

Using Gaussian Processes to detect AGN flares

Summer A. J. McLaughlin¹, James R. Mullaney¹ ¹Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK

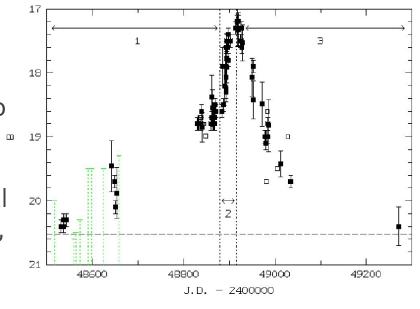
Image credit: Artist's impression of a tidal disruption event. NASA/JPL-Caltech

*sajmclaughlin1@sheffield.ac.uk

AGN flares

- Extreme variability of AGN
- Rare: ~ 10⁻⁴-10⁻⁵ yr⁻¹ per AGN^[1]
- Timescales of several hundreds of days to many years^[2]
- Caused by accretion disk instabilities, tidal disruption events, variable accretion rates, supernovae, microlensing... or ?

[1] Lawrence, A. *et al* 2016 *MNRAS* **463** 296–331 [2] Graham, J. *et al* 2017 *MNRAS* **470** 4112–4132



H. Meusinger et al 2010 A&A **512** A1

What has been done before?

- Lawrence *et al* 2016 76 flare candidates in Pan-STARRS1^[1]:
 - Define a flare as brightening by > 1.5 mag/decade
- Graham *et al* 2017 51 flare candidates from over 900,000 known quasars^[2]:
 - De-trend light curves by subtracting Theil-Sen median
 - Then look for contiguous sets of points above zero (mini flare)
 - Define a flare as exceeding the median absolute deviation of these mini flares
 - Ignore flares with a duration < 300 days

[1] Lawrence, A. *et al* 2016 *MNRAS* **463** 296–331 [2] Graham, J. *et al* 2017 *MNRAS* **470** 4112–4132

What has been done before?

- Lawrence *et al* 2016 76 flare candidates in Pan-STARRS1^[1]:
 - Define a flare as brightening by > 1.5 mag/decade
- Graham et al 2017 51 flare candidates from over 900,000 known quasars^[2]:
 - De-trend light curves by subtracting Theil-Sen median
 - Then look for contiguous sets of points above zero (mini flare)
 - Define a flare as exceeding the median absolute deviation of these mini flares
 - Ignore flares with a duration < 300 days
- Amplitude selection
- Timescale selection

[1] Lawrence, A. *et al* 2016 *MNRAS* **463** 296–331 [2] Graham, J. *et al* 2017 *MNRAS* **470** 4112–4132

What has been done before?

- Lawrence *et al* 2016 76 flare candidates in Pan-STARRS1^[1]:
 - Define a flare as brightening by > 1.5 mag/decade
- Graham et al 2017 51 flare candidates from over 900,000 known quasars^[2]:
 - We want a statistical way to detect flares without having to assume an amplitude or timescale.

flares

- Ignore flares with a duration < 300 days
- Amplitude selection
- Timescale selection

[1] Lawrence, A. *et al* 2016 *MNRAS* **463** 296–331 [2] Graham, J. *et al* 2017 *MNRAS* **470** 4112–4132

Our problem:

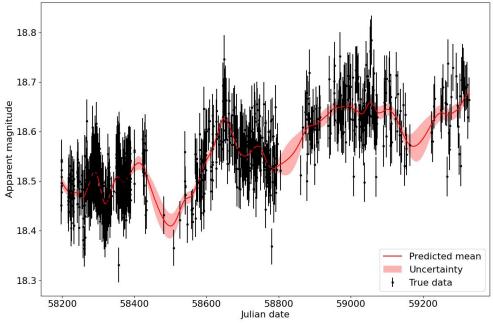
How do you detect a signal in data that is already intrinsically variable?

→ We need a way of quantifying a significant departure from the baseline variability

→ Must be statistically robust and impervious to outliers and poorly sampled data

Gaussian processes

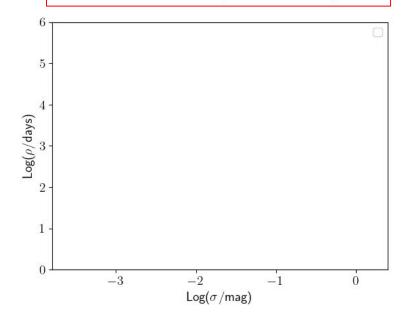
- Non-linear, non-parametric interpolation
- Informed by the sparsity of data
- Uses a kernel (covariance matrix) to describe the best-fit relationship between data points



GPs: A feasibility study

- A GP is a means of parameterising the covariance of data
- With this in mind, we might expect flares and non-flares to exist in different parts of parameter space
- We simulated 20,000 AGN light curves and injected 10,000 with a flare
- We ran a GP on these light curves with a Matérn 3/2 kernel (right)

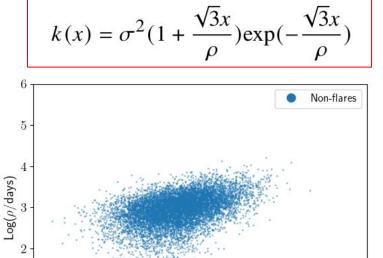
$$k(x) = \sigma^2 (1 + \frac{\sqrt{3}x}{\rho}) \exp(-\frac{\sqrt{3}x}{\rho})$$

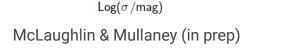


McLaughlin & Mullaney (in prep)

GPs: A feasibility study

- A GP is a means of parameterising the covariance of data
- With this in mind, we might expect flares and non-flares to exist in different parts of parameter space
- We simulated 20,000 AGN light curves and injected 10,000 with a flare
- We ran a GP on these light curves with a Matérn 3/2 kernel (right)





 $^{-1}$

0

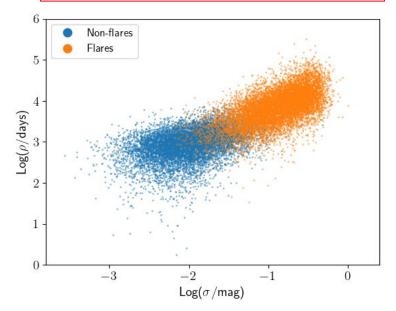
-9

-3

GPs: A feasibility study

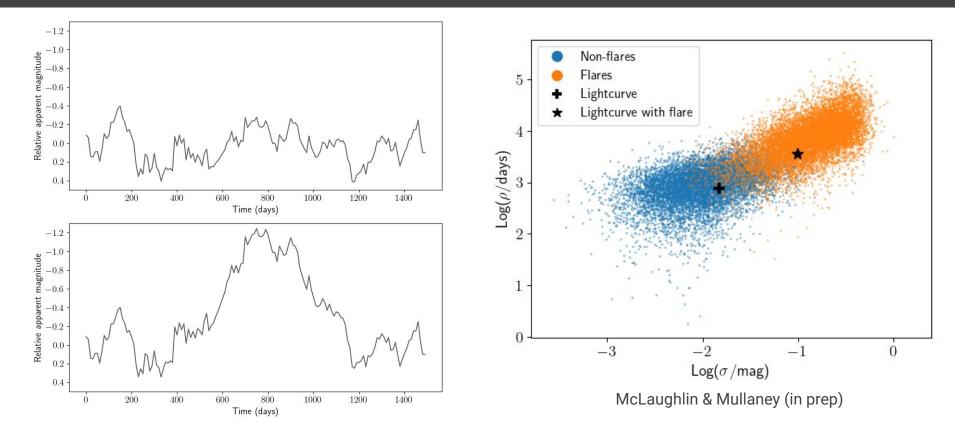
- A GP is a means of parameterising the covariance of data
- With this in mind, we might expect flares and non-flares to exist in different parts of parameter space
- We simulated 20,000 AGN light curves and injected 10,000 with a flare
- We ran a GP on these light curves with a Matérn 3/2 kernel (right)

$$k(x) = \sigma^2 (1 + \frac{\sqrt{3}x}{\rho}) \exp(-\frac{\sqrt{3}x}{\rho})$$



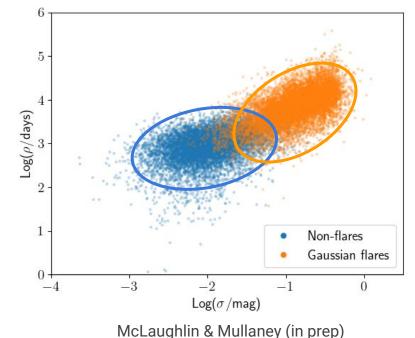
McLaughlin & Mullaney (in prep)

Some examples

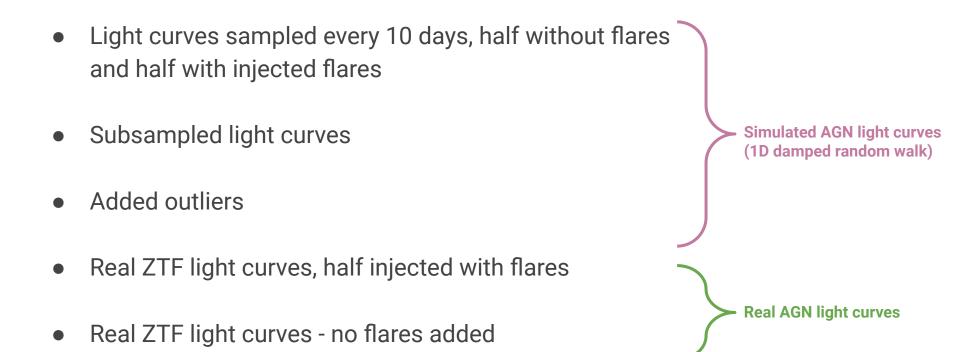


Bayesian hypothesis testing

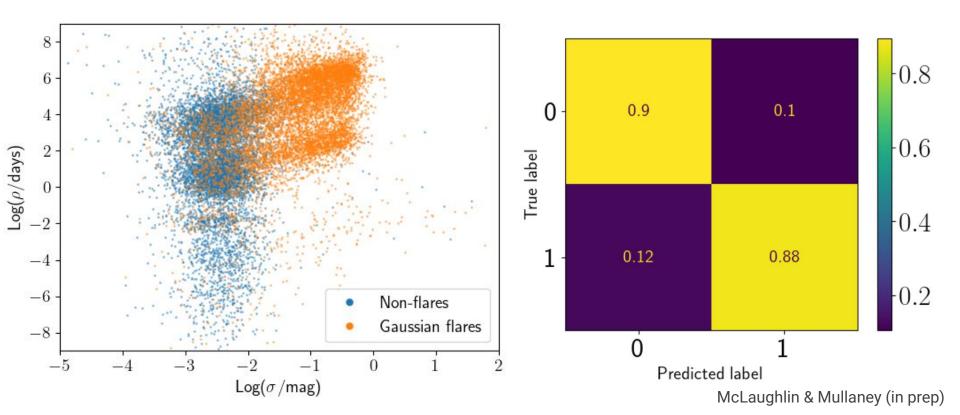
- Based on a light curve's hyperparameters, what is the probability that it contains a flare?
- Use prior probabilities and likelihoods from the GP
- Define a probability above which a light curve is flagged as a flare



Light curves

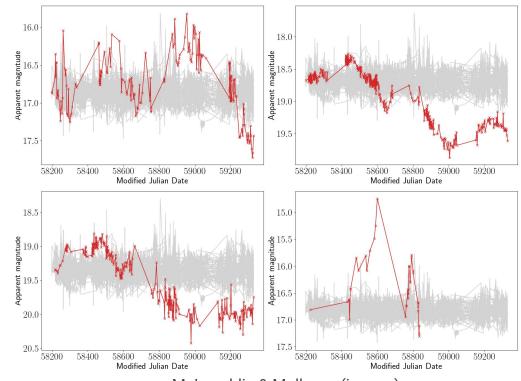


Provisional results - retrieval rates



Provisional results - ZTF light curves

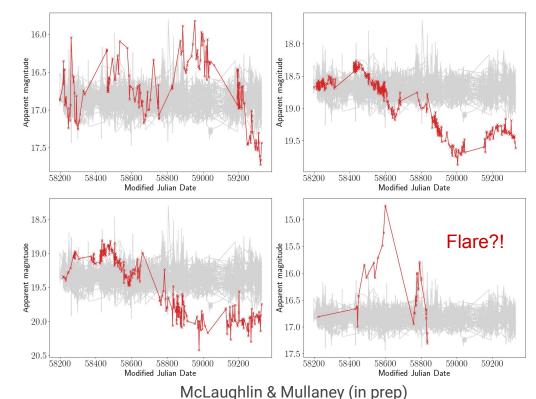
- The GP selected 55 out of 9035 spectroscopically selected ZTF light curves of Type 1 AGN as containing flares
- They show extreme variability when compared with a randomly selected sample of 100 ZTF light curves that were not flagged as flares



McLaughlin & Mullaney (in prep)

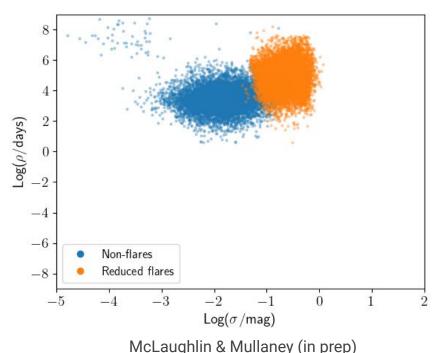
Provisional results - ZTF light curves

- The GP selected 55 out of 9035 spectroscopically selected ZTF light curves of Type 1 AGN as containing flares
- They show extreme variability when compared with a randomly selected sample of 100 ZTF light curves that were not flagged as flares



What's next?

- The GP cannot tell you the location of the flare within the light curve
- Deep GPs or regime-switching models are possibilities
- If you can localise the flare, this approach is more effective

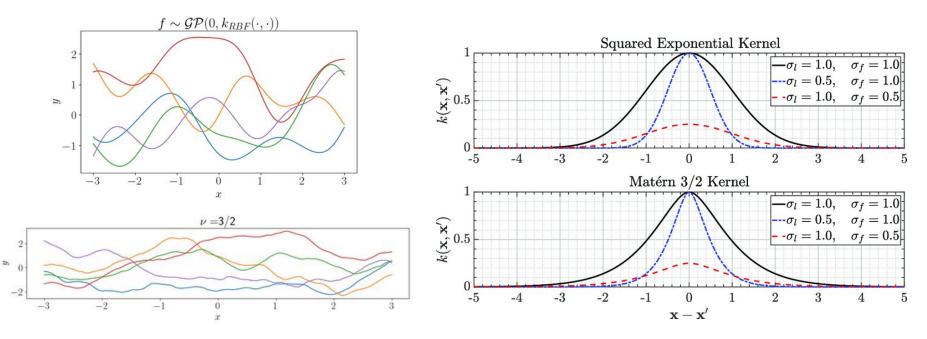


Email: sajmclaughlin1@sheffield.ac.uk

- Ultimate goal is a statistically robust means of identifying flares that is immune to anomalies & sampling
- We have shown that Gaussian Processes can classify flare and non-flare light curves in well-sampled simulated data, and real ZTF data with injected flares
- Regime-switching models or deep GPs may help to localise flares

Extra slides

Gaussian process kernels



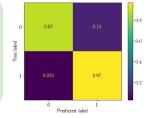
https://andrewcharlesjones.github.io/journal/matern-kernels.html

Florian M Heckmeier & Christian Breitsamter 2020 Meas. Sci. Technol. 31 125301

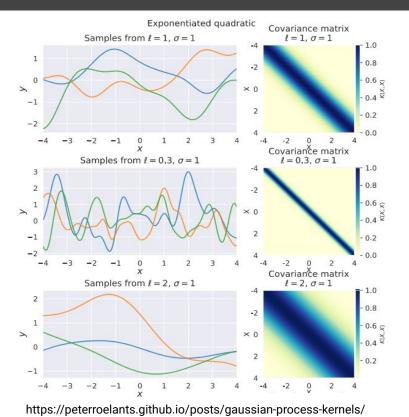
The steps broken down

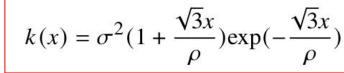
Run flare and non-flare light curves through a GP and track their hyperparameters Non-flares Gaussian flares $Log(\sigma/mag)$ θ = "hyper prior": 1 (flare), 0 (not flare) Use the hyperparameter Log(p/days) distributions to define priors 1 Non-flares Gaussian flares $Log(\sigma/mag)$ Combine MCMC and Bayesian Hypothesis testing to calculate the $P(\sigma, \rho, \theta \mid y) \propto P(y \mid \sigma, \rho) \times P(\sigma, \rho \mid \theta) \times P(\theta)$ probability of a given light curve

containing a flare

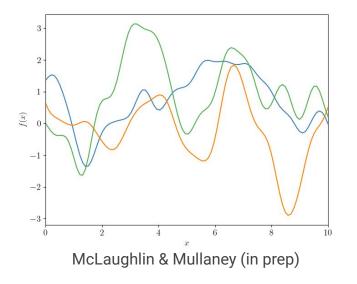


Gaussian process kernels (cont.)

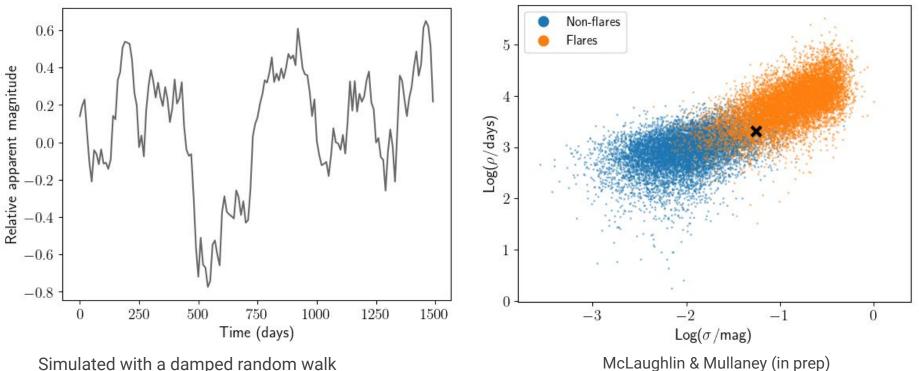




Matérn 3/2 kernel

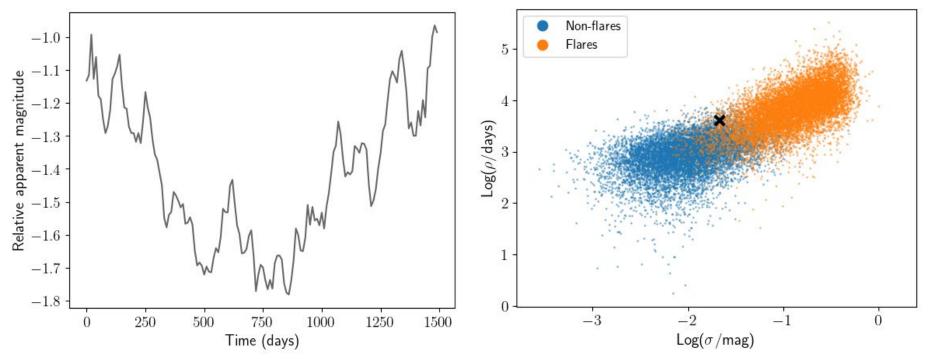


Some examples



Simulated with a damped random walk

Some examples



Simulated with a damped random walk + injected 1.6 mag flare

McLaughlin & Mullaney (in prep)