Latent Stochastic Differential Equations for Modeling Quasar Variability and Inferring Black Hole Properties

The Restless Nature of AGN: 10 years later

Joshua Fagin, Ji Won Park, Henry Best, K.E. Saavik Ford, Matthew J. Graham, V. Ashley Villar, Shirley Ho, James Hung-Hsu Chan, Matthew O'Dowd

Contact: jfagin@gradcenter.cuny.edu

UNIVERSIIY **OF NEW YORK**

Optical Quasar Light Curves

- LSST is set to observe tens of millions of quasar light curves in 6 optical bands but with long season gaps and sparsely sampled data
- We simulate LSST 10 year light curves and train a neural network to model the variability and infer black hole properties

Gaussian Process Regression

Source: Stone et al. 2022 <u>https://arxiv.org/abs/2201.02762</u>

- Gaussian process regression (GPR) requires choosing a specific form of the kernel
- GPR can measure variability parameters from its kernel
- Using multi-band data is difficult
- Hard to apply to tens of millions of light curves

Latent Stochastic Differential Equations (SDEs)

- Use latent SDEs to fit quasar light curves (multivariate time series with missing data)
- Simultaneously infer black hole properties (parameter inference)

2.00

Source: <u>https://github.com/google-research/torchsde</u> (Li et al., 2020)

Driving Variability Model

Damped random walk (DRW) $dX(t) = -\frac{1}{\tau}X(t) dt + \sigma\sqrt{dt} \epsilon(t) + b dt$

- $\bar{X} = b\tau$ is the mean
- τ is characteristic time scale
- SF_{∞} = $\sigma \sqrt{\tau/2}$ standard deviation of fluctuation

Transfer Function

Name	Description	Min.	Max.	Unit
$\log_{10}(M/M_{\odot})$	BH mass	6	10	-
a	BH spin	-1	1	-
$ heta_{ m inc}$	inclination angle	1	80	deg
h	corona height	1	50	r_{g}
eta	temp. power law	0.3	1.0	-
z	redshift	0.1	6	-
SF_∞	DRW amplitude	0	0.5	mag
$\log_{10}(au/\mathrm{day})$	DRW time scale	1	3.5	-

- Convolve driving variability with transfer function to get optical variability
- Modified thin-disk + lamp-post geometry
- Time delays between bands relate to black hole properties like the black hole mass

LSST Cadence and Noise

Example Light Curve Reconstruction

Latent SDE

- Predict the mean and standard deviation of the light curve at each time step

• Compare with fixed noise, multi-output, exact Gaussian Process with Matérn-1/2 kernel

Light Curve Reconstruction Benchmark

Model	RMSE [mag]	
SDE	0.0905 ± 0.0005	(
GPR	0.0947 ± 0.0005	

- Compare the performance of Latent SDEs to GPR on a test set of 10,000 light curves
- Latent SDEs outperform the GPR baseline across all three metrics
- Latent SDE uncertainty is also better calibrated

MAE [mag]NGLL 0.0616 ± 0.0003 -1.328 ± 0.006 0.0651 ± 0.0004 -1.200 ± 0.006

Example Parameter Predictions

- Predict the mean and full covariance matrix for a multivariate Gaussian
- Parameterize the Gaussian in the logit space to restrict the probability volume to within the uniform range of our training set

Parameter Prediction Performance

• Can consistently predict M, τ, SF_{∞}

• For very large mass black holes we can also predict β , θ_{inc}

Example Structure Function Reconstruction

 $\Delta t/\tau$

Conclusion and Outlook

- Our method is easily adaptable to any variability model and can be fine tuned to LSST light curves as data becomes available
- Can consistently predict the variability parameters and black hole mass
- Can predict the inclination angle and temperature slope when the black hole mass is very large
- Hierarchical inference of the population of black hole parameters
- Application to anomaly detection
- ML conference paper at <u>https://arxiv.org/abs/2304.04277</u> and full paper and source code coming soon!

Contact: jfagin@gradcenter.cuny.edu

