Modified models of radiation pressure instability as a potential cause of Changing-Look AGN phenomenon

Marzena Śniegowska, Mikołaj Grzędzielski, Agnieszka Janiuk, Bożena Czerny

Department of Astrophysics, Tel Aviv University Nicolaus Copernicus Astronomical Center PAS Center for Theoretical Physics PAS

Broad component of Balmer lines (dis)appearence

- ★ In some of the Changing Look AGN (CL AGN), a broad line disappears
- \star In others, a broad line appears
- rarely: recurring (dis)appearance!

Possible scenarios

Intrinsic changes - warm corona

Noda & Done 2018

- ★ The CL behaviour in the source Mrk 1018
- \star Ionisation instability
- ★ NGC 1566: no warm corona before the outburst (Parker et al.19)

Intrinsic changes - a propagating front

Ross et al. 2018

- ★ Explains the unusual spectral evolution of J1100-0053
- ★ Trigger: change in magnetic field configuration?

Intrinsic changes - Instability of radiation pressure dominated Keplerian disk

Shakura-Sunyaev disk model:

- the radial momentum equation (Keplerian flow)
 - azimuthal one (radial transport of angular momentum)
- vertical one (hydrostatic balance)
- continuity equation (mass conservation)
- energy equation (local balance)
- r equation of state

A possible mechanism for **multiple** CL events in Active Galactic Nuclei (*Śniegowska et al. 2020*)

- ★ a 3-component, computational toy model
- ★ followed the time-dependent evolution of a single zone
- ★ Viscous timescales scale with $\Delta R/R$ $T_{vis} = T_{visSS} \Delta R/R$

Our model

- ★ The model is sensitive to the adopted parameters
- ★ The zone structure may be easily affected by local phenomena

Default parameters: m=0.0122, α =0.02, Δ R=0.003R.

Fixed parameters: log(M)=6.92 (like in NGC 1566), R_{in} =30 R_{s}

Continuum flux evolution in NGC 4151 points. (Śniegowska et al. 2020)

Let's try something more realistic...

GLADIS: GLobal Accretion Disk Instability Simulation Code (Janiuk 2019)

Dependences of the duration of the limit cycle

Model B 0.1

time [years]

45

44 43

> 42 41

40

0 20

20

30 50 50

log(L) [erg/s]

Examples of the light curves with small $\rm R_{\rm OUT}$

Summary

- ★ Many CLAGN have been detected recently
- ★ Large amplitude, long-term QSO variability with follow-up spectroscopy gives us new insights into accretion physics
- ★ Rapid change of accretion rate with time scales of years in the innermost part of accretion disks is preferred for CLAGN
- ★ Possible mechanism of CL AGN is radiation pressure instability, but we need small R_{OUT} and presence of magnetic field
- ★ Next steps:
 - Effect of time evolution of external rate
 - Dynamically expanding outer radius

Thank you!