Seoul National University AGN Monitoring Project (SAMP)

Investigating the High-Luminosity End of H β Radius-Luminosity relation

Shu Wang Seoul National University

in collaboration with Jong-Hak Woo, and entire SAMP collaboration

Neasuring Mbh

Credit: Nahks Tr'Ehnl (Penn State University)

$H\beta$ Radius — Luminosity relation

Establishment.

 Kaspi et al. (2000); Bentz et al. (2009, 2013)

Single-epoch BH mass.

- Greene & Ho (2005); Vestergaard & Peterson (2006); Shen et al. (2011); Liu et al. (2019); etc
- Constrain cosmology:
 - Watson et al. (2011); Martínez-Aldama et al. (2019); Khadka et al. (2021,2022), etc

$H\beta$ Radius — Luminosity relation

Sample is biased to low-tomoderate L₅₁₀₀ and low-z AGNs

Difficulty:
1. requiring large amount of observing resources and long baseline;
2. variability are typically not large

Complications

- Much more scattered, especially at high Luminosity end (~0.8 dex difference at >10^{45.0} erg s⁻¹)
- Systematic offset for super
 Eddington accreting BHs (e.g., Du et al. 2015, Du & Wang 2019)

Li et al. (2021)

Consequences

- Bias in the single-epoch BH mass estimation, especially at high Luminoisty (high-z)
- Weak constraints to cosmology (e.g., Khadka et al. 2022)

Li et al. (2021)

Seoul National University AGN Monitoring Project (SAMP)

Program design (Woo et al. 2019) From 100 relatively high luminosity AGNs out to z~0.5

SAMP final sample

We select 32 objects with large variability as final sample

- Luminosity range:
 - $L_{5100} = 1044.0 45.6 \text{ erg s}^{-1}$
- Redshift range:
 0.08 ~ 0.37
- Most have strong [O III]

SAMP observation

Statistics:

• Six-year baseline

• Photometry:

- cadence: 3-5 days
- Two bands (B, V) taken
- Spectroscopy:
 - cadence: 15-20 days
 - High SNR for sinigle-epoch spectrum

MDM 1.3m

LOAO 1m

Lick 1m

LCOGT

DOAO

Spectroscopy

MDM Hiltner 2.4m

Lick Shane 3m

SAVP collaboration

Program PI: Jong-Hak Woo (SNU) Main contribution (Co-PI): • Tommaso Treu (UCLA)

Other main contribution: Shu Wang, Donghoon Son, Suvendu Rakshit (ARIES), Hojin Cho, Edmund Hodges-Kluck (U-M), Vivian U (UCI), Jaejin Shin (KASI), Amit Kumar Mandal, Changseok Kim, Minjin Kim (KNU), Tae-Woo Kim, Hengxiao Guo (SHAO), and all participated observers

Elena Gallo (U-M)

• Aaron Barth (UCI)

Vardha N. Bennert (Car Poly)

R—L relation from SAMP

- 1. SAMP high-luminosity AGNs are located beneath the expectation from Bentz et al. relation.
- 2. The best-fit slope is around 0.4.

Deviation vs. Eddington ratio (λ_{Edd})

SAMP has moderate 2_{Edd}

Woo et al. (2023), submitted

Deviation vs. Rre

1. There is no trend within SAMP

Combining with historical measurement, the trend against R_{Fe} is present but not very strong

Use uniform lag measurement

What about BLR kinematics?

$M_{\rm BH} = \frac{f R_{\rm BLR} \Delta V^2}{G}$

- f factor is the main uncertainties in RM / SE BH mass
- Velocity Resolved RM

Other main results

(1) $H\alpha$ lags and R-L relation

Cho et al. (2023), ApJ, accepted

(2) continuum RM

Mandal et al. (2023), in preparation

Summary

- 1. SAMP is a 6-year dedicated RM program, aiming to constrain the high-luminosity end of R-L relation. (Woo et al. 2019)
- 2. We monitored 32 moderate to high-luminosity AGNs, and successfully measured 24 reliable lags (Woo et al. 2023)
- 3. These high-luminosity AGNs are located *beneath* the expectation from Bentz et al. relation. The best-fit slope is **around 0.4.** An uniform lag analysis is needed for understanding the relation between deviation and AGN parameters.
- Velocity-resolved lags are measured for ~15 objects (Wang et al. 4 2023b, in prepration)

Contact: wangshu100002@gmail.com

