

Paula Sánchez Sáez, ESO Garching Fellow

ALeRCE

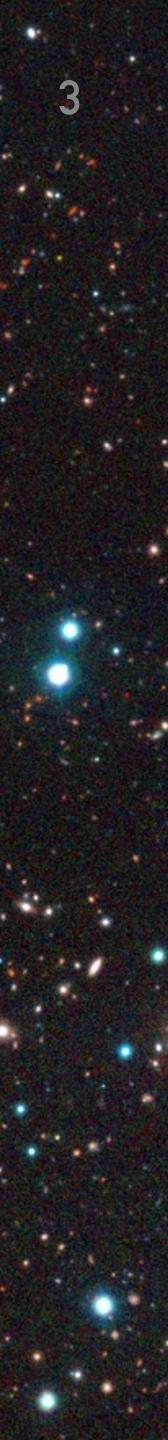
Searching for different AGN populations in massive datasets with Machine Learning

Napoli, June 30th 2023

1. VARIABILITY AND COLOR-BASED AGN CLASSIFIER

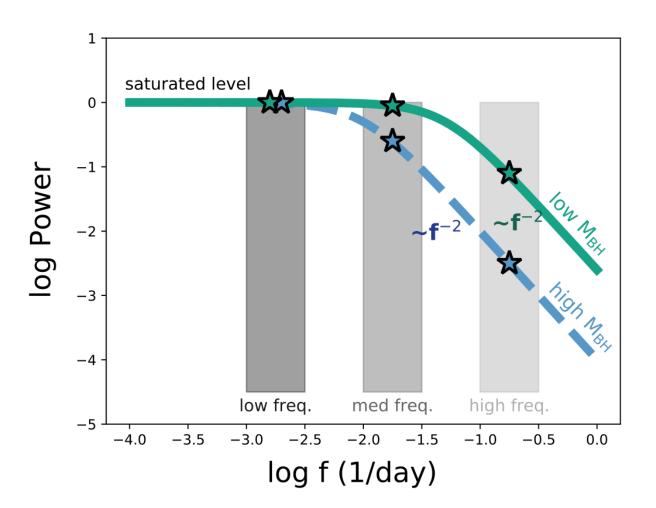
2. SEARCHING FOR CSAGNS WITH ANOMALY DETECTION

1. VARIABILITY AND COLOR-BASED AGN CLASSIFIER



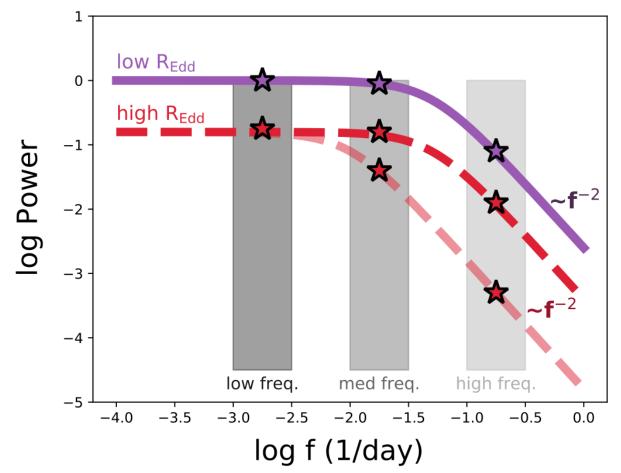
Variability-based selection of AGN candidates

The variability properties (i.e., PSD normalization and breaking time scale) are correlated with the AGN physical properties



Arévalo et al. 2023a, 2023b, submitted (**5400 sources**): correlation between timescale of the variations and the black hole mass and accretion rate, and negative correlation between accretion rate and variability amplitude.

Variability selection is particularly efficient in finding low-mass and low-accretion rate candidates!

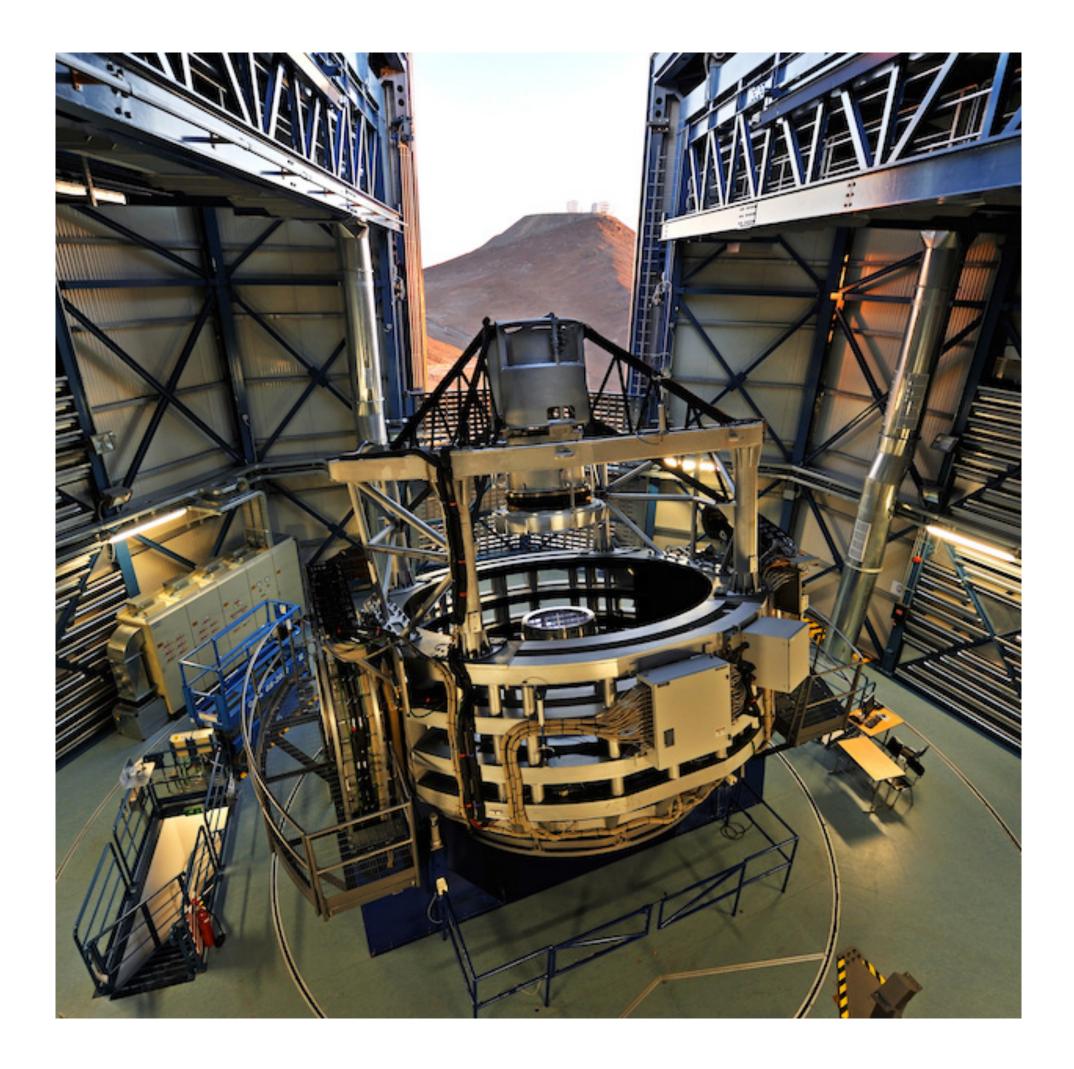


The 4MOST Chilean AGN/Galaxy Evolution Survey (ChANGES)

4MOST-ChANGES (PIs: Franz Bauer, Paulina Lira) will target a legacy sample of AGNs, based on optical continuum variability and SED selection from several existing surveys, and ultimately complemented by Rubin LSST to:

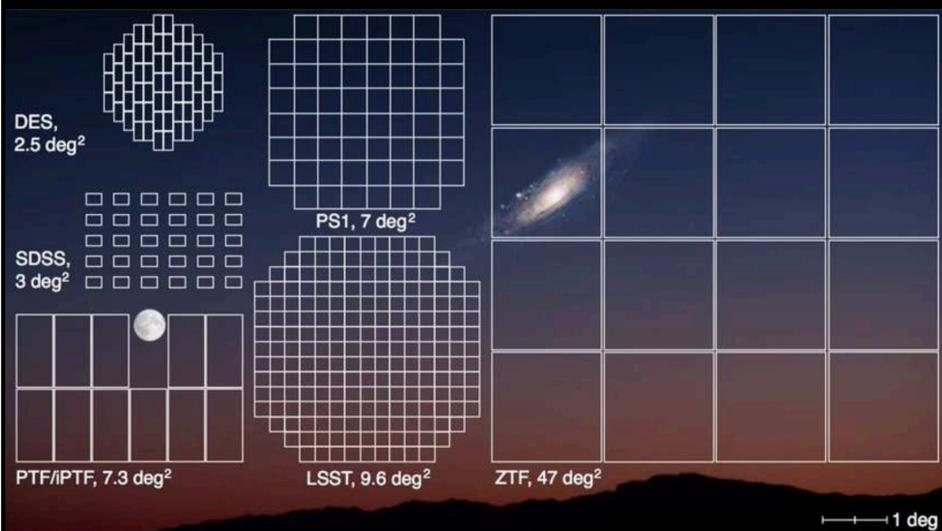
- constrain the low-MBH, and low-L/LEdd end 1)
- 2) investigate correlations among AGN (MBH, L/LEdd, UV) slope, outflows, variability) and host properties (stellar age, metallicity, kinematics)
- 3) target/confirm rare BH subsamples (extreme variability, tidal disruption events, lensed, intervening absorption line systems)

Searching for different AGN populations in massive datasets with Machine Learning 5



The Zwicky Transient Facility (ZTF)

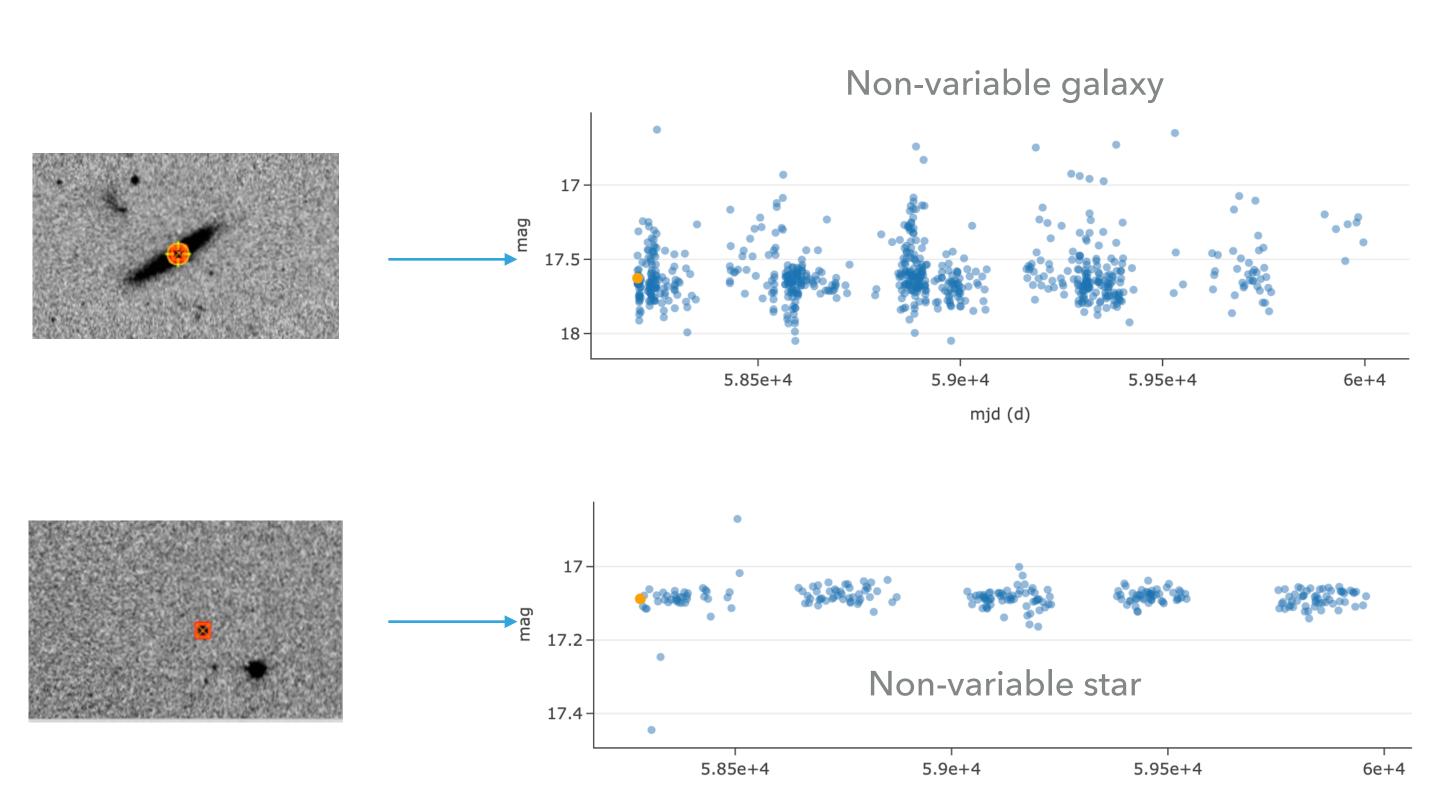
Aerial shot of the Palomar Observatory in Southern California, USA Image credit: Palomar Observatory/Caltech



Field of view	47 sq. degrees
Detectors	16 e2v 6k x 6k CCD231-C6
Pixel size	15 microns
Pixel scale	1.0"/pixel
Median Delivered Image Quality	2.0" FWHM
Exposure time	30 sec
Readout time	10 sec
Median Time Between Exposures	15 sec
Median Single Visit Depth (5 sigma, R band)	20.4 mag (all lunar phases)
Filters	g, r, i
Areal survey rate	3750 square degrees/hour

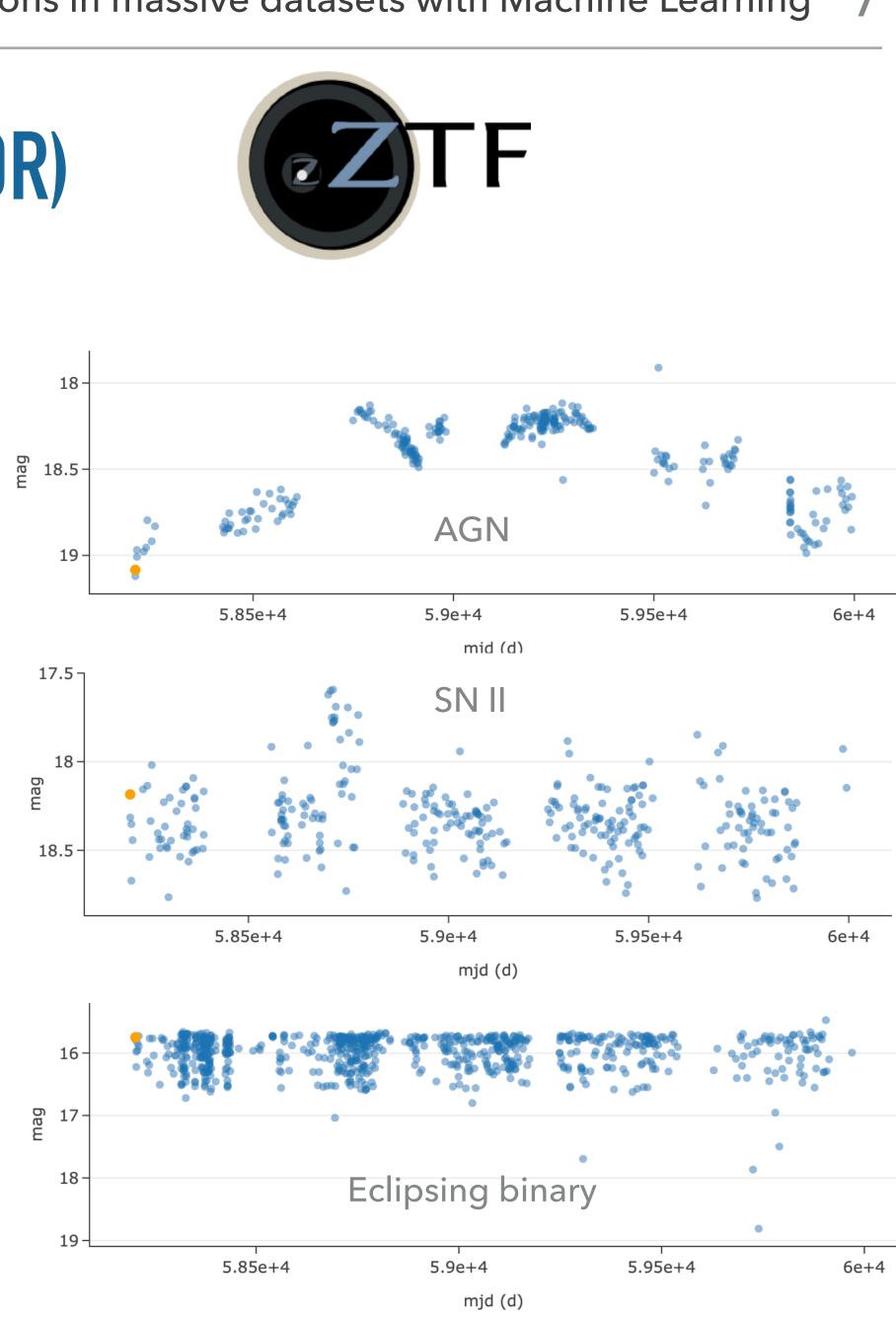
The Zwicky Transient Facility (ZTF) data releases (DR)

Data releases (DRs): PSF photometry over the all the ZTF images.



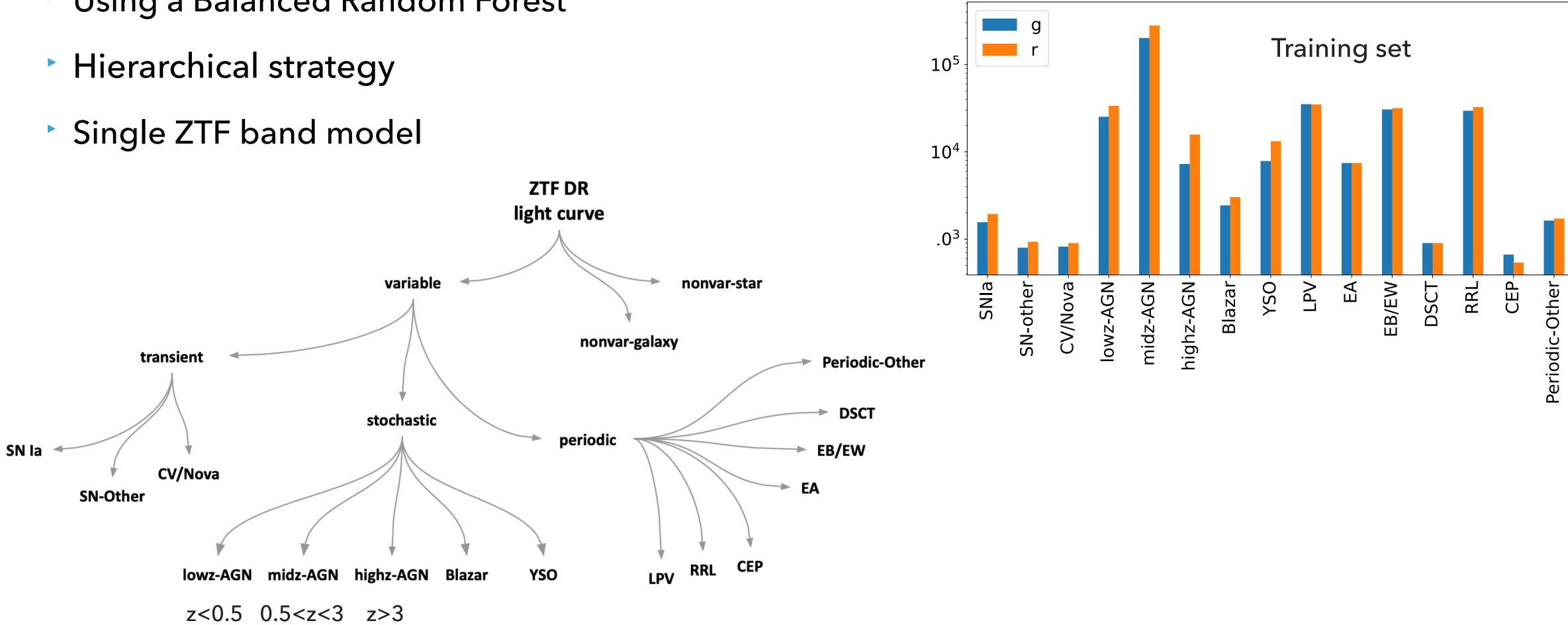
mjd (d)

Searching for different AGN populations in massive datasets with Machine Learning 7

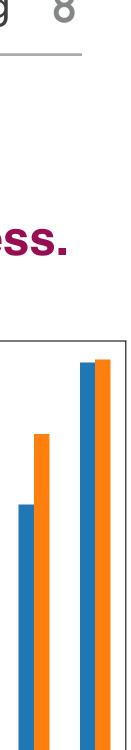


The ZTF DR light curve classifier

- Using a Balanced Random Forest



Sánchez-Sáez et al. 2023, A&A, in press.

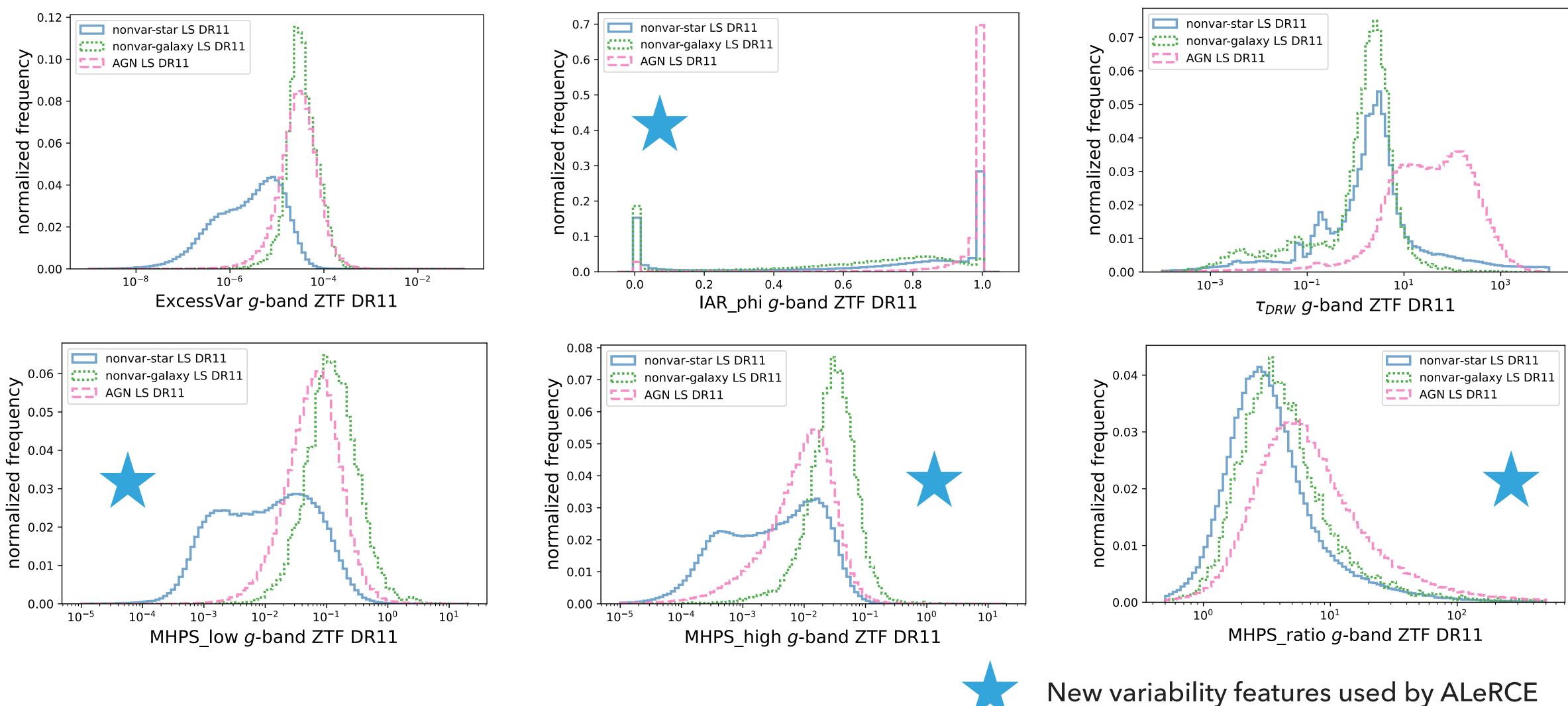


J-Y-	
ala	
F.G	
Va	
NO	

nonvar-sta

Paula Sánchez Sáez

The ZTF DR light curve classifier: features



Searching for different AGN populations in massive datasets with Machine Learning 9

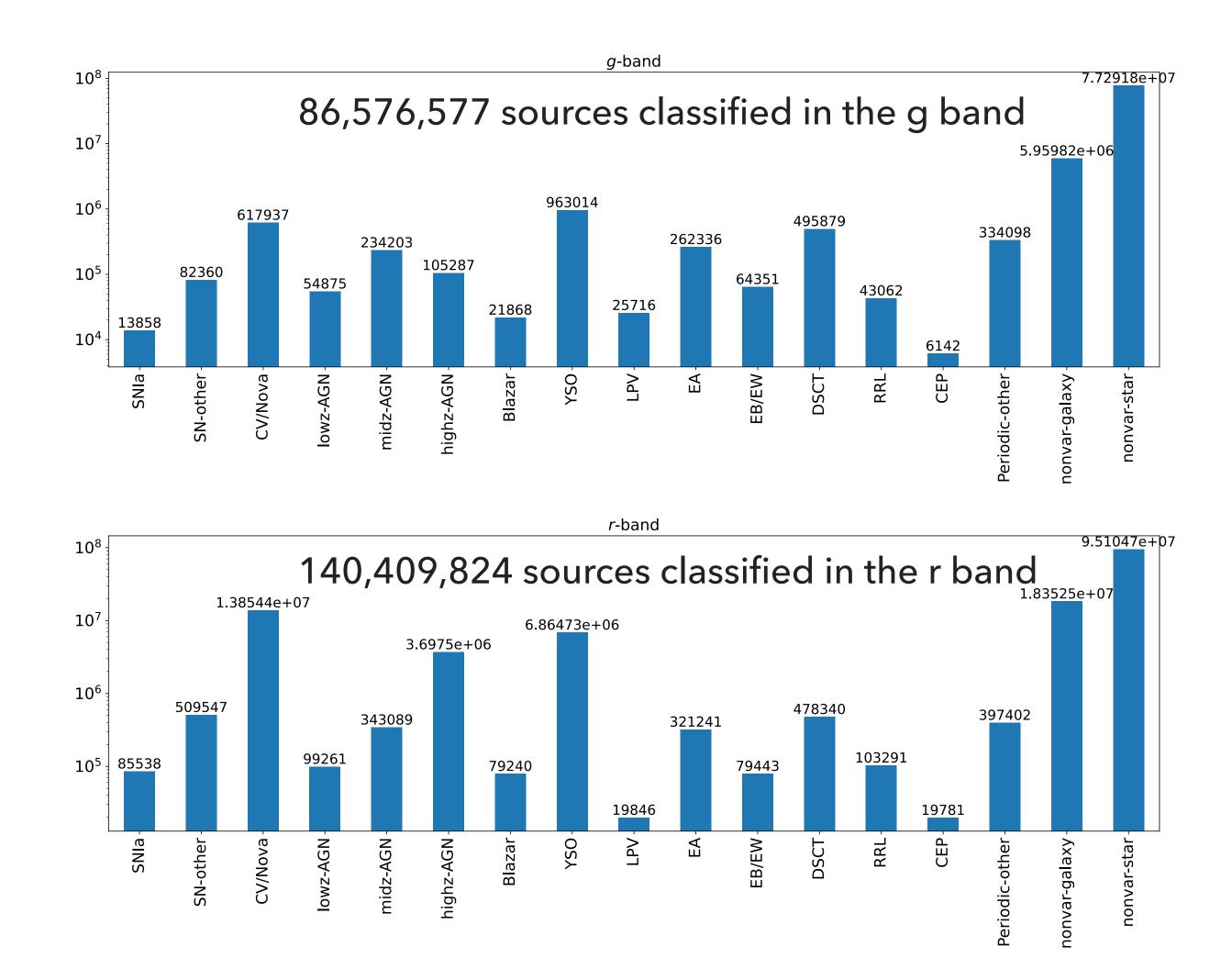
Sánchez-Sáez et al. 2023, A&A, in press.

The ZTF DR light curve classifier: results

								<i>g</i> -	-bar	nd							
SNIa -	38	10	0	0	0	0	0	0	0	0	0	0	0	0	0	52	0
SN-other-	7	35	0	0	0	0	0	0	0	0	0	0	0	0	0	58	0
CV/Nova-	0	0	86	0	0	1	0	1	0	1	0	1	1	1	1	1	7
lowz-AGN -	0	0	0	53	5	1	4	0	0	0	0	0	0	0	0	36	0
midz-AGN -	0	0	0	7	79	11	2	0	0	0	0	0	0	0	0	0	0
highz-AGN -	0	0	1	0	5	89	1	0	0	0	0	0	0	0	0	1	2
Blazar-	3	2	5	5	4	2	56	0	2	0	0	0	0	0	0	21	0
YSO-	0	0	8	0	0	0	0	43	7	2	1	2	0	1	9	3	23
LPV -	0	0	0	0	0	0	0	0	98	0	0	0	0	1	0	0	0
EA-	0	0	1	0	0	0	0	0	0	90	4	0	0	0	2	0	3
EB/EW -	0	0	0	0	0	0	0	0	0	6	82	2	1	0	6	0	1
DSCT-	0	0	2	0	0	0	0	3	0	2	3	83	1	0	1	0	5
RRL-	0	0	1	0	0	0	0	0	0	0	2	1	90	3	1	0	1
CEP-	0	0	0	0	0	0	1	0	1	2	1	0	5	86	5	0	0
Periodic-other-	0	0	2	0	0	0	0	1	2	2	12	3	2	3	65	0	6
nonvar-galaxy -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	99	0
nonvar-star-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
	SNIa -	SN-other -	CV/Nova -	- NDA-ZMOI	midz-AGN -	highz-AGN -	Blazar -	- OSY	- LPV -	EA -	EB/EW -	DSCT -	RRL-	CEP -	Periodic-other-	nonvar-galaxy -	nonvar-star -
							Pr	edio	cted	lab	el						

Searching for different AGN populations in massive datasets with Machine Learning

Sánchez-Sáez et al. 2023, A&A, in press.



X	1	Π
1	4	U

The ZTF DR light curve classifier: results

Comparison with Chen+2020

						Ch	en+	202	0 vs	ZTF	DR	11	g-ba	and				
	EW-	0	0	1	0	0	0	0	0	0	2	90	2	0	0	0	0	4
	EA-	0	0	1	0	0	0	0	0	0	84	11	0	0	1	0	0	2
	Mira-	0	0	1	0	0	0	0	0	97	0	0	0	0	1	0	0	0
)e	RR-	0	0	1	0	0	0	0	0	0	0	0	0	96	3	0	0	0
0 lak	RRc-	0	0	0	0	0	0	0	0	0	0	4	1	95	0	0	0	0
Chen+2020 label	BYDra-	0	0	5	0	0	0	0	4	0	1	1	0	2	3	0	1	82
en +	RSCVN -	0	0	4	0	0	0	0	5	0	4	27	12	3	8	0	1	35
Che	SR-	0	0	2	4	1	0	1	1	80	1	0	0	0	5	0	0	4
	DSCT-	0	0	1	0	0	0	0	0	0	0	1	97	0	0	0	0	1
	CEPII -	0	0	0	0	0	0	0	0	0	0	0	0	5	95	0	0	0
	CEP-	0	0	0	0	0	0	0	1	0	3	0	0	2	93	0	0	0
		- SNIa	SN-other-	CV/Nova-	- NDA-ZMON	midz-AGN -	highz-AGN -	Blazar-	- VSO	- LPV -	EA	EB/EW -	DSCT -	- RRL	CEP-	Periodic-Other -	nonvar-galaxy -	nonvar-star-

ZTF DR11 label

Searching for different AGN populations in massive datasets with Machine Learning

						ZTF	DR	11	g-ba	and h	nigh	pro	bab	ility				
	SNIa -	60	5	0	0	0	0	0	0	0	0	0	0	0	0	0	34	0
	SNIbc -	29	57	0	0	0	0	0	0	0	0	0	0	0	0	0	14	0
	SNII -	8	65	0	0	0	0	0	0	0	0	0	0	0	0	0	27	0
	SLSN -	10	75	0	5	0	0	5	0	0	0	0	0	0	0	0	5	0
	CV/Nova-	0	0	98	0	0	0	0	0	0	2	0	0	0	0	0	1	0
<u>(D</u>	QSO -	0	0	0	8	86	4	2	0	0	0	0	0	0	0	0	0	0
labe	AGN -	0	1	0	81	0	0	6	0	0	0	0	0	0	0	0	11	0
alert	Blazar-	0	2	12	8	21	2	50	0	1	0	0	0	0	0	0	4	0
ZTF a	YSO-	0	0	14	0	0	0	1	50	4	2	10	0	0	1	0	1	17
N	LPV -	0	0	1	0	0	0	0	0	98	0	0	0	0	0	0	0	0
	E	0	0	0	0	0	0	0	0	0	14	85	0	0	0	0	0	1
	DSCT-	0	0	5	0	0	0	0	0	0	6	4	81	4	0	0	0	1
	RRL		0	0	0	0	0	0	0	0	0	0	0	97	2	0	0	0
	CEP-	0	0	3	0	0	0	0	0	6	16	1	0	4	69	0	0	0
F	Periodic-Other	0	0	4	0	0	0	0	1	0	15	9	1	0	1	0	0	70
		SNIa -	SN-other-	CV/Nova	lowz-AGN	midz-AGN-	highz-AGN-	Blazar-	- VSO-		EA	EB/EW	DSCT -	RRL-	CEP-	Periodic-Other-	nonvar-galaxy-	nonvar-star-

Comparison with the ALeRCE alerts classifier

ZTF DR11 label

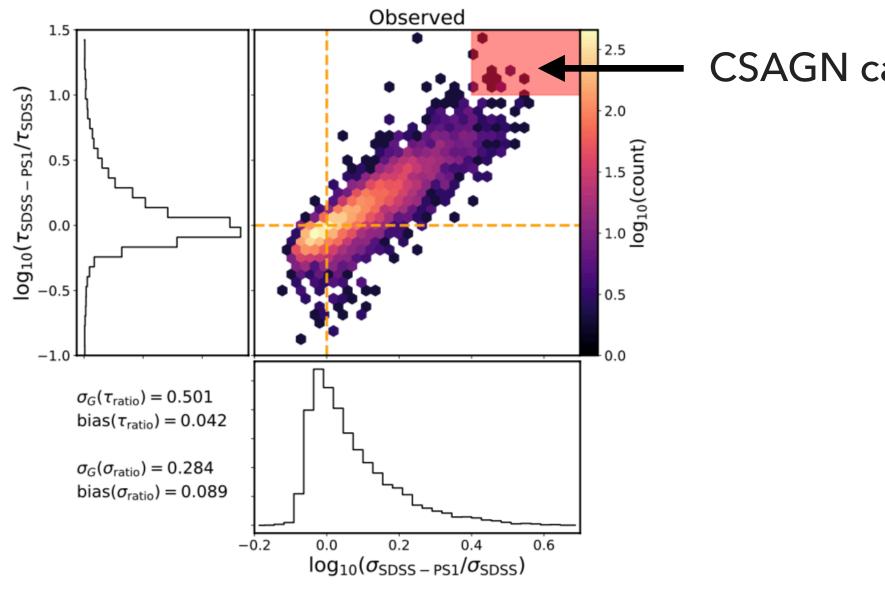
	4	1	
J	L		

2. SEARCHING FOR CSAGNS WITH ANOMALY DETECTION

Detecting CSAGN events in massive datasets

detection techniques.

Rubin / LSST data.



Suberlak et al. 2021

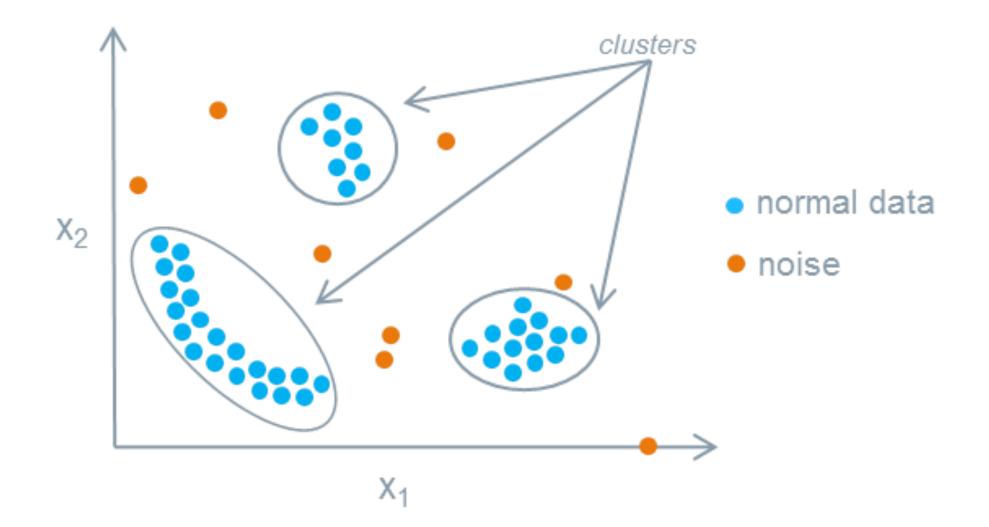
- The goal of this work is to create a method to search for CSAGN candidates in massive data sets, using anomaly
- Currently, we use data from the Zwicky Transient Facility data releases, and in the future we will apply this to Vera

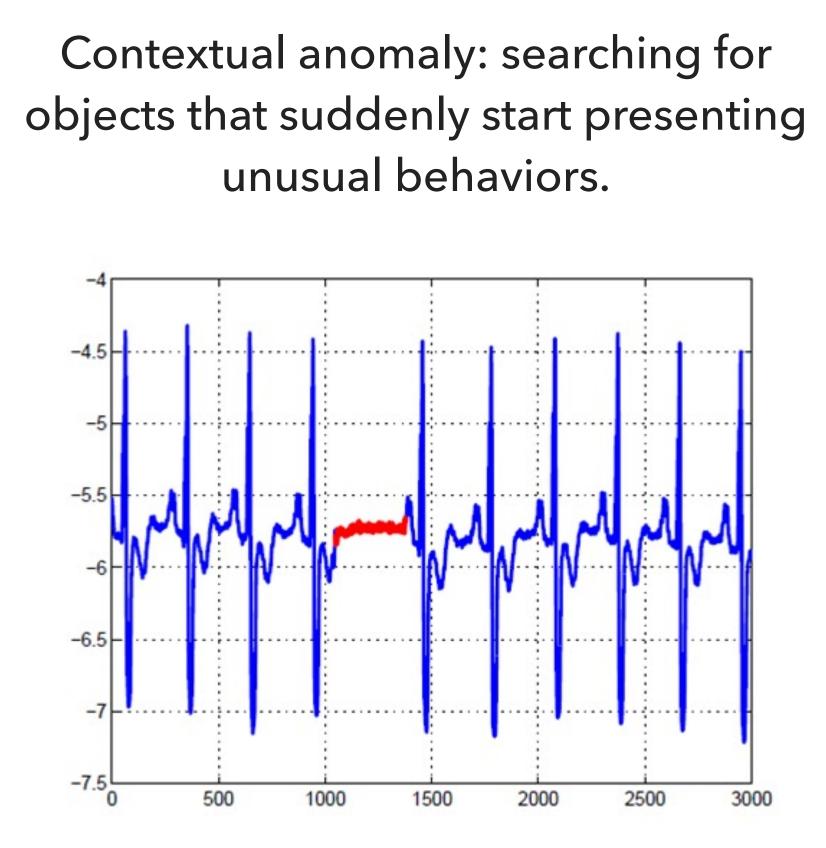
CSAGN candidates

Anomaly detection (AD)

AD correspond to the identification of rare events or observations that differ significantly from the majority of the data.

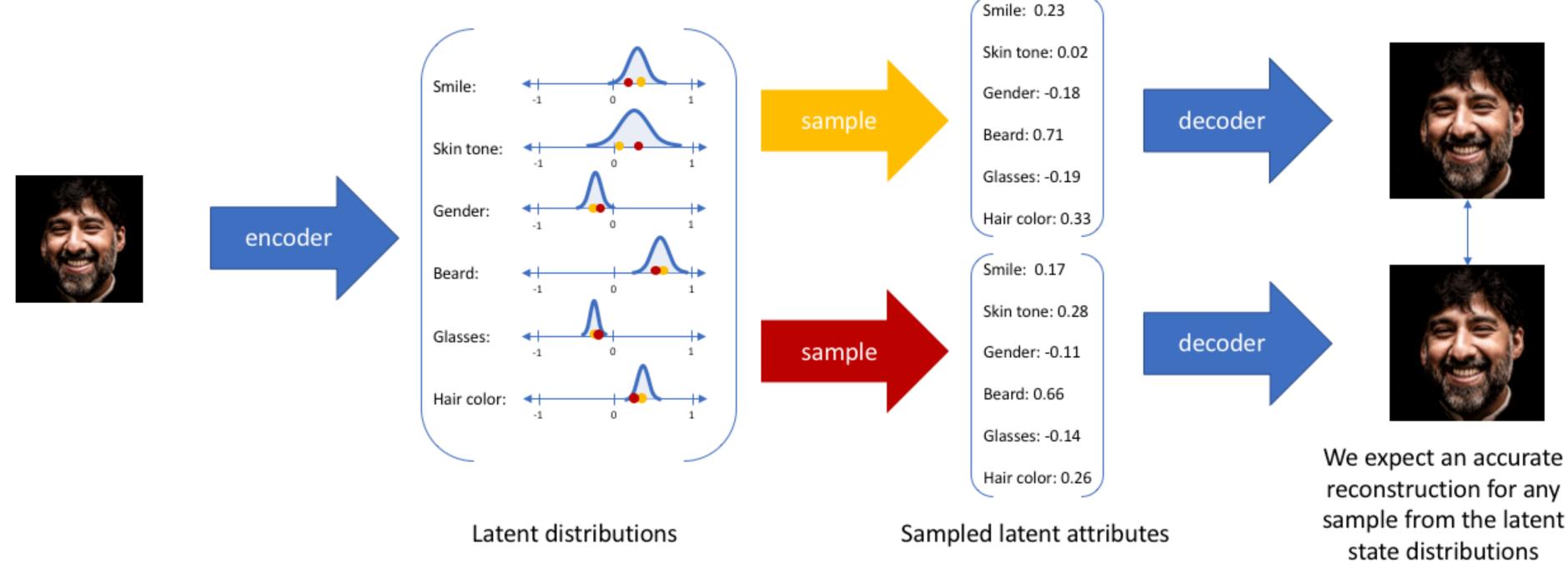
Out of distribution anomaly: searching for unusual objects within datasets.





Variational Autoencoders (VAEs)

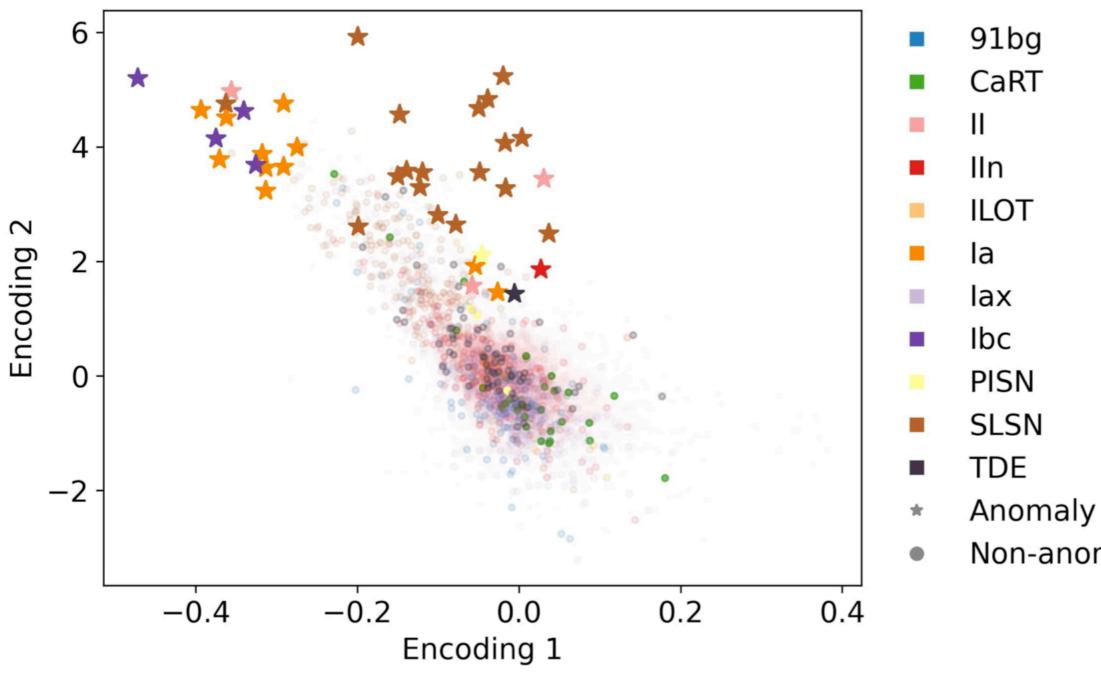
VAEs correspond to a modification of the more classical Autoencoder (AE) architectures. In this case, the latent representations are described by multivariate normal distributions, where each attribute or feature in the latent space is described by a latent mean (μ) and a latent variance (σ^2), which can be used to randomly sample a set of attributes.



Credits: https://www.jeremyjordan.me/variational-autoencoders/

Variational Recurrent Autoencoders (VRAEs) for time series anomaly detection

Out of distribution AD: using the latent space to define outliers that are in atypical locations of latent space (e.g., Villar+2021)



Searching for different AGN populations in massive datasets with Machine Learning 16

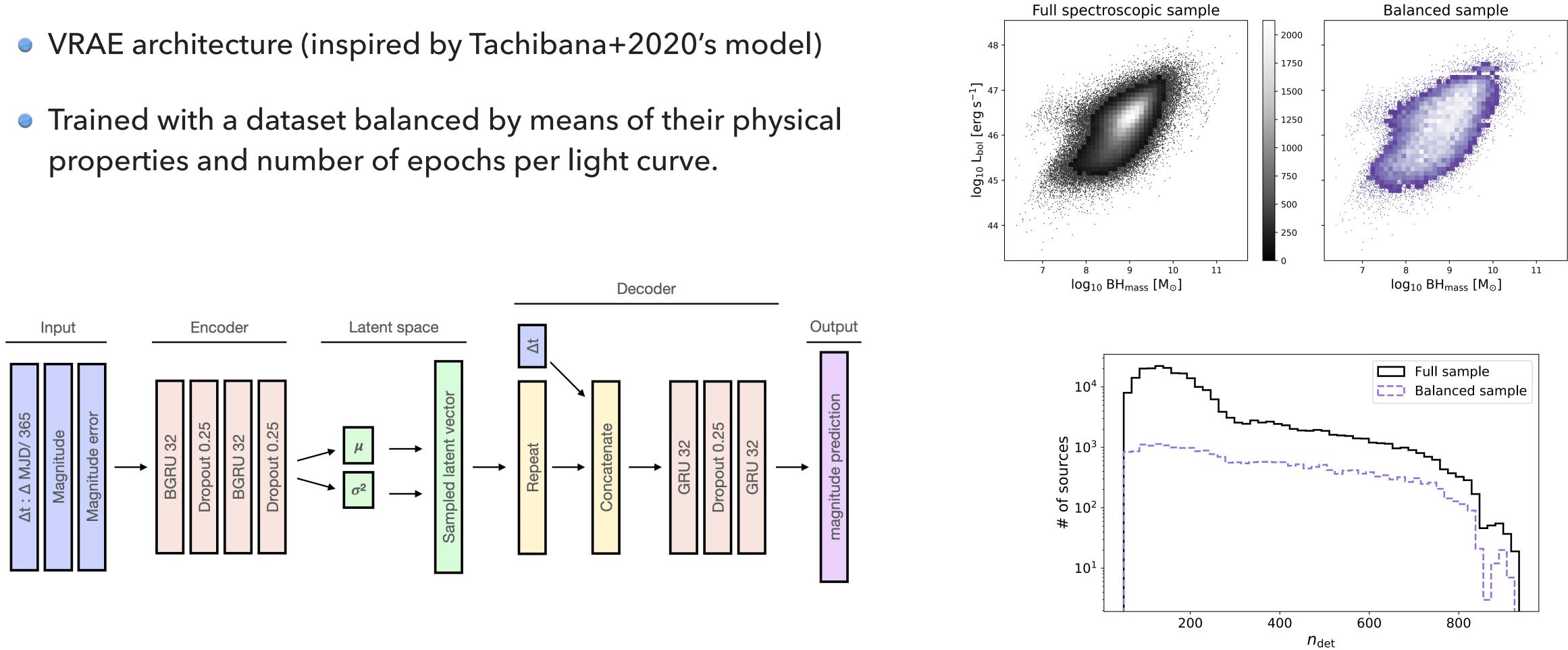
reconstruction error of the VRAE as an anomaly score 50 **Previous Week** 160 Anomaly 140 120 100 60 40 **Current Week**

Contextual AD: using the

Non-anomaly

VRAEs to model AGN variability

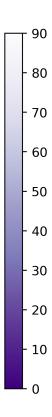
- properties and number of epochs per light curve.



Searching for different AGN populations in massive datasets with Machine Learning 17

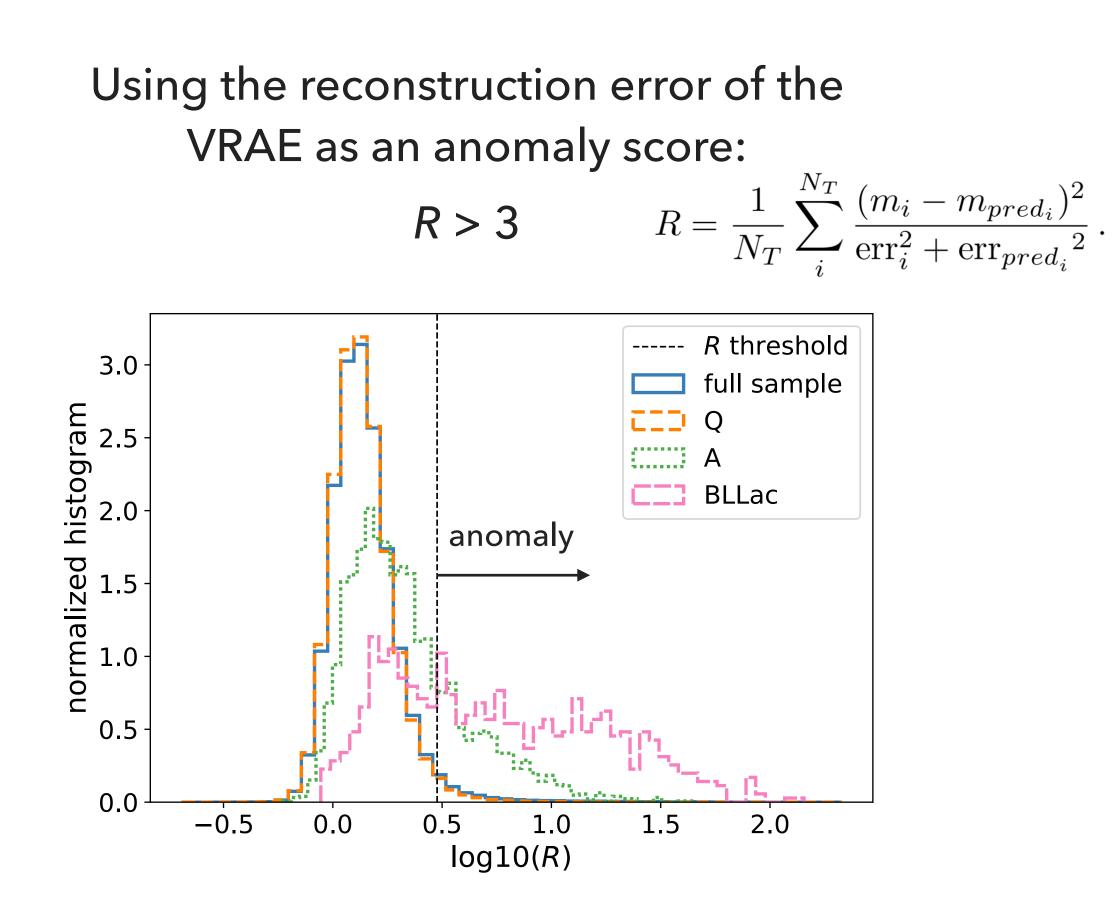
Sánchez-Sáez et al. 2021, AJ, 162, 206

230,451 AGN light curves from ZTF DR5 (including different classes from the MILLIQUAS and ROMABZCAT catalogs)



VRAEs for AGN variability anomaly detection Sánchez-Sáez et al. 2021, AJ, 162, 206

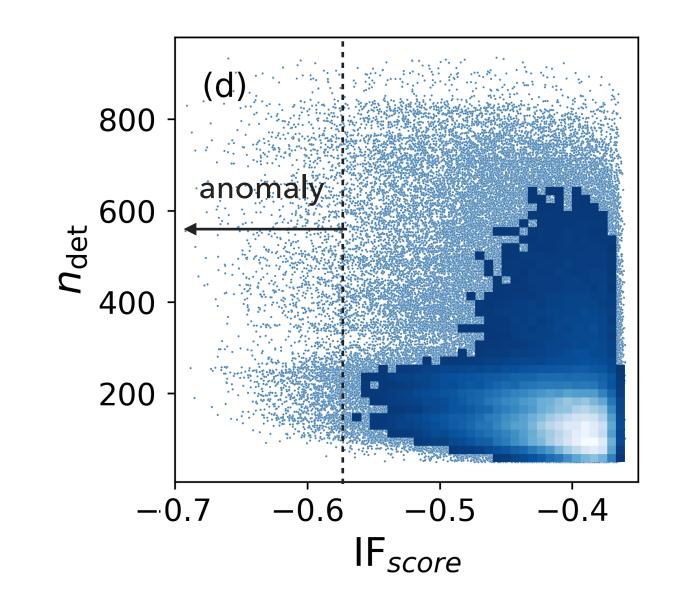
We trained the VRAE architecture with a balanced sample, and then applied it to the full set of 230,451 light curves. We selected anomalies by:



Searching for different AGN populations in massive datasets with Machine Learning 18

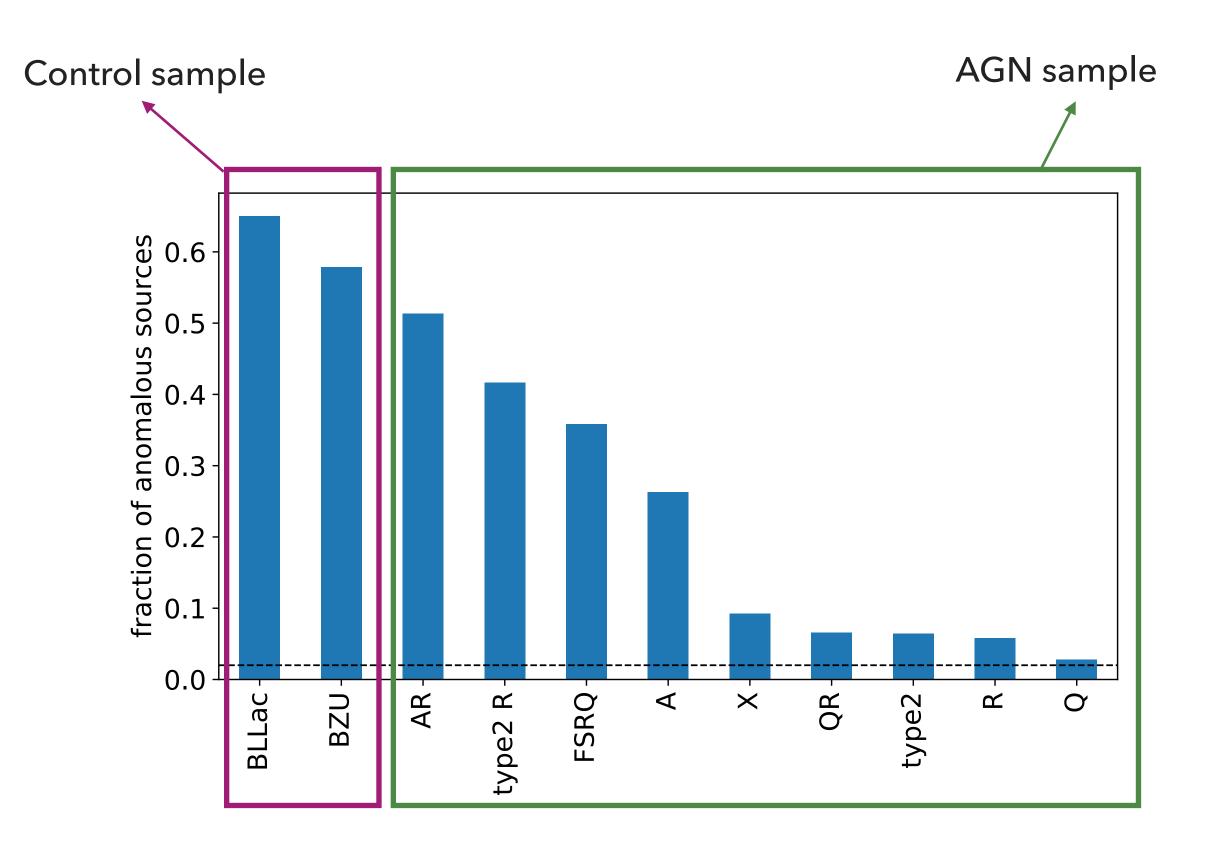
Using the latent space attributes with an Isolation Forest algorithm (IF):

IF_score < IF threshold 2% contaminants (-0.57633)



VRAEs for AGN variability anomaly detection: results

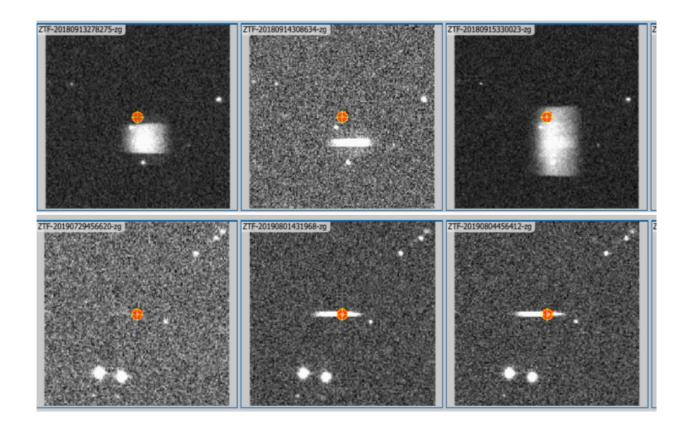
We selected 8,809 anomalies.



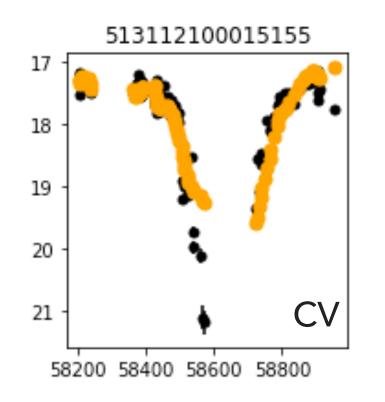
Sánchez-Sáez et al. 2021, AJ, 162, 206

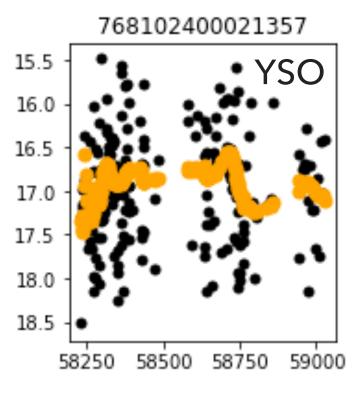
Searching for different AGN populations in massive datasets with Machine Learning 19

Dominated by photometric issues



And miss-classified sources

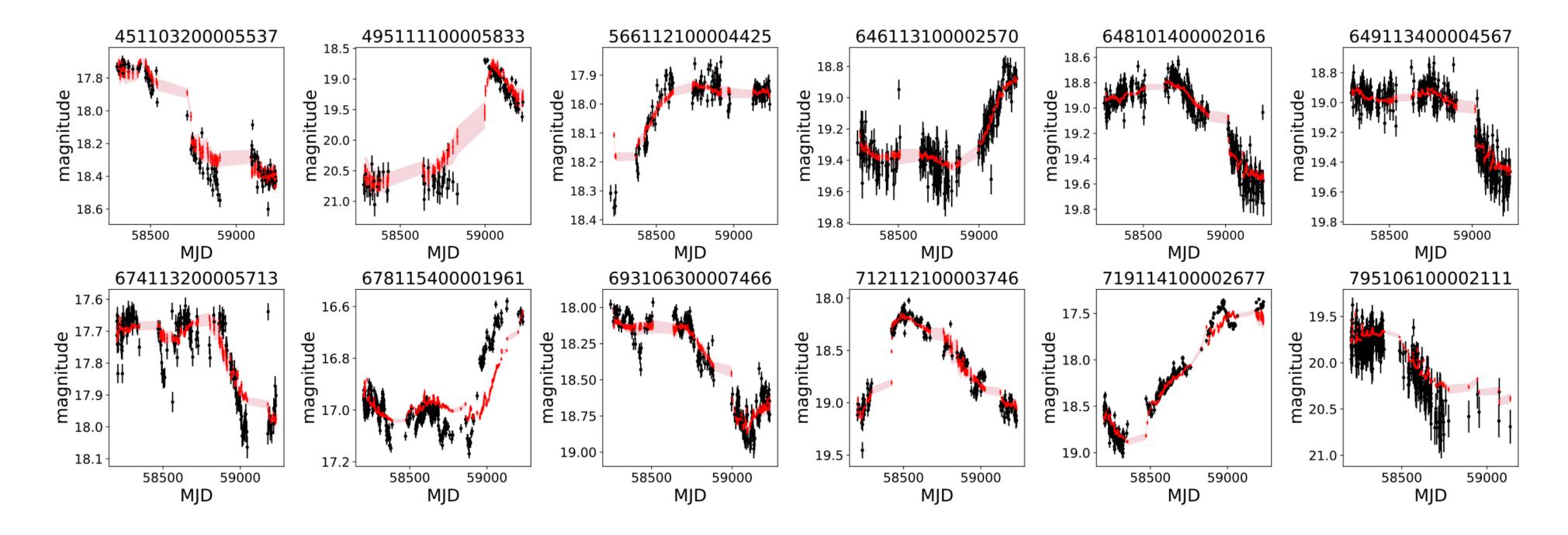




CSAGN candidates

We visually inspected the list of candidates and selected as promising CSAGN candidates those anomalies that present evidence of flares, and/or abrupt increment or decrement in the luminosity. We identified 75 CSAGN candidates (65%) are regular QSOs).

Further spectroscopic follow-up is required to confirm the nature of our candidates. Although 4 are known CSAGN candidates (Graham+2020), 2 have been spectroscopically confirmed (M. Graham, private communication), and 28 are candidates using other techniques (Graham+ in prep).



Sánchez-Sáez et al. 2021, AJ, 162, 206

Summary

- selection techniques, particularly low-mass and low-Eddington rate sources.
- non-variable objects, transients, and stochastic and periodic variables.
- CSAGN candidates.

Paula.SanchezSaez@eso.org

• Variability-ML-based classifiers can help us to select AGN populations that can me missed by more traditional

• The ZTF DR light curve classifier corresponds to the first attempt to identify multiple classes of transients and persistently variable and non-variable sources from ZTF DF light curves of extended and point sources. The main motivation of this model was to identify AGN candidates, but it can be used for more general time-domain astronomy studies. We used a hierarchical local classifier per parent node approach, to classify a total of 17 classes, including

• Real-time detection of CSAGN events is crucial to understand these events and to improve our knowledge of the physical mechanisms behind AGN variability. We used a Variational Recurrent Autoencoder (VRAE) architecture to model AGN light curves from the ZTF DRs. We used reconstruction error and the latent space attributes to search for anomalous AGN light curves. We found 8,809 anomalies. These anomalies are dominated by bogus candidates (photometric issues, miss-classified sources in the original catalogs), but we were able to identify 75 promising

THANK YOU!

