

The AGN Variability Archive A legacy database of intensive broadband reverberation mapping experiments

Juan V. Hernández Santisteban 26 June 2023

The Restless Nature of AGN: 10 years later

AGN variability as a probe of the central engine's geometry

 \rightarrow Exchanging *spatial* resolution for *temporal* resolution

 $\tau = R/c \propto (M\dot{M})^{1/3} \lambda^{4/3}$

AGN variability in search for echoes

AGN variability to measure the variable spectrum

AGN variability to measure the variable spectrum

Intensive Broadband Reverberation Mapping: in practice

NGC 5548

Intensive Broadband Reverberation Mapping: Results

- We observe strong correlations (>3σ) throughout the optical/UV, with the longer wavelength variations lagging behind the shorter wavelengths by roughly τ ∝ λ^{4/3}, as predicted by standard thin disk models (Shakura & Sunyaev, 1973, Cackett et al 2007).
- Strong excess lags in U band (which contains the Balmer jump), and disc sizes are larger than predicted (e.g., Fausnaugh et al., 2016; Edelson et al., 2019).
 - \rightarrow This is strong evidence for an additional variability component,
 - Diffuse Continuum Emission from the broad line region (DCE, Korista & Goad 2001; Netzer 2022).
- Perhaps most puzzling, the correlations between the X-ray and optical/UV variations are weak and inconsistent, casting grave doubt on the simple reprocessing scenario.
 - → This has forced development of new models to interpret the puzzling disconnect between the putative driving (X-ray) and reprocessed (optical/UV) light curves (e.g., Gardner & Done, 2017; Sun et al., 2020; Mahmoud & Done, 2020; Kammoun et al., 2021; Starkey et al., 2023).

Intensive Broadband Reverberation Mapping: Results

Edelson+ 2019, ApJ

Intensive Broadband Reverberation Mapping: Results

Cackett+ 2018, ApJ

Korista & Goad, 2019, MNRAS

Several alternative Interpretations:

A. Secunda, I. Papadakis, Neustadt, Z-Y Cai & E. Kammoun talks this afternoon!

Intensive Broadband Reverberation Mapping: in practice

The Neils Gehrels Swift Observatory

X-rays & Ultraviolet

Optical & infrared

Juan V. Hernandez Santisteban

Hernández Santisteban, 2023, OjA, in prep

Ground-based photometric and spectroscopic optical monitoring through 4 LCO Key Projects

- 2014 K. Horne (PI)
- 2018 R. Edelson (PI)
- 2020 Hernández Santisteban (PI)
- 2023 Hernández Santisteban (PI) starting in July

58 Bright, variable and local AGN (mostly Seyfert-1)
→ 5 decades in luminosity and mass

Bvugriz photometry \rightarrow 0.3-2 day cadence (46 AGN) \rightarrow >7-9 month campaigns \rightarrow Multi-year follow-up

300 – 1000 nm spectroscopy → 2-10 day cadence → >7-9 month campaigns → Multi-year follow-up

Ground-based photometric and spectroscopic optical monitoring through **4 LCO Key Projects**

- 2014 K. Horne (PI)
- 2018 R. Edelson (PI)
- 2020 Hernández Santisteban (PI)
- **2023 Hernández Santisteban (PI)** starting in July

58 Bright, variable and local AGN (mostly Seyfert-1)
→ 5 decades in luminosity and mass

Bvugriz photometry \rightarrow 0.3-2 day cadence (46 AGN) \rightarrow >7-9 month campaigns \rightarrow Multi-year follow-up

300 – 1000 nm spectroscopy → 2-10 day cadence → >7-9 month campaigns → Multi-year follow-up

NGC 7469

Excess lags in both U & r-bands!

Check Raj Prince's poster!

Prince, Hernández Santisteban+ 2023, in prep

NGC 7469

Excess lags in both U & r-bands!

ooster!

PG 1119+120 high-luminosity AGN

Check Fergus Donnan poster!

Donnan, Hernández Santisteban+ 2023, MNRAS

Juan V. Hernandez Santisteban

PG 1119+120 high-luminosity AGN

Check Fergus Donnan's poster!

Donnan, Hernández Santisteban+ 2023, MNRAS

Hernández Santisteban, 2023, OjA, in prep

Develop a **fully-automated pipeline** to retrieve, extract and calibrate daily light curves from our AGN monitoring campaign.

Consistent data reduction and processing. Data intercalibrated with PyROA (Donnan, Hernández Santisteban+ 2023, MNRAS)

Develop a **living database**, that will contain science-ready data products \rightarrow long-lasting resource for the community

http://alymantara.com/ava

AVA AGN Variability Archive

AVA Archive About Data Format Live Updates Publications Team

Intensive broadband reverberation mapping targets

Select an object for more information

Observing = Data collected in the last 30 days. Archived = All the available data is processed and archived. to be processed = Target has been observed but not archived.

Show 50 \sim entries

ID \$	Name \$	RA (h : m : s) ≑	DEC (°∶'∶") ≑	V _{mag} ♦	log(L _{Bol}) (erg/s) \$	log(M₀) (M₀) \$	redshift \$	LCO filters \$	<cadence> (days) \$</cadence>	Status ≑
29	Mrk 335	00:06:19.52	+20:12:10.48	14.54	44.96	7.23	0.025785	BVugriz	1.04	Observing
7	I Zw 1	00:53:34.94	+12:41:36.20	14.48	45.60	6.97	0.061169	BVugriz	0.87	Observing
1	Fairall 9	01:23:45.78	-58:48:20.81	13.74	45.14	8.3	0.046145	BVugriz	0.39	Observing
64	Mrk 359	01:27:32.55	+19:10:43.79	14.56	43.55	6.23	0.016958	BVugriz	1.04	Observing
70	RX J0134.2-4258	01:34:16.90	-42:58:27.01	15.97	0.00	0	0.237134	BVgriz	1.01	Observing
38	Mrk 590	02:14:33.56	-00:46:00.08	14.57	44.83	7.57	0.026385	BVugriz	1.03	Observing
68	NGC 1365	03:33:36.37	-36:08:25.44	13.77	0.00	6.3	0.005457	BVugriz	1.03	Observing
50	Ark 120	05:16:11.42	-00:08:59.39	14.11	45.17	7.83	0.032713	BVugriz	1.00	Observing
54	ESO 362-G18	05:19:35.80	-32:39:27.29	13.89	44.11	7.65	0.012445	BVugriz	1.04	Observing
21	PG 0804+761	08:10:58.60	+76:02:42.50	13.98	46.16	8.2	0.1005	BVugriz	4.89	Observing
4	PG 0844+349	08:47:42.47	+34:45:04.39	14.23	46.72	7.6	0.064	BVugriz	4.23	Observing
12	Mrk 110	09:25:12.87	+52:17:10.54	14.63	45.63	7.4	0.035291	BVugriz	1.08	Observing
16	PG 0923+201	09:25:54.72	+19:54:05.15	15.07	46.25	9.07	0.192696	BVugriz	4.69	Observing
53	Mrk 1220	00.52.10 10	01.26.42.45	14.43	44.55	6.91	0.010027	P\/uariz	1 10	Observing

💄 Login

Search:

http://alymantara.com/ava

Hernández Santisteban, 2023, OjA, in prep

Fairall 9

Simbad | NED | Bentz DB

RA (h:m:s) D 01:23:45.78 -	DEC (d:m:s) F -58:48:20.81 2	IA (deg) 20.94074	DEC (deg): -58.80578	
	Basic	on		
Redshift	0.046145			
E(B-V)	0.026		Schlafly & Finkb	einer (2011)
Black Hole Mass	s 8.3	${\sf M}_{\odot}$	Bentz &	Katz (2015)
L ₅₁₀₀	43.92	(erg/s)	Bentz &	Katz (2015)
L _{Bol}	45.14	(erg/s)	<i>k_{bol}</i> =16.52, N	etzer (2019)
L _{Edd}	0.053			(caution)

← Back

Photometric Data Summary

Facility	Cadence (days)	Start (MJD)	End (MJD)	Ŧ
Swift	0.99	2018-05-13	2020-02-21	\otimes
LCO	0.39	2018-06-02	2023-02-21	0

Spectroscopic Data Summary

Facility	Cadence (days)	Epochs	Start (MJD)	End (MJD)	7
LCO	4.95	194	2018-05-25	2023-02-25	0

Data Citation

- Hernandez Santisteban et al. 2020, MNRAS, 498, 5399
- Edelson et al, in prep

AVA AGN Variability Archive

http://alymantara.com/ava

Hernández Santisteban, 2023, OjA, in prep

Intensive Broadband Reverberation Mapping: the future

Montano,...,Hernández Santisteban, ApJL, 2022

Conclusions

Intensive Broadband Reverberation Mapping campaigns have provided high-quality datasets for testing accretion theory onto SMBH

IBRM campaigns have provided **broadly consistent results with accretion disk theory**, but many discrepancies still remain.

Dedicated multi-band IBRM campaigns will fill in the gap in both luminosity and mass-scale in the LSST era.

Developing a living database – AVA, that will contain science-ready data products \rightarrow long-lasting resource for the community

Hernández Santisteban, 2023, OjA, in prep

http://alymantara.com/ava