CHANGING LOOK QUASARS

Chris Suberlak, Jun 27, AD 2023 <u>suberlak.github.io</u>

- root-mean-squared 0.2 mag optical variability over ~1 yr
- stochastic variability : non-repeating pattern in time series (light curve)

STATISTICAL DESCRIPTION OF QUASAR VARIABILITY

- Damped Random Walk model a Gaussian process with an exponential covariance matrix
- SF_{∞} : asymptotic amplitude, τ : characteristic time scale

DRW PARAMETERS : TIMESCALE au

 $SF_{\infty} = 0.2 \text{ mag}$

as τ increases, keeping SF_{∞} fixed, the light curve appears smoother there is much less short timescale variability

DRW PARAMETERS : ASYMPTOTIC AMPLITUDE SF_{∞}

 τ = 200 days

as SF_∞ increases, the amplitude of variability increases Any parametric description of quasar variability (eg. DRW)

CLASSIFICATION

ESTIMATION OF PHYSICAL PROPERTIES

Any parametric description of quasar variability (eg. DRW)

CLASSIFICATION

- QSO have different
 DRW parameters than
 eg. stars or galaxies
- biases are not very relevant, as long as parameters are constrained (Sesar+2008)

ESTIMATION OF PHYSICAL PROPERTIES

- Utilizing multi-dimensional correlations between measured parameters (eg. τ, SF_∞), and physical quantities (black hole mass, quasar luminosity)
- biases are important as they affect inferred physical properties (MacLeod+2010)

HOW TO IMPROVE RETRIEVAL OF DRW PARAMETERS?

baseline = longest Δt

- Studies showed that extending the light curve baseline affects DRW parameter recovery (Kozłowski+2016)
- We parametrize the ratio of DRW characteristic timescale to baseline:

 ρ = timescale / baseline

We simulate light curves with different ρ, and compare input to fit results : ρ_{in} to
 ρ_{out}

WHAT AFFECTS PARAMETER RECOVERY?

- $\rho = \tau / \text{baseline}$
- vary input τ to
 probe a range of ρ
- cadence is less
 relevant than the
 span of light curve

- $\rho = \tau$ / baseline
- vary input τ to
 probe a range of ρ
- cadence is less
 relevant than the
 span of light curve

EXTENDING LIGHT CURVE BASELINE

 Use data from a variety of sky surveys
 currently available
 SDSS, PS1, CRTS, ZTF
 and in the future LSST

CHOOSING DATA: PHOTOMETRIC UNCERTAINTIES

Uncertainties are much smaller for SDSS, PS1, because for generally faint sources like quasars, for ZTF and PTF we are reaching all the way to 5o limit

we limit our study to SDSSr- PS1r , without any color offset

SDSS VS SDSS-PS1 DRW PARAMETERS

VARIABILITY VS BLACK HOLE MASS, LUMINOSITY

the amplitude of variability is anti-correlated with bolometric luminosity, can be linked to eg. accretion rate

MacLeod+2010, Kubota+2018, Suberlak+2021

$$f_{Edd} = \frac{L_{Bol}}{L_{Edd}} \sim \frac{L_{Bol}}{M_{BH}}$$

$$L_{Edd} = 1.26 \cdot 10^{38} M_{\rm BH} \,\,{\rm erg}\,{\rm s}^{-1}$$

Iower Eddington ratio dwindling fuel supply & larger variability

$$f_{Edd} = \frac{L_{Bol}}{L_{Edd}} \sim \frac{L_{Bol}}{M_{BH}}$$

16

OUTLIERS IN DRW

compare DRW parameters retrieved using SDSS vs SDSS+PS1 data

OUTLIERS IN DRW

compare DRW parameters retrieved using SDSS vs SDSS+PS1 data

RESULTS: OUTLIERS ARE INTERESTING

 compare DRW parameters retrieved using SDSS vs SDSS+PS1 data

Time [years]

CHANGING LOOK QUASARS : CONTEXT

Changing-Look phenomenon corresponds to the (dis)-appearance of broad emission lines and a non-stellar continuum, changing eg. between type 1.8-2 (narrow-line) to type 1 (broad-line) AGN (or vice versa) on a timescale of years.

This may mean that in a dim state we may be able to see more clearly the host galaxy contribution, without the contamination of AGN continuum.

CLQSO CANDIDATES

- CLQs are found near the critical luminosity below which the BLR disappears
- CLQs have lower Eddington ratios than a control sample matched in redshift and luminosity
- CLQs are probably the tail end of a continuous distribution of QSO variability (MacLeod+2019)

one of our candidates: SDSSJID 225240.37+010958.7

MacLeod+2019

Apache Point Observatory, 3.5m

SPECTROSCOPY: J135855, TURN-ON

Potts-Villforth+2021, Fig.2

SPECTROSCOPY: J135855 TURN-ON

FOLLOW-UP SPECTROSCOPY 153355 (TURN-ON)

Yang+2018, Fig.5 z=0.1426

FOLLOW-UP SPECTROSCOPY 153355 TURN-ON (?)

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

1000

Filter response

27

z=0.1426

FOLLOW-UP SPECTROSCOPY 172322 (TURN-ON)

FOLLOW-UP SPECTROSCOPY 172322 (TURN-ON)

APO shows continued "turn on" trend

SPECTROSCOPY: J204303 (S82)

FOLLOW-UP SPECTROSCOPY 163620 (TURN-OFF)

31

FOLLOW-UP SPECTROSCOPY 163620

APO data: Weak H α , continuum returning to earlier level

FOLLOW-UP SPECTROSCOPY 094433

FOLLOW-UP SPECTROSCOPY: 005513 (S82)

- Quasars are stochastically variable at the level of 0.2 mag
- Distinct variability pattern can be used to distinguish quasars from other variable objects
- Variability parameters can be linked to physical quantities such as the black hole mass, bolometric luminosity
- Combining SDSS, PS1, and (soon) LSST, we can recover quasar DRW parameters with much higher accuracy than before (and find interesting outliers in the process)

THANK YOU!

BACKUP SLIDES

simulated quasar light curves, single input timescale and variability amplitude, sampled at realistic cadence

EXTENDING THE BASELINE : SIMULATION

DRW parameter recovery improves with baseline extension

ZTF will make things better, but LSST will be awesome

EXTENDING THE BASELINE : SIMULATION

ZTF will make things better, but LSST will be awesome

we decided to not include ZTF due to color offset

 correct for wavelengthdependence: because SDSS ugriz bandwidths is fixed, the higher the redshift, the shorter the rest-frame wavelength probed

 magnitude limit illusion, aka luminosity-redshift degeneracy - we see only the most luminous QSO (magnitude limit)

 L-z degeneracy is independent of black hole mass

QUASAR PROPERTIES

- Iuminosity-redshift degeneracy we see only the most luminous QSO (magnitude limit) independent of black hole mass
- shorter rest-frame wavelength probed at higher redshifts

CLQSO EXAMPLES

CLQSO: LAWRENCE+2016

Lawrence+2016, Fig.7

Lawrence+2016, Fig.14

CLQSO EXAMPLES: STERN+2018

Stern+2018, Figs. 2, 3, 4

CLQSO: GRAHAM+2019

Graham+2019, Fig.5

QUASARS

APPLICATION: OUTLIERS ARE INTERESTING

48

Graham+2019, Fig.5

CLQSO: ROSS+2018

Ross+2018, Fig.1,2