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e Extreme variability of AGN
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e Rare: ~ 10%10°yr" per AGN! : : :
18 5 ] )
e Timescales of several hundreds of daysto | # ]
many years!? o 1) ] SR I ]
e Caused by accretion disk instabilities, tidal =} % = :
disruption events, variable accretion rates, %~ ;
supernovae, microlensing... or ? P A1 L S I Y S S
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What has been done before? 7= Sheffield

e Lawrence et al 2016 - 76 flare candidates in Pan-STARRS1!'!:

©)

Define a flare as brightening by > 1.5 mag/decade

e Graham et al 2017 - 51 flare candidates from over 900,000 known quasars!?:

O

©)

O

De-trend light curves by subtracting Theil-Sen median

Then look for contiguous sets of points above zero (mini flare)

Define a flare as exceeding the median absolute deviation of these mini
flares

Ignore flares with a duration < 300 days

[1] Lawrence, A. et al 2016 MNRAS 463 296—-331
[2] Graham, J. et al 2017 MNRAS 470 4112-4132
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What has been done before? 7= Sheffield

e Lawrence et al 2016 - 76 flare candidates in Pan-STARRS1!":
o Define a flare as brightening by > 1.5 mag/decade
e Graham et al 2017 - 51 flare candidates from over 900,000 known quasars!?:

o De-trend light curves by subtracting Theil-Sen median

o Then look for contiguous sets of points above zero (mini flare)

o Define a flare as exceeding the median absolute deviation of these mini
flares

o Ignore flares with a duration < 300 days

e Amplitude selection [1]L A. et al 2016 MNRAS 463 296-331
. . awrence, A. et a -
e Timescale selection [2] Graham, J. et al 2017 MNRAS 470 4112-4132
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We want a statistical way to detect flares without
having to assume an amplitude or timescale.




Our problem:

How do you detect a signal in data that is already
intrinsically variable?

-> We need a way of quantifying a significant departure
from the baseline variability

-> Must be statistically robust and impervious to outliers
and poorly sampled data



Gaussian processes

e Non-linear, non-parametric
interpolation

e Informed by the sparsity of data
e Uses a kernel (covariance matrix)

to describe the best-fit
relationship between data points

18.8

18.7 1

[}
kel

=
5 18.6 1

pparent ma

18.4

18.31

University of

55\ Sheffield

3 18.51

i

—— Predicted mean
Uncertainty
}  True data

58200

58400

58600

58800
Julian date

59000

59200




GPs: A feasibility study
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e A GPis a means of parameterising the
covariance of data

e With this in mind, we might expect flares
and non-flares to exist in different parts of
parameter space

e We simulated 20,000 AGN light curves and
injected 10,000 with a flare

e Weran a GP on these light curves with a
Matérn 3/2 kernel (right)

k(x) =o0%(1+ ﬂ)exp(—ﬁ>
p p
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McLaughlin & Mullaney (in prep)
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A GP is a means of parameterising the
covariance of data

With this in mind, we might expect flares
and non-flares to exist in different parts of
parameter space

We simulated 20,000 AGN light curves and
injected 10,000 with a flare

We ran a GP on these light curves with a
Matérn 3/2 kernel (right)
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A GP is a means of parameterising the
covariance of data

With this in mind, we might expect flares
and non-flares to exist in different parts of
parameter space

We simulated 20,000 AGN light curves and
injected 10,000 with a flare

We ran a GP on these light curves with a
Matérn 3/2 kernel (right)
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Some examples

Relative apparent magnitude

Relative apparent magnitude
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e Based on a light curve’s hyperparameters,
what is the probability that it contains a
flare?

Log(p/days)

e Use prior probabilities and likelihoods ol
from the GP

e  Non-flares
o  Gaussian flares

e Define a probability above which a light A T3 7 & ;
. Log(co /mag)
curve is flagged as a flare

McLaughlin & Mullaney (in prep)



Light curves
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e Light curves sampled every 10 days, half without flares
and half with injected flares

e Subsampled light curves

e Added outliers

.

e Real ZTF light curves, half injected with flares

e Real ZTF light curves - no flares added

-

Simulated AGN light curves
(1D damped random walk)

Real AGN light curves
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Provisional results - retrieval rates Shefﬁeld
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e The GP selected 55 out of

9035 spectroscopically

selected ZTF light curves of

Type 1T AGN as containing . 103

flares
e They show extreme variability ™ o

when compared with a

randomly selected sample of

100 ZTF light curves that

were not flagged as flares

McLaughlin & Mullaney (in prep)
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e The GP selected 55 out of
9035 spectroscopically
selected ZTF light curves of
Type 1T AGN as containing . 103
flares
e They show extreme variability -
when compared with a R
randomly selected sample of
100 ZTF light curves that
were not flagged as flares VR e o s Modied aan Dte

McLaughlin & Mullaney (in prep)
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e The GP cannot tell you the location of the 61
flare within the light curve e

e Deep GPs or regime-switching models
are possibilities

Log(p/days)
o

e If you can localise the flare, this approach 67 ¢ jonsiores

|S more effeCt|Ve —84 ® Reduced flares
- a4 =8 45 A 9 i >
Log(o /mag)
McLaughlin & Mullaney (in prep)




Summary

Email: sajmclaughlin1@sheffield.ac.uk

e Ultimate goal is a statistically robust means of identifying flares
that is immune to anomalies & sampling

e We have shown that Gaussian Processes can classify flare and
non-flare light curves in well-sampled simulated data, and real
ZTF data with injected flares

e Regime-switching models or deep GPs may help to localise flares
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[~ GP(0, krpr(, -))

Squared Exponent1a1 Kernel

https://andrewcharlesjones.github.io/journal/matern-kernels.html Florian M Heckmeier & Christian Breitsamter 2020 Meas. Sci. Technol. 31 125301
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Run flare and non-flare light curves

through a GP and track their ¥ bl
hyperparameters : - Nontrs

6 = “hyper prior”:
, 0 (not flare)

Log(p/days)

Use the hyperparameter

; - distributions to define priors 1

Combine MCMC and Bayesian
Hypothesis testing to calculate the
probability of a given light curve
containing a flare

Log(p/days)
.

P(o, p, 0]y) o< P(y| o, p)*P(o, p| 6) x P(6) |=—
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Gaussian process kernels (cont.) s Shefﬁeld

Exponentiated quadratic
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https://peterroelants.github.io/ posts/gau33|an-process-kernels/
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Simulated with a damped random walk McLaughlin & Mullaney (in prep)
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