Daniel Kynoch

Ian M^cHardy, Jonathan Gelbord, Ed Cackett, Keith Horne, Juan Hernández Santisteban, Federico Vincentelli, Hagai Netzer, Michael Fausnaugh

MCG+08-11-11

- Nearby (*z* = 0.0205), bright Seyfert galaxy.
- Strong X-ray variability ~months (Ariel V; Ward 1977; Treves 1990)
- Intermediate Seyfert / Sy 1.5 (Véron-Cetty & Véron; Cohen 1983).
- Black hole mass $\approx 2.8 \times 10^7 M_{Sun}$ (H β RM: Fausnaugh 2017).
- High accretion rate (≈ 50 % Eddington).

Intensive Swift campaign 2021

Swift observations:

- Jonathan Gelbord
- ×3 daily observations over 3 months (February – May 2021)
- XRT + 6 UVOT bands
- Fractional variability:

F _{var} (X)	≈ 32 %
F _{var} (UVW2)	≈ 14 %
$F_{\rm var}(V)$	≈5%

Ground-based campaign 2020-21

Dan Zowada Memorial Observatory & Las Cumbres Observatory network:

- Ed Cackett (Zowada)
- K. Horne & J. Hernández Santisteban (LCO)
- Zowada ≈nightly observations over 8 months (September 2020 – April 2021)
- LCO monitoring since January 2020
- 5 SDSS bands: ugriz
- Overlap with intensive Swift monitoring

Daniel Kynoch *The Restless Nature of AGN* | Napoli | June 2023

Interpolated cross-correlation functions & lags relative to UVW2 (2083 Å):

- Well-defined cross-correlation functions.
- Strong correlations:
 - > X-ray to UVW2 $R_{\text{max}} = 0.85$
 - > UVW2 to optical-IR R_{max} > 0.92.
- X-ray lead \approx 1.8 days.
- Lags increase with wavelength from 0 days (UVM2: 2245 Å) to 2.9 days (z: 8922 Å).
- Consistent lags from JAVELIN.

Unusually strong X-ray to UV correlation:

AGN	X-ray-UV R _{max}	UV-opt. R _{max}	Reference
MCG+08-11-11	0.85	0.92 - 0.96	
Mrk 142	0.54 - 0.74	0.73 - 0.95	Cackett 2020
Mrk 509	0.63 - 0.77	0.97 - 0.99	Edelson 2019
NGC 5548	0.39 - 0.44	0.93 - 0.99	Edelson 2019
NGC 4151	0.36 - 0.68	0.82 - 0.97	Edelson 2019
NGC 4593	0.69 - 0.73	0.70 - 0.97	M ^c Hardy 2018; Edelson 2019
Mrk 817	0.33	0.88 - 0.99	Kara 2021; Cackett 2023
Mrk 110	0.29 - 0.65	0.51 - 0.98	Vincentelli 2022
Mrk 335	0.58 - 0.68	0.76 - 0.95	Kara 2023
NGC 7469	0.66	0.72	Kumari 2023

Do you know of a stronger X-ray to UV correlation? Let me know!

Daniel Kynoch *The Restless Nature of AGN* | Napoli | June 2023 University of Southampton

Earlier optical continuum reverberation (2019-20) Fian et al. (2023) A&A 672:A132

Earlier optical continuum reverberation (2019-20)

- see also F. Vincentelli poster on Mrk 110.

Modelling the lags (preliminary)

Daniel KynochThe Restless Nature of AGN | Napoli | June 2023

University of **Southampton**

Modelling the lags (preliminary)

Daniel Kynoch *The Restless Nature of AGN* | Napoli | June 2023

Modelling the lags (preliminary)

Daniel Kynoch *The Restless Nature of AGN* | Napoli | June 2023 University of Southampton

Presence of a wind

Summary

- Intensive *Swift* montioring of MGC+08-11-11 over 3 months.
- X-ray and UV-IR lightcurves are *very* highly correlated (R_{max} 0.85).
 ➤ X-rays are driving the variability.
 - > X-ray source has clear line-of-sight to reprocessor(s).
- UV-IR inter-band lags up to \approx 3 days.
- Earlier optical monitoring revealed much longer lags (> 7 days).
 Filtering out long-term trends reveals the faster variations.
 Two components that dominate variability at different times.
- X-ray and UV-optical spectra suggest line-of-sight through a wind.
 Does the wind affect the lags?
- Disc truncated by wind (or bowl geometry) broadly explains lags.
- <u>But</u> our lag spectrum also clearly shows contribution from BLR.

Extra slides

Daniel KynochThe Restless Nature of AGN| NapoliJune 2023

University of **Southampton**

X-ray hardness

Flux-flux analysis

Separate out the **mean**, **variable** and **host galaxy** components, best estimate of the **disc** spectrum.

Estimated disc still redder than standard disc: implies reddening in the nucleus.

Spectral energy distribution

Lag spectrum

6 JVM2 JVW1 u -ray 5----- i 4 Time delay [days] 3 í $\mathbf{2}$ 1 lags from filtered optical lightcurves 0 ICCF centroid -1JAVELIN JAVELIN (Wise 2019-20) -220004000 6000 8000 0 Wavelength [Å]

Daniel Kynoch *The Restless Nature of AGN* | Napoli | June 2023 University of Southampton

Lag spectrum

Daniel KynochThe Restless Nature of AGN| NapoliJune 2023

University of Southampton

