Twisted (Lensed) Quasar Light Curves for Continuum Reverberation Mapping

James Chan^(CUNY, AMNH) with Martin Millon, Karina Rojas, and Fred Courbin

Discrepency in quasar accretion disk

- The accretion disk is larger than predicted by the thin-disk model, by a factor of 2 3.
- The traditional reverberation mapping (RM) simplies the transfer function of disk.
- Microlensing induces additional time delay in cosmography, which may bias the Hubble constant (H_0) measurement.

1. Impact of twisted transfer function

2. Microlensing light curves for RM

Light curve simulation

- LSST-like light curves
- driving curve (DRW):
 - $\tau_{\rm rel} = 200$ days,
 - $SF_{\infty} = 2$ (arb. unit)
- duration: 1000 days
- error: $\Delta m = 0.01 \text{ mag}$
- season gaps

microlensing can distort a transfer function, inducing additional delays

New method to estimate the accretion disk size

Time lag measurement:

- The transfer function of thin-disk model is asymmetric.
- Curve-shifting techniques that are sensitive to sharp features, underestimate multiband time delays by up to 20%.
- JAVELIN-Ext may not perform better, with fitted size being 30% smaller.
- The proper transfer functions need to be taken into account, such as CREAM.

3. Future prospect

 more sophiscated disk models: inner radius, height of corona, inclination angle, temperature slope, etc.

- better techniques for time lag measurements, with and without microlensing.
- LSST (microlensing) light curves.

Disk sizes can be recovered to within a factor of 2 (using one lensed image)
When four lensed images are used, our method is able to achieve an unbiased source measurement within error of the order of 20%.