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PYyROA — Modelling AGN Lightcurves PG 1119+120

5UROA models the all 1able light , , il PG 1119+120 is a local (z=0.05) quasar observed with the Las Cumbres
y Models the all avallable '3 , curyes using a running optima Observatory (LCO) in the u’, B, g, V, r’, I/, z filters and spectroscopic monitoring
average (ROA) to generate the driving lightcurve.

Reverberation mapping of PG 1119+120: Testing Super-Eddington Accretion
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Testing Super- Edmgton Accretlon
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For an accretion disc temperature structure

Lightcurve 1

rms timedelay mean with Calar Alto (CAHA). This object is ideal to test the accretion structure at
The “flexibility” of the running optimal \ \ high accretion rates with intensive continuum reverberation mapping.
average is optimised using the Bayesian fi(t) = AiIX (t — TiJ) + b5 - While sub-Eddington accretion is well tested, consistent with a geometrically
Information Criterion (BIC), which adds a — thin accretion disc, super-Eddington accretion is expected occur through a
penalty with increasing no. of parameters Normalised driving lightcurve “slim” accretion disc, where the radiation pressure increases the scale height.
when the ROA becomes too flexible. shifted in time. G 11104120 Lightcurves Time Delay (Days)
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PYROA is able to handle large gaps in the lightcurves where the CCF fails
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(grey posteriors). Additionally PyROA includes a noise model to deal with

underestimated flux errors.
https://github.com/FergusDonnan/PyROA
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In this figure we show
a fit where we
expanded PyROA to
model a distribution
of delays:

59250

' |
Convolution of driving lightcurve with
delay distribution
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Spectral Decomposition:

low

T(R) < R~Y/F  the lag spectrum follows

T AP,

Both thin disc (B = 4/3) and slim disc (B = 2)
models consistent with lag spectrum.
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Decompose photometric flux into
fixed (host galaxy) and variable
(AGN) components by extrapolating
linear model to “turn off”

variability.
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BLR Diffuse Continuum Emission:
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We fit the AGN SED with accretion
disc models (including dust

extinction), finding the Slim disc to
provide a slightly better fit with an

Eddington ratio of Agqq = 3. 26t%21%

Spectrum matches shape of bound-free emission
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