable?

As a check, we investigate the expected range of phase signals for Mrk 1239 and IC 4329A fitting only their flux spectra.

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions
------------	---------	---------	-----------------------

Phase signals of Mrk 1239 and IC 4329A act as a limit

Since we have the uv-coordinates of the baselines (u) and we can calculate for the centroids corresponding to each spectral channel ($x_{BLR,\lambda}$), we can calculate for the differential phase in each spectral channel ($\Delta \phi_{\lambda}$).

$$\Delta \phi_{\lambda} = -2\pi \left(\frac{f_{\lambda}}{1+f_{\lambda}}\right) \boldsymbol{u} \cdot \boldsymbol{x}_{\boldsymbol{BLR},\lambda}$$

During calculation, the BH masses of each resulting best-fit model is fixed to their minimum and maximum values based on previous literature.

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

Background Targets Methods Results & Conclus	sions
--	-------

Phase signals of Mrk 1239 and IC 4329A act as a limit

Since the BLR size, inclination angle, and BH mass are degenerate, the expected phase signals will also reflect the possible inclination angles and BLR sizes for these objects

Fitting only the flux spectrum gives a wide range of possible BLR sizes/inclination angles.

Weak phase signals of Mrk 1239 and IC 4329A act as a constraint.

Santos, Daryl Joe

Sample Selection for GRAVITY-AGN Project

- 1. Nuclear K \lesssim 10, V \lesssim 15 mag
- 2. Type 1 (Sy1/QSO with broad Paα or Bry lines)
- 3. Large predicted BLR phase signals
- 4. Spanning the full range of AGN luminosity
- 5. Spanning a full range of system position angle or BLR kinematics information (either from velocity-resolved RM, MIR interferometry, radio, and/or high-resolution narrow emission line observations)

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions

Origin of BLR offset

	Background Targets Methods Results & Conclusions
--	--

Origin of BLR offset

Possible reason: Asymmetric emission from hot dust

> On average, the hot dust of GRAVITYobserved AGNs emit anisotropically, with one side ~33% brighter than the other.

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions
	GRAVIT	Y-Wide ⊢	~30"
GRAVITY: Fringer source and scient within VLTI's For $\sim 2''$	tracker (FT) ace target (SC) / (~2") GRA Wid axis trac sep FT a ~30	AVITY Wide: e-angle off- fringe king \rightarrow aration b/w and SC up to	SC GRAVITY FT SC

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions

GRAVITY+

- Laser guide stars for all telescopes
- Wide-field off-axis fringe tracking (GRAVITY Wide)
- Fainter (K = 22 mag) targets

Santos, Daryl Joe

Background	Targets	Methods	Results & Conclusions

Offset of BLR sizes from classical R-L relation vs. Eddington ratio

Resolving the BLR w/ GRAVITY

Santos, Daryl Joe