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QUASARS  - VARIABLE SOURCES
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▸ root-mean-squared 0.2 mag optical variability  over ~1 yr 

▸ stochastic variability : non-repeating pattern in time series 
(light curve) 

real light curve
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▸ Damped Random Walk model  - a Gaussian process with an 
exponential  covariance matrix

STATISTICAL DESCRIPTION OF QUASAR VARIABILITY

▸ SF∞  : asymptotic amplitude,     𝝉 : characteristic time scale

real light curve



DRW PARAMETERS :   TIMESCALE  𝝉 4

as 𝝉  increases, 
keeping  SF∞  fixed, 
the light curve 
appears smoother - 
there is much less 
short timescale 
variability

τ

τ

τ
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  SF∞ = 0.2 mag 
days

days

days
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as SF∞ increases,  the 
amplitude  of 
variability increases

SF∞

DRW PARAMETERS :  ASYMPTOTIC AMPLITUDE  SF∞

𝝉 = 200 days
mag

mag

mag



UTILITY OF DRW PARAMETRIZATION? 6

Any parametric description of 
quasar variability (eg. DRW)

CLASSIFICATION ESTIMATION  OF PHYSICAL 
PROPERTIES

DRW 
TIMESCALE, 
AMPLITUDE

BLACK HOLE MASS,  
QSO LUMINOSITY, 



FIRST, WHY IMPROVE THE DRW PARAMETERS? 7

Any parametric description of 
quasar variability (eg. DRW)

CLASSIFICATION ESTIMATION  OF PHYSICAL 
PROPERTIES

▸  QSO have different 
DRW parameters than 
eg. stars or galaxies 

▸  biases are not very 
relevant, as long as 
parameters are 
constrained 
(Sesar+2008)

▸  Utilizing multi-dimensional correlations 
between measured parameters (eg. 𝝉, 
SF∞ ), and physical quantities (black 
hole mass,  quasar luminosity) 

▸  biases are important as they affect 
inferred physical properties 
(MacLeod+2010)



HOW TO IMPROVE RETRIEVAL OF DRW PARAMETERS?
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baseline = longest Δt 

▸ Studies showed that extending the light 
curve baseline affects DRW parameter 
recovery (Kozłowski+2016) 

▸ We parametrize the ratio of  DRW 
characteristic timescale to baseline: 
 
𝝆 = timescale / baseline   

▸ We simulate light curves with different 𝝆 , 
and compare input to fit results : 𝝆in  to 
𝝆out



WHAT AFFECTS PARAMETER RECOVERY? 9

▸ 𝝆 = 𝝉 / baseline   

▸ vary input 𝝉  to 
probe a range of 𝝆 

▸ cadence is less 
relevant than the 
span of light curve 

large 𝝉 /  
short baseline 

small 𝝉 /  
long baseline 

bias

Suberlak+2021



WHAT AFFECTS PARAMETER RECOVERY? 10

▸ 𝝆 = 𝝉 / baseline   

▸ vary input 𝝉  to 
probe a range of 𝝆 

▸ cadence is less 
relevant than the 
span of light curve 

large 𝝉 /  
short baseline 

small 𝝉 /  
long baseline 

extend  
light curve

Suberlak+2021



EXTENDING LIGHT CURVE BASELINE 11

Suberlak+2021

▸ Use data from  a 
variety of sky surveys 
- currently available 
SDSS, PS1, CRTS, ZTF  
and in the future - 
LSST



CHOOSING DATA:  PHOTOMETRIC UNCERTAINTIES 12

‣ Uncertainties are much smaller 
for SDSS, PS1, because for 
generally faint sources like 
quasars, for ZTF and  PTF we are 
reaching all the way to 5σ limit

Suberlak+2021

‣ we limit our study to 
SDSSr- PS1r , without any 
color offset



SDSS   VS     SDSS-PS1 DRW PARAMETERS 13

Suberlak+2021

SDSS

SDSS-PS1



VARIABILITY VS BLACK HOLE MASS, LUMINOSITY 14

▸ the amplitude of variability is 
anti-correlated with 
bolometric luminosity, can be 
linked to eg. accretion rate

MacLeod+2010, Kubota+2018, Suberlak+2021



EDDINGTON RATIO: LUMINOSITY & BLACK HOLE MASS 15

Bradt,2008

fEdd =
LBol

LEdd
∼

LBol

MBH
LEdd = 1.26 ⋅ 1038MBH erg s−1



VARIABILITY VS THE EDDINGTON RATIO 16

‣ lower Eddington ratio - 
dwindling fuel supply & 
larger variability

Suberlak+2021

fEdd =
LBol

LEdd
∼

LBol

MBH



OUTLIERS IN DRW 17

▸ compare DRW parameters 
retrieved using SDSS vs 
SDSS+PS1 data

Suberlak+2021



OUTLIERS IN DRW 18

▸ compare DRW parameters 
retrieved using SDSS vs 
SDSS+PS1 data

Suberlak+2021



RESULTS: OUTLIERS ARE INTERESTING 19

SDSS
PS1

▸ compare DRW parameters 
retrieved using SDSS vs 
SDSS+PS1 data

Suberlak+2021



CHANGING LOOK QUASARS : CONTEXT 20

Changing-Look phenomenon corresponds 
to the (dis)-appearance of broad emission 
lines and a non-stellar continuum, changing 
eg. between type 1.8-2 (narrow-line) to 
type 1 (broad-line) AGN (or vice versa) on a 
timescale of years.  

This may mean that in a dim state we may 
be able to see more clearly  the host galaxy 
contribution, without the contamination of 
AGN continuum.  

MacLeod+2019



CLQSO CANDIDATES 21

▸ CLQs are found near the critical 
luminosity below which the BLR 
disappears  

▸ CLQs have lower Eddington 
ratios than a control sample 
matched in redshift and 
luminosity 

▸ CLQs are probably the tail end 
of a continuous distribution of 
QSO variability 
(MacLeod+2019)

Suberlak+2021



CONFIRMED CLQSO CANDIDATE 22

MacLeod+2019

one of our candidates: 
SDSSJID  
225240.37+010958.7



FOLLOW-UP : CLQSO SPECTROSCOPY 23

Apache Point  
Observatory, 3.5m 

SDSS 2.5m



SPECTROSCOPY: J135855, TURN-ON 24

Potts-Villforth+2021, Fig.2

Yang+2018, Fig.5

z=0.11592



SPECTROSCOPY: J135855 TURN-ON 25

Hα
Hβ



FOLLOW-UP SPECTROSCOPY  153355 (TURN-ON) 26

z=0.1426
Yang+2018, Fig.5



FOLLOW-UP SPECTROSCOPY  153355 TURN-ON (?) 27

z=0.1426

Hα
Hβ



FOLLOW-UP SPECTROSCOPY  172322 (TURN-ON) 28

172322 transitioned 
from AGN type 1.83 to 
type 1 in just 184 days 
(142 in rest frame). 

MJD51813: weak H  
MJD51997: stronger H  
and H .

β
β

α

Potts-Villforth+2021, Fig.2



FOLLOW-UP SPECTROSCOPY  172322 (TURN-ON) 29

Hα
Hβ

APO shows continued "turn on" trend



SPECTROSCOPY: J204303 (S82) 30

MgII

CIII

APO shows stronger  blue continuum

z=1.19



FOLLOW-UP SPECTROSCOPY  163620 (TURN-OFF) 31

Green+2022, Fig.1.4

z=0.236 

SDSS BOSS vs eBOSS: 

disappearance of Hβ

HαHβ



FOLLOW-UP SPECTROSCOPY  163620 32

APO data:  
Weak H , 
continuum  
returning   
to earlier level

α HαHβ



FOLLOW-UP SPECTROSCOPY  094433 33

HβMgII



FOLLOW-UP SPECTROSCOPY:  005513 (S82) 34

CIII
CIV

Lyα



QSO SCIENCE: CONCLUSIONS 35

‣ Quasars are stochastically variable at the level of 0.2 mag  
‣ Distinct variability pattern can be used to distinguish quasars from other 

variable objects 
‣ Variability parameters can be linked to physical quantities such as the 

black hole mass,  bolometric luminosity 
‣ Combining SDSS,  PS1, and  (soon)  LSST,  we can recover quasar DRW 

parameters with much higher accuracy than before (and find interesting 
outliers in the process) 



THANK YOU!
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BACKUP SLIDES
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BASELINE EXTENSION 38

▸ simulated quasar light curves, single input timescale and variability 
amplitude, sampled at realistic cadence

Suberlak+2019



EXTENDING THE BASELINE : SIMULATION

39

▸ DRW parameter recovery improves with baseline extension

▸ ZTF will make things better,  but LSST will be awesome Suberlak+2019



QUASARS

EXTENDING THE BASELINE : SIMULATION

40

▸ ZTF will make things 
better,  but LSST will be 
awesome 

▸ we decided to not include 
ZTF due to color offset



FIRST, CORRECT FOR WAVELENGTH DEPENDENCE 41

▸ correct for wavelength-
dependence: because SDSS 
ugriz bandwidths is fixed, 
the higher the redshift, the 
shorter  the rest-frame 
wavelength probed

Suberlak+2019



FIRST: UNDERSTAND INTRINSIC CORRELATIONS 42

▸ magnitude limit illusion, 
aka  luminosity-redshift 
degeneracy - we see only 
the most luminous QSO 
(magnitude limit)

▸  L-z degeneracy is 
independent of black 
hole mass 

Suberlak+2019



QUASAR PROPERTIES 43

Dong+2018
redshift

▸ luminosity-redshift degeneracy - 
we see only the most luminous 
QSO (magnitude limit) - 
independent of black hole mass 

▸ shorter rest-frame wavelength 
probed at higher redshifts 



CLQSO EXAMPLES
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QUASARS

CLQSO: LAWRENCE+2016
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Lawrence+2016, Fig.7 

Lawrence+2016, Fig.14



CLQSO EXAMPLES: STERN+2018 46

Stern+2018,Figs. 2,3,4

TDE lensing

dust flares



QUASARS

CLQSO: GRAHAM+2019
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Graham+2019, Fig.5



QUASARS

APPLICATION: OUTLIERS ARE INTERESTING
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Graham+2019, Fig.5



QUASARS

CLQSO: ROSS+2018
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Ross+2018, Fig.1,2


