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A B S T R A C T 
High luminosity accretion on to a strongly magnetized neutron star results in a radiation pressure dominated, magnetically 
confined accretion column. We investigate the dynamics of these columns using 2D radiative relativistic magnetohydrodynamic 
simulations, restricting consideration to modest accretion rates where the height of the column is low enough that Cartesian 
geometry can be employed. The column structure is dynamically maintained through high-frequency oscillations of the accretion 
shock at ! 10–25 kHz. These oscillations arise because it is necessary to redistribute the power released at the accretion shock 
through bulk vertical motions, both to balance the cooling and to pro vide v ertical pressure support against gravity. Sideways 
cooling al w ays dominates the loss of internal energy. In addition to the vertical oscillations, photon bubbles form in our simulations 
and add additional spatial complexity to the column structure. They are not themselves responsible for the oscillations, and 
they do not appear to affect the oscillation period. Ho we v er, the y enhance the vertical transport of radiation and increase the 
oscillation amplitude in luminosity. The time-averaged column structure in our simulations resembles the trends in standard 1D 
stationary models, the main difference being that the time-averaged height of the shock front is lower because of the higher 
cooling efficiency of the 2D column shape. 
Key words: instabilities – MHD – stars: neutron – X-rays: binaries. 

1  I N T RO D U C T I O N  
In marked contrast to black holes, the accretion of matter on 
to a neutron star can be guided by a sufficiently strong stellar 
magnetic field to form surface hot spots or magnetically confined 
accretion columns. If these spots or columns are not axisymmetrically 
distributed around the neutron star spin axis, the result is an accretion- 
powered X-ray pulsar. Accreting X-ray pulsars, most of which are 
in high mass X-ray binaries, have been known since the early 
days of X-ray astronomy (see e.g. Caballero & Wilms 2012 for a 
re vie w). Accreting millisecond pulsars in low mass X-ray binaries 
were disco v ered much later (Wijnands & van der Klis 1998 ). 
Beginning with the discovery by Bachetti et al. ( 2014 ), some ultralu- 
minous X-ray sources are no w kno wn to exhibit coherent pulsations 
and are therefore clearly accreting, magnetized, rotating neutron 
stars. 

The theoretical structure of magnetically confined accretion flows 
on neutron stars was first elucidated by Inoue ( 1975 ) and Basko & 
Sunyaev ( 1975 , 1976 ). When the accretion rate is low, a ‘pencil- 
beam’ emission pattern of radiation develops due to the anisotropic 
effects of magnetic opacity abo v e the hotspot on the surface of the 
star. When the accretion rate is high enough, a radiating shock forms 
abo v e the surface of the neutron star and divides the column structure 
into two zones: (1) a free-fall zone abo v e the shock, where the kinetic 
energy of the incoming material is converted into radiation at the 
! E-mail: lizhong4physics@gmail.com 

shock front; and (2) a radiation pressure dominated sinking zone 
below the shock, where gravitational energy is slowly released. In 
this case, a ‘fan-beam’ emission pattern emerges as the accretion 
column radiates through its sides. 

Approximate 1D profiles of the column (hereafter called the 1D 
standard model) can be solved analytically assuming a horizontal one 
zone finite difference and a stationary column structure. However, 
Klein & Arons ( 1989 ) first showed by numerical simulation that 
accretion columns exhibited time-dependent structures which they 
associated with the so-called ‘photon bubbles’, suggesting that accre- 
tion columns cannot be stationary structures. Since that disco v ery, 
the photon bubble instability has been explored extensively both 
analytically (Arons 1992 ; Gammie 1998 ; Begelman 2001 ; Blaes & 
Socrates 2003 ; Begelman 2006 ) and numerically (Hsu, Arons & 
Klein 1997 ; Turner et al. 2005 ; Zhang, Blaes & Jiang 2021 ). In 
accretion columns with high accretion rates, the sinking zone is 
radiation pressure dominated, and (to quote Gammie 1998 ) this 
results in an inherently fragile hydrostatic equilibrium because the 
thermal pressure support is then independent of gas density. Vertical 
perturbations in density are therefore dynamically neutral (zero 
frequency entropy modes), but when horizontal gradients exist, the 
resulting heat flow can drive unstable phase relationships between 
density and radiation pressure perturbations. This is the photon 
bubble instability in the so-called slo w-dif fusion regime (Arons 
1992 , appendix A3 of Zhang et al. 2021 ). The photon bubble 
instability can disrupt the equilibrium of the accretion column and 
therefore understanding the actual structure of such columns requires 
numerical simulations. 
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Ṁ
√
GMr

)1/4

UR8V

R

cf. standard (Newtonian) disk theory:

1[m�iBQMb *?�`H2biQM aHB/2b
PK2` "H�2b

62#`m�`v d- kykj

L ∼ LEdd =
4πGMc

κ
URV

H ∼ r UkV

|vr| = α

√
GM

r
UjV

r ∼ rg =
GM

c2
U9V
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Luminous AGN are Probably Powered by Optically Thick Accretion
In Which Accretion Power is Thermalized into Radiation at Some Level



But there are big problems with disk theory vis a vis observations…

• UV spectra have a quasi-universal shape with a break to a power-law at                (near
the Lyman limit), nothing like what accretion disk theory predicts.

• Microlensing and reverberation mapping place the optical emission radius to be about
a factor 3 larger than standard accretion disk theory predicts.

• Observed variability occurs on very rapid time scales compared to standard disk theory,
the most extreme manifestation being so-called Changing Look Quasars.

MNRAS 438, 3024–3038 (2014) doi:10.1093/mnras/stt2408
Advance Access publication 2014 January 10
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ABSTRACT
AGN SEDs generally show a turnover at λ ∼ 1000 Å, implying a maximal accretion disc
(AD) temperature of Tmax ∼ 50 000 K. Massive O stars display a similar Tmax, associated with
a sharp rise in a line-driven mass-loss Ṁwind with increasing surface temperature. AGN AD
are also characterized by similar surface gravity to massive O stars. The Ṁwind of O stars
reaches ∼10−5 M# yr−1. Since the surface area of AGN AD can be 106 larger, the implied
Ṁwind in AGN AD can reach the accretion rate Ṁ . A rise to Ṁwind ∼ Ṁ towards the AD centre
may therefore set a similar cap of Tmax ∼ 50 000 K. To explore this idea, we solve the radial
structure of an AD with a mass-loss term, and calculate the implied AD emission using the
mass-loss term derived from observations of O stars. We find that Ṁwind becomes comparable
to Ṁ typically at a few tens of GM/c2. Thus, the standard thin AD solution is effectively
truncated well outside the innermost stable orbit. The calculated AD SED shows the observed
turnover at λ ∼ 1000 Å, which is weakly dependent on the AGN luminosity and black hole
mass. The AD SED is generally independent of the black hole spin, due to the large truncation
radius. However, a cold AD (low Ṁ , high black hole mass) is predicted to be windless, and
thus its SED should be sensitive to the black hole spin. The accreted gas may form a hot thick
disc with a low radiative efficiency inside the truncation radius, or a strong line-driven outflow,
depending on its ionization state.

Key words: accretion, accretion discs – black hole physics – galaxies: active – quasars:
general.

1 IN T RO D U C T I O N

The optical–UV emission in AGN is most likely the signature of
accretion on to the central massive black hole through a thin accre-
tion disc (AD; Shields 1978; Malkan 1983 and citations thereafter).
Malkan & Sargent (1982) noted that the UV emission shows a
turnover characteristic of a Tmax ∼ 30 000 K blackbody. Following
studies of larger samples showed that this is a general trend in AGN,
where the SED shows a turnover from a spectral slope of α ∼ −0.5
(Fν ∝ να) at λ > 1000 Å to α ∼ −1.5 to −2 at λ < 1000 Å (Zheng
et al. 1997; Telfer et al. 2002; Shang et al. 2005; Barger & Cowie
2010; Shull, Stevans & Danforth 2012; cf. Scott et al. 2004), which
extends to ∼1 keV (Laor et al. 1997). The turnover at λ < 1000 Å,
which corresponds to a blackbody with Tmax ∼ 50 000 K, is in con-
tradiction with the thin local blackbody AD models, which predict
peak emission νpeak ∝ (ṁ/M)1/4, where M is the black hole mass
and ṁ ≡ L/LEdd is the luminosity in Eddington units. Thus, νpeak

should range over more than an order of magnitude, as broad-line
AGN extend over the range ṁ = 0.01–1 and M = 106–1010 M#,
which is in contrast with the small range observed (e.g. Shang et al.

$ E-mail: laor@physics.technion.ac.il

2005; Davis & Laor 2011, hereafter DL11). For example, some
models predict a peak at νpeak > 1016 (e.g. Hubeny et al. 2001;
DL11), while objects with such SEDs appear to be extremely rare
(e.g. Done et al. 2012). Furthermore, high-ṁ/M AD models predict
significant soft X-ray thermal emission, which is also not observed
(Laor et al. 1997), which again implies that the expected thermal
emission from the inner hottest parts of the AD is missing.

The extreme UV (EUV) emission spectral shape can also be
constrained based on various line ratios. The analysis of Bonning
et al. (2013) of a sample of AGN reveals similar observed line
ratios, again indicating similar EUV SEDs, and an absence of the
dependence of the EUV emission on the predicted maximum thin
AD temperature in each object.

In contrast, the SED of AD around stellar mass black holes,
which peak in the X-ray regime, matches observations remarkably
well, in particular near the peak emission which originates from
the hottest innermost AD region (Davis et al. 2005; Davis, Done &
Blaes 2006). The match is accurate enough that it can be used to
determine the black hole spin (e.g. McClintock et al. 2011).

What prevents AD in AGN from generally reaching Tmax &
50 000 K? The universality of the observed νpeak suggests that it is
a local process in the AGN AD atmosphere, most likely related to
an atomically driven process. This process should be effective at

C© 2014 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
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Also, the standard Shakura-Sunyaev-based theory is itself inconsistent because of thermal
and viscous instabilities.



3032 A. Laor and S. W. Davis

Figure 7. The specific luminosity λLλ versus λ for blackbody emission
corresponding to the models presented in Fig. 3 using the "̇(F ) prescription
with ε = 0 (dashed) and ε = 1 (dot–dashed). The peak emission wavelength
decreases with M in all models, but in the models with outflow this sensitivity
to M is significantly reduced. With these relations, the 109 M! models are
cold enough to have a negligible wind effect on the SED. The integrated
luminosity drops with M when mass-loss is included in the models, as
expected from the ṁ(r) solutions. There are only very modest difference
between the ε = 0 and 1 models, suggesting that the thermostatic effect on
the SED is fairly robust.

Figure 8. The specific luminosity λLλ versus λ for blackbody emission
corresponding to the models with different a∗ presented in Fig. 5. Even
though the SEDs for models without mass-loss (solid) vary significantly
with a∗, the models with mass-loss are essentially identical. This reflects the
thermostatic effect of "̇, which produces a nearly isothermal disc at r < 20
(see Fig. 5). The SED is thus blind to the value of a∗.

Similar conclusions hold for the models assuming ε = 1. In this
case, the M = 107 and 108 M! models have a peak wavelength
ratio of 1.45, which is somewhat less than their Tmax ratio of 1.65.
This difference is a result of the shallow Teff(r) profile in Fig. 3.
Even though Teff still rises as R declines, the rise is small, and the
maximum occurs at smaller radii with lower emitting area, and thus
contributes relatively little to the SED. Therefore, the ratio of the
peak emission wavelengths is set by somewhat larger radii where
the Teff ratio between the two different mass models is smaller.
Models with "̇(F, g) (not shown) are too cold to correspond to the
observed SEDs.

Fig. 8 presents the dependence of the SED on a∗ based on the
models shown in Fig. 5. The models with no mass-loss show a
harder SED with increasing a∗, as rISCO gets smaller and the AD
reaches a higher Tmax. In sharp contrast, the dependence of the SED

on a∗ disappears completely once "̇ is included. Although the thin
AD still extends down to rISCO (see Fig. 5), this innermost region
is not hotter than the outer regions for the ε = 0 models, due to the
thermostatic effect of "̇ on Tmax mentioned above (Section 5.1). The
models with ε = 1 have a shallow rise in Teff towards the centre, but
the small emitting area again means these hotter regions contribute
very little to the overall emission. In both cases, the contribution
to the SED from the r ∼ 2 region is negligible compared to the
contribution of the r ∼ 20 region. The SED is thus blind to the inner
extension of the disc, and therefore to the value of a∗, for the AD
parameters explored in this figure.

6.2 The TLUSTY models

Due to atomic features and electron scattering, it is expected that
the local SED may differ significantly from blackbody emission
(SS73; Kolykhalov & Sunyaev 1984). Detailed modelling of the disc
vertical structure is required to accurately model these departures
from blackbody emission (see e.g. Hubeny et al. 2000, 2001). When
mass-loss is an appreciable fraction of the mass accretion rate, a
substantial portion of the disc surface layers can no longer be in
hydrostatic equilibrium. In the CAK theory, these departures from
hydrostatic equilibrium are due to the force multiplier from line
opacity. In principle, these lines could be modelled directly by a
stellar atmosphere code such as TLUSTY, but this would significantly
increase the complexity and computational cost of such calculations
(e.g. Kudritzki & Puls 2000). Therefore, we approximate the disc
emission using hydrostatic models, as used in previous studies with
no mass outflow (Hubeny et al. 2000). Although the characteristic
peak energy of the SED should be reasonably insensitive to this
assumption, the spectrum of emission at shorter wavelengths may
be significantly modified.

Even with hydrostatic models, the mass-loss has a significant
impact on the spectrum through its modification of F(r) and "(r),
as non-blackbody models are generally sensitive to both. We now
proceed using the same integration method described in Section 5.1,
again assuming no torque at the inner boundary. We combine the
resulting profiles of F(r) and "(r) with a radial profile of the verti-
cal gravity, and use the interpolation methods described in Davis &
Hubeny (2006) to construct full AD SEDs, accounting for relativis-
tic effects on photon geodesics (Dexter & Agol 2009). We compute
"(r) using an α relation for the stress and solving an algebraic
equation that smoothly transitions between the gas and radiation
pressure-dominated limits, as described in appendix B of Zhu et al.
(2012). The only difference here is that we compute F1 = WRφ/α

using our numerically integrated WRφ rather than assuming that the
last equality in their equation B3a holds.

Fig. 9 compares the TLUSTY-derived SEDs as a function of M
for models with and without mass-loss. All models have Ṁ(rout) =
0.94 M! yr−1, a∗ = 0, i = 40◦. Here we only consider one mass-loss
prescription, using the "̇(F ) relation with ε = 0 as an example. The
TLUSTY-based models with no mass-loss peak at higher energies
compared to the local blackbody models of the same parameters
(Fig. 7), due to the larger fraction of the opacity dominated by
electron scattering at short wavelengths, and the resulting modified
blackbody emission. Absorption edge features are also present. All
the models with mass-loss are significantly colder, as expected. An
interesting new feature is that, in contrast with the local blackbody
models, where there is a gradual shift to lower νpeak with a rising M,
here all models show a similar peak position near the Lyman edge,
and a break in the spectral slope above and below the edge. This
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FIG. 2.ÈTop left panel : Color density map of the AGN disk wind model, described in the text. Top right panel : Color gas temperature map of the model.
Bottom left panel : Color photoionization parameter map. Bottom right panel : Map of the velocity Ðeld (the poloidal component only). In all panels the
rotation axis of the disk is along the left-hand vertical frame, while the midplane of the disk is along the lower horizontal frame.

scales on the order of 3 yr. Our calculation follows (1) a hot,
low-density Ñow in the polar region, (2) a dense, warm and
fast equatorial outÑow from the disk, and (3) a transitional
zone in which the disk outÑow is hot and struggles to escape
the system.

In the polar region, the density is very small and close to
the lower limit that we set on the grid, i.e., gomin \ 10~20
cm~3. The line force is negligible because the matter is
highly ionized as indicated by a very large photoionization
parameter (D107). The gas temperature is close to the tem-
perature of the X-ray radiation, again indicative of highly
ionized gas. The matter in the polar region is pulled by the
gravity from the outer boundary and is an artifact of the
boundary conditions. Overall this region of very low
density is not relevant to our analysis as it has no e†ect on
the much denser disk Ñow.

The equatorial region is distinctly di†erent. In the inner
part of the disk (i.e., for the density at the wind baser D r

i
),

is high, D10~13 g cm~3. Thus, the photoionization param-
eter is low despite the strong central radiation. However, as
the Ñow from the inner part of the disk is accelerated by the
line force, its density decreases and the gas temperature and
the photoionization parameter increase. Subsequently, the

gas becomes fully ionized and loses all of its driving lines
before it reaches the escape velocity and therefore falls on
the central object/inner disk. Although this gas does not
produce a wind, its primary e†ect is to shield the gas at
larger radii. Thus, the wind consists of gas accelerated by
the line force at larger radii ; in fact, driving of the disk wind
extends over all radii at which the intrinsic disk radiation is
large enough to launch gas.

The poloidal velocity (Fig. 2, bottom right panel) shows
that the gas streamlines are perpendicular to the disk over
some height that increases with radius. The streamlines then
bend away from the central object and converge. The region
where the Ñow is moving almost radially outward is associ-
ated with a high-velocity, high-density stream. This fast
stream contributes D100% to the total mass-loss rate,

yr~1. We note that the mass-loss rate canM0
W

\ 0.5 M
_increase by a factor of a few when a knot is crossing the

outer boundary.
The fast stream is variable. In the upper envelope of the

disk wind there is a large-velocity shear between the higher
density fast stream moving outward and the lower density
fast gas moving inward. Our simulations show that this
shear gives rise to Kelvin-Helmholtz instabilities. The insta-

-Proga, Stone & Kallman (2000)

Disk Winds Are Almost Certainly the Major Modifier of Far UV SED

Winds can also alleviate the microlensing size problem
(Li, Yuan & Dai 2019).



Secular Time Scales in the Standard Radiation Pressure Dominated Model

i.e. the total luminosity is given by the rate of gravitational binding energy released in bringing material from
infinity down to rin, plus the rate of work done by the torque at rin.

The most famous assumption made by Shakura & Sunyaev (1973) is that the dissipative r� � stress is propor-
tional to the thermal pressure P according to

⌧r� = ↵P. (14)

Here

P =
1

3
aT

4 +
⇢kT

µ
. (15)

IF we assume that heat is vertically transported from the interior of the disk to the surface (assumed to have much
smaller temperature, i.e. the vertical optical depth is large) by radiative di↵usion, then

F
� ' acT

4

3⇢H
(16)

Assuming that the disk is supported entirely by thermal pressure against the vertical tidal gravity of the black hole,
then hydrostatic equilibrium implies that the disk half thickness H is given by

H ' 1

⌦

✓
P

⇢

◆1/2

(17)

All these equations can now be combined to derive the radial profiles of density, temperature, etc. in the
disk interior. Some simple analytic expressions can be derived if we assume that radiation pressure dominates
gas pressure and that we are far from the inner edge. First, independent of the stress prescription (14), the disk
half-thickness is given by

H =
3Ṁ
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2
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and the stress itself is given by (Shakura & Sunyaev, 1976)

⌧r� =
2c⌦

3
⌘ ⌧r�crit. (19)

The radial profiles of both these quantities are therefore completely and solely determined by the opacity . Note
that equation (18) for the disk half-thickness depends on inflow equilibrium, i.e. equation (12), whereas the expres-
sion (19) for the stress does not depend on that. It merely assumes vertical hydrostatic and thermal equilibrium,
as well as radiative di↵usion. It would be interesting to check whether equation (19) is satisfied in the
AGNIron and new simulations.

Other quantities do depend on the stress prescription, and are given by
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and

P =
2c⌦

3↵
. (22)

The disk surface density and midplane optical depth are given by
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3

Vertical hydrostatic equilibrium + radiation diffusion

3.2 Circular Orbits in the Equatorial Plane

Circular orbits will be given by R = 0 (i.e. constant coordinate radius) and by the radius being at one of the
extrema of the e↵ective potential:

d
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Furthermore, for the orbit to be stable, the extremum must be a minimum, so that

d2

dr2
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DERIVE THE FOLLOWING:
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. (32)

Here the upper sign refers to direct orbits (I = 0) and the minus sign refers to retrograde orbits (I = ⇡).

3.3 Epicyclic Frequencies

DERIVE!
Linear perturbations about equatorial circular orbits produce radial and vertical simple harmonic motion, with

corresponding frequencies with respect to coordinate time t given by
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Here the subscript 0 on the derivatives indicates that they are to be evaluated at the radius of the circular orbit.

3.4 Inclined Circular Orbits

The ✓ = ⇡/2 equatorial circular orbits are a special case of orbits in Kerr spacetime that maintain constant
coordinate radius r for all time. These circular orbits still obey R = 0 = R0, and are stable if R00 < 0:
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2
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2]� r� = 0 (36)

Note that as a ! 0 we get the correct results for circular orbits in Schwarzschild spacetime:

ESch =
r � 2Mp
r(r � 3M)

, LzSch = r

r
M

r � 3M
cos I (Schwarzschild) (37)

Can we solve equations (35)-(36) for Kerr? Equation (35) implies that

L2
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2 =
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�
[E(r2 + a2)� aLz]

2 (38)

Using this to eliminate the inclination angle dependence [and therefore Q in equation (36)], we obtain a relationship
between E and Lz for circular orbits:

2rE�[E(r2 + a2)� aLz]� (r �M)[E(r2 + a2)� aLz]
2
� r�2 = 0, (39)
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4.2 Convection

5 Modifications: Vertically Layered Accretion

Global simulations (Zhu & Stone, 2018) show that accretion disks with net vertical flux tend to form three distinct
vertical layers: a thermal pressure dominated (high plasma beta) midplane region, a magnetically dominated region
at altitude through which surface accretion can occur, and a magnetically dominated wind region further out.
Accretion in the middle region can dominate the overall accretion rate, with both r� and z� stresses from large
scale, ordered magnetic fields contributing to the loss of angular momentum from these regions. The z� stresses
are mostly communicated to the midplane, where they help cancel the r� (MRI turbulent) torques resulting in
less (or even negative) accretion there. At least in their simulations, magnetocentrifugal winds contributed at most
five percent to the angular momentum budget of the flow. Two dimensionsional, stationary analytic flow models
in which advection of poloidal magnetic field lines is balanced by (turbulent) resistive di↵usion appear to provide
a good description of the behavior they observe, with an e↵ective magnetic Prandtl number of order unity. This
di↵ers from predictions of older analytic models due to the fact that they have faster accretion in the surface layers
and slower vertical di↵usion over a scale length comparable to the radius.

DISTINGUISH SURFACE ACCRETION FROM OLD MODELS LIKE FIELD AND ROGERS WHO SIMPLY
PUT ALL THE DISSIPATION IN A LOCAL CORONA AND THEN IRRADIATED THE DISK.

YAN-FEI IS FINDING, TENTATIVELY, THAT THE FRACTION OF MDOT THROUGH THE THERMAL
PRESSURE DOMINATED MIDPLANE IS SMALLER WITH SMALLER OVERALL MDOT.

IS RADIAL ADVECTION OF ENERGY IMPORTANT HERE, PARTICULARLY IN THE MAGNETICALLY
DOMINATED SURFACE LAYERS?

6 Modifications: Variability

The nominal secular time scales for an accretion disk are the thermal time,
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where I have taken the standard radiation pressure-dominated model equation (18) for the scale height.
In the standard model, where radiation pressure provides hydrostatic support against the tidal gravity, equation

(20) implies that the iron opacity region is located at radius given by
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and ranges from 44rg (↵ = 0.1) to 210rg (↵ = 0.01), depending on ↵. The corresponding e↵ective temperature at
the photosphere at this radius is

Te = 9800 K
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corresponding to an emission wavelength from Wien’s displacement law of

� = 3000Å
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The thermal time in the iron opacity region (T ⇠ 2⇥ 105 K) is given from equation (20) by3
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3The thermal time is the time it takes to radiate away the internal energy content of the disk, i.e. ⇠ pH/F
�. In the standard model,

thermal equilibrium (11) and the alpha prescription (14) then give (↵⌦)�1.
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Figure 14. rms-mean relation computed for ṁ at the ISCO for all five simulations. Fits using equation 5 are provided for each case.

segments are statistically well fit by a log-normal distribu-
tion, with �

2
/d.o.f. = 1.98, 1.13 and 0.86. This is not true

for the entire simulation data (see Fig. B1).

Similar to simulation A, the shorter time segments of
simulation B show statistically significant log-normal distri-
butions, with �

2
/d.o.f. = 1.10, 1.87 and 2.14. Even though,

in this case, the secular decline is not very steep, the entire
simulation data are still not well fit by a log-normal distri-
bution (see Table B1). None of the data segments give an
acceptable fit for a Gaussian distribution (see Table 3).

In the case of simulation C, the steady increase in ṁ

initially, followed by its gradual decline makes it hard to find

a reasonably long time segment in which ṁ is stationary. In
Fig. 15, we show a segment chosen towards the end of the
simulation, where ṁ is nearly stationary. In contrast to the
previous results, we find this distribution to be well fit by
either a normal or log-normal distribution.

For di↵erent time segments in simulation R, we find
that both visibly and based on ��

2 values, a log-normal
distribution fits better than a normal one. However, the ob-
tained �

2
/d.o.f. for the log-normal fits are not statistically

acceptable. A similar conclusion is reached when the entire
duration is considered (see Table B1).

Simulation D does not exhibit as significant a decline as

MNRAS 000, 1–22 (2019)

Global Non-Radiative GRMHD Simulations Do Exhibit Nonlinear RMS-Accretion Rate and Lognormal Distributions

18 Bollimpalli et al

Figure 15. Distribution of ṁ for simulations A, B, C and R for di↵erent time segments during which ṁ is reasonably stationary. The
best fits of normal and log-normal distributions are shown in red, dashed and blue, solid curves, respectively.

causes the high frequency power at larger radii to domi-
nate that at smaller radii. While this is in contrast to X-
ray observations, in which higher energy bands exhibit more
high frequency power compared to lower energy bands, the
presence of the high frequencies only above the Keplerian
curve strongly suggests they are associated with p-modes,
which are not likely to strongly modulate the light curve.

Perhaps, with proper treatment of radiative processes (i.e.,
radiative GRMHD simulations), we would be able to filter
out the non-dissipative, high-frequency fluctuations by ob-
taining the power spectra directly from the luminosity.

• The ṁ power spectra at a given radius exhibit strong
similarity with spectra at smaller radii below the local vis-
cous frequency. This is in contrast to model assumptions

MNRAS 000, 1–22 (2019)

RMS - <Accretion Rate>

Accretion Rate Distributions Fit by
Gaussian (red) and Lognormal (Blue)

-Bollimpalli et al. (2020)
(see also Samuel Turner’s poster for some insight into *why* this
is happening.)
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1 Order of Magnitude Estimates

It is possible to get at the ambient conditions of an accretion flow into a supermassive black hole with very little in
the way of assumptions, including whether or not there is even a rotationally-supported disk.

Consider an inward mass accretion rate Ṁ at some radius r around the black hole. This accretion rate need not
be constant in time or in radius. Let the transverse half-thickness of the flow at the radius be H(r), and the mass
density in the flow by ⇢(r). Then

Ṁ = (2⇡r)(2H)⇢v, (1)

where the inflow velocity v is defined to be positve for inward radial motion. Let this be some fraction of the
local circular velocity (GM/r)1/2. Rees (1984) defined the ↵ parameter to be exactly this fraction, but to be more
consistent with standard accretion disk theory (Shakura & Sunyaev, 1973), we shall define ↵ by
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(2)

Let us scale Ṁ with the Eddington accretion rate defined in terms of a radiative e�ciency ⌘ and the Eddington
luminosity for Thomson scattering:
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, (3)

where T (= 0.34 cm2 g�1 for ionized hydrogen and helium) is the Thomson opacity. This is enough to now find
an expression for the mass density in the flow as a function of radius:
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⌘ṀEdd

!

= 2⇥ 10�13g cm�3
↵
�1

✓
M

108M�

◆�1✓
r

rg

◆�3/2✓
H

r

◆�3
 

Ṁ
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Here rg ⌘ GM/c
2 is the gravitational radius. I could also write Ṁ/(⌘ṀEdd) as L/(⌘LEdd). This is in complete

agreement with equation (12) of Rees (1984) who, however, assumed H ⇠ r. Note that the density is in fact quite
sensitive to the thickness H in this parameterization. Standard disk models (see section 2) eliminate H by assuming
that thermal pressure supports the disk thickness against the tidal gravity of the hole, but we do not wish to make
this assumption yet.

Let us now assume that some fraction frad of the locally liberated gravitational binding energy per unit time,
⇠ GMṀ�r/r

2, is radiated locally as light L(r)

L(r) ⇠ frad
GMṀ�r

r2
. (5)

IF this power is transported to the surface of the flow (defined here to be at a transverse distance H) through
radiative di↵usion, then that gives us an estimate for the temperature T (r) inside the flow at that radius:

L(r) = 4⇡r�r
acT

4

3⇢H
(6)
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It is possible to get at the ambient conditions of an accretion flow into a supermassive black hole with very little in
the way of assumptions, including whether or not there is even a rotationally-supported disk.
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Let us scale Ṁ with the Eddington accretion rate defined in terms of a radiative e�ciency ⌘ and the Eddington
luminosity for Thomson scattering:
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Ṁ
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GMṀ�r

r2
. (5)

IF this power is transported to the surface of the flow (defined here to be at a transverse distance H) through
radiative di↵usion, then that gives us an estimate for the temperature T (r) inside the flow at that radius:

L(r) = 4⇡r�r
acT

4

3⇢H
(6)

1

Toward Developing a New AGN Accretion Model

Omer Blaes

February 9, 2023

1 Order of Magnitude Estimates

It is possible to get at the ambient conditions of an accretion flow into a supermassive black hole with very little in
the way of assumptions, including whether or not there is even a rotationally-supported disk.
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agreement with equation (12) of Rees (1984) who, however, assumed H ⇠ r. Note that the density is in fact quite
sensitive to the thickness H in this parameterization. Standard disk models (see section 2) eliminate H by assuming
that thermal pressure supports the disk thickness against the tidal gravity of the hole, but we do not wish to make
this assumption yet.

Let us now assume that some fraction frad of the locally liberated gravitational binding energy per unit time,
⇠ GMṀ�r/r
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IF diffusive transport

where  is the local opacity. (The prefactor of 4⇡ rather than 2⇡ comes from the two transverse faces of the flow.)
This is enough to now determine the interior temperature of the flow:
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Assuming a mean molecular weight for ionized hydrogen and helium of µ = 0.6mp, the radiation to gas pressure
ratio in the flow is
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Ṁ
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The transverse optical depth from the center to the surface is

⌧ = ⇢H = ↵
�1

✓
r

rg

◆�1/2✓
H

r

◆�2✓


T

◆ 
Ṁ
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2 The Standard SS73 Theory - Including Opacity

The standard model of Shakura & Sunyaev (1973), which the authors actually did not intend for use in AGN
(“Black holes in binary systems. Observational appearance”), assumes that the flow takes the form of a rotationally
supported, geometrically thin, radiatively e�cient disk. Being rotationally supported and geometrically thin implies
that the disk rotation is Keplerian, i.e. the angular velocity ⌦ = (GM/r

3)1/2 and the specific angular momentum
is ` = (GMr)1/2. (We are neglecting general relativity here.) Mass slowly spirals inward, and all the gravitational
binding energy that is released in bringing matter from infinity down to the ISCO is released radiatively, with a
negligible amount of inward energy advection. The reason matter spirals inward is due to local radial-azimuthal
stresses ⌧r� in the disk which are dissipative.

The standard model does not allow for winds or outflows, so that mass and angular momentum are conserved in
the flow within the disk. It also generally assumes that this flow is steady-state at all radii. Mass conservation then
implies that the accretion rate Ṁ is the same at all radii. Angular momentum conservation on the disk between an
inner radius rin and a general radius r implies

Ṁ(`� `in) = 4⇡r2H⌧r� � 4⇡r2inHin⌧r�in, (10)

i.e. the torques on this section of the disk are balanced by angular momentum flowing into and out of this section.
Balancing the local rate of dissipation per unit volume (stress times rate of strain), integrated vertically, with

the total surface radiative cooling per unit area 2F�, we find that the radiative flux emerging from each side of the
disk is given by
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The stress can be eliminated between the previous two equations to then give the standard expression for the
emergent flux as a function or radius, accounting for the presence of inner disk torques:
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This integrates up to give a total emitted luminosity of
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where  is the local opacity. (The prefactor of 4⇡ rather than 2⇡ comes from the two transverse faces of the flow.)
This is enough to now determine the interior temperature of the flow:
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Ṁ
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Ṁ
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Ṁ
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where  is the local opacity. (The prefactor of 4⇡ rather than 2⇡ comes from the two transverse faces of the flow.)
This is enough to now determine the interior temperature of the flow:
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Assuming a mean molecular weight for ionized hydrogen and helium of µ = 0.6mp, the radiation to gas pressure
ratio in the flow is
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The transverse optical depth from the center to the surface is
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Ṁ
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2 The Standard SS73 Theory - Including Opacity

The standard model of Shakura & Sunyaev (1973), which the authors actually did not intend for use in AGN
(“Black holes in binary systems. Observational appearance”), assumes that the flow takes the form of a rotationally
supported, geometrically thin, radiatively e�cient disk. Being rotationally supported and geometrically thin implies
that the disk rotation is Keplerian, i.e. the angular velocity ⌦ = (GM/r

3)1/2 and the specific angular momentum
is ` = (GMr)1/2. (We are neglecting general relativity here.) Mass slowly spirals inward, and all the gravitational
binding energy that is released in bringing matter from infinity down to the ISCO is released radiatively, with a
negligible amount of inward energy advection. The reason matter spirals inward is due to local radial-azimuthal
stresses ⌧r� in the disk which are dissipative.

The standard model does not allow for winds or outflows, so that mass and angular momentum are conserved in
the flow within the disk. It also generally assumes that this flow is steady-state at all radii. Mass conservation then
implies that the accretion rate Ṁ is the same at all radii. Angular momentum conservation on the disk between an
inner radius rin and a general radius r implies

Ṁ(`� `in) = 4⇡r2H⌧r� � 4⇡r2inHin⌧r�in, (10)

i.e. the torques on this section of the disk are balanced by angular momentum flowing into and out of this section.
Balancing the local rate of dissipation per unit volume (stress times rate of strain), integrated vertically, with

the total surface radiative cooling per unit area 2F�, we find that the radiative flux emerging from each side of the
disk is given by
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The stress can be eliminated between the previous two equations to then give the standard expression for the
emergent flux as a function or radius, accounting for the presence of inner disk torques:

F
� =

3GMṀ
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8

6B;m`2 R, _Qbb2H�M/ QT�+Biv mM/2` �:L +QM/BiBQMb- �b � 7mM+iBQM Q7 i2KT2`�im`2 7Q` /Bz2`2Mi /2MbBiv p�Hm2b �b
H�#2H2/X h?2 B`QM QT�+Biv T2�F Bb i?2 72�im`2 M2�` T = 2× 105 EX

6B;m`2 k, �HT?� /BbF KQ/2H rBi? `2�HBbiB+ QT�+BiB2b- �bbmKBM; M = 108 J!- Ṁ/(ηṀEdd) = 0.1- �M/ α = 0.1X
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Figure 3: Same as Figure 2 except with three times more accretion rate and luminosity: Ṁ/(⌘ṀEdd) = 3.
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Radial Structure in the Standard Shakura-Sunyaev Disk Model with Realistic Rosseland Opacities



Figure 5: Characteristic time scales in the standard alpha disk model with realistic opacities, assumingM = 108 M�,
Ṁ/(⌘ṀEdd) = 1, and ↵ = 0.1.

6 Modifications: Variability

In the standard model, where radiation pressure provides hydrostatic support against the tidal gravity, equation
(20) implies that the iron opacity region is located WHERE????

The thermal time in the iron opacity region (T ⇠ 2⇥ 105 K) is given from equation (20) by3
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This remarkable formula does not assume inflow equilibrium, and is independent of accretion rate and black hole
mass. The thermal time scale does depend on ↵, though. Taking ↵ = 0.04 gives a thermal time of 100 days with
the chosen scalings, though the enhancement of  would reduce this time somewhat.

The characteristic sound crossing time in the iron opacity region is
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This time scale does depend on mass and accretion rate, but with the chosen scalings, it is remarkably close to tth.
Figure 5 shows these two time scales as a function of radius, computed using the full OPAL opacity table.

3The thermal time is the time it takes to radiate away the internal energy content of the disk, i.e. ⇠ pH/F
�. In the standard model,

thermal equilibrium (11) and the alpha prescription (14) then give (↵⌦)�1.
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Iron Opacity Bump May Stabilize the Radiation-Pressure Dominated Thermal Instability

Electron scattering + free-free: OPAL Opacities:

3. INITIAL AND BOUNDARY CONDITIONS

We construct the initial vertical profiles of the disk based on
hydrostatic equilibrium and diffusion equation as in Hirose
et al. (2009b) and Jiang et al. (2013a), but with the the iron
opacity bump included self-consistently. We assume the
dissipation profile SL UrdF dzr z t,

0.5,where τ is the optical
depth from the nearest surface of the disk and Fr z, is the vertical
component of the radiation flux. If the total optical depth from
the disk midplane to the surface is U0, by symmetry, the
radiation flux as a function of τ within the photosphere is

( ) ( )U U U� � �F F 1r z, max 0
0.5 0.5

0
0.5 . Here we choose the initial

maximum radiation flux � qF 7.92 10max
11 erg s−1 cm−2, and

Fr z, is fixed to this value in the region where U � 1. We choose
the midplane temperature q2.4 105 K and integrate vertically
according to the diffusion equation U �dE d F c3r r z, , where c
is the speed of light. The total optical depth U0 is chosen such
that at U � 1, �E cF3r r z, . Initially, gas temperature T is set
to be the same as the radiation temperature ( )wT E ar r r

0.25,
where the radiation constant � qa 7.57 10r

15 erg cm−3 K−4.
The initial density profile is constructed based on the equation
of hydrostatic equilibrium ( )S L� � 8dP dz F c zt r z,

2 and
U SL� �d dzt . The midplane density is adjusted to be 10−8 g
cm−3 such that the initial total optical depth is U � q9.5 100

5.
All quantities above the photosphere are fixed to be the same
values as at U � 1. Note that in the initial condition only the
surface density Σ is the conserved quantity, while all the other
quantities such as S UT F, , , r z0 , will adjust self-consistently
during the simulation. The magnetic field is initialized in the
same way as in Jiang et al. (2013a) with the initial ratio
between gas pressure and magnetic pressure to be 12 at z=0.
The boundary conditions are also the same as in Jiang et al.
(2013a). For the short characteristic module we use to calculate
the VET, we use 80 angles per cell to capture the angular
distribution of the radiation field. Sizes of the simulation box
are all fixed to be �L H0.87x s, �L H3.48y s, and �L H6.96z s,
where Hs is the length unit listed in Table 1. The length unit is
chosen based the total radiation flux Fmax we get from the
simulation (Table 1) as ( )L� 8H F cs es max

2 . For the typical
density S0 and temperature T0 given in Table 1, it is related to
the gas pressure scale height w 8H cg g and radiation pressure
scale height w 8H cr r as � �H H H8.57 2.25s g r , where cg is
the isothermal sound speed for temperature T0 and radiation

sound speed ( )S�c a T 3r r 0
4

0 . We use q q64 128 512
grids for x y z, , directions so that we have roughly 32 grids per
radiation pressure scale height Hr. Following the convention in
ATHENA (Stone et al. 2008), unit of the magnetic field is chosen
so that magnetic permeability is one.

4. RESULTS

The initial evolutions of the disks are very similar for the
cases with or without the iron opacity. The disk cools down
slightly while MRI is still growing from the laminar initial
condition during the first few orbits. However, once heating is
generated by vigorous MHD turbulence from MRI, the disk
undergoes quite different evolution histories for different
opacities. We label the run with iron opacity bump as
OPALR20, while the three runs with just electron scattering
and free–free opacities for comparison are called ESR20a,
ESR20b, and ESR20c.

4.1. Simulation History

4.1.1. The Run OPALR20 with Iron Opacity Bump

For OPALR20, we first ran the simulation by setting the
Eddington tensor f I� 1 3 and disk lasted for 60 orbits. Then
the simulation is restarted with the short characteristic module
turned on to calculate the VET self-consistently for another 75
orbits. Histories of the volume-averaged energy densities for
the entire simulation duration are shown in the top panel of
Figure 1. Although we have run the simulation for more than
10 thermal timescales and Er is more than 60 times larger than
Eg, the radiation energy density Er, gas internal energy Eg, and
magnetic energy density Eb do not show any thermal runaway

Table 1
Simulation Parameters of the Run OPALR20

Ω/s−1 1.60×10−6

r0/cm 2.97×1015

ρ0/g cm−3 1.00×10−8

T0/K 2.00×105

P0/dyn cm−2 2.77×105

Hs/cm 2.81×1013

Σ/g cm−2 4.34×105

τ0 2.31×105

Fmax/erg s−1 cm−2 6.36×1012

Teff/K 1.29×104

Note. The parameters Ω, r0, and Σ are fixed for the simulation, while τ0 and
Fmax are time-averaged properties between 60 and 125 orbits. The effective
temperature is defined as ( ( ))wT F careff max

1 4 . The density ρ0, pressure P0,
temperature T0, and scale height Hs are the fiducial units we use to describe the
simulation. They are pretty close to the midplane density, temperature, and
characteristic disk scale height.

Figure 1. Top: histories of the volume-averaged radiation energy density Er

(red line), gas internal energy Eg (black line), and magnetic energy density EB
(blue line) for the run OPALR20 with iron opacity bump. Middle: history of
the volume-averaged Maxwell stress �B Bx y (black line) and Reynolds stress
S Ev vx y (blue line). Bottom: history of the α parameter, which is the ratio
between the sum of the total Maxwell and Reynolds stress and the sum of the
total radiation, gas, and magnetic pressure. The vertical dashed line separates
the first 60 orbits when Eddington approximation is adopted and the time with
VET turned on. Units for the energy density and stress are P0 as given in
Table 1.
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behavior as shown in Jiang et al. (2013a). The radiation energy
density Er varies only by a factor of 2 while Eg is almost a
constant. Magnetic energy density Eb shows a larger variation
amplitude and it can change by a factor of 5 after the initial 60
orbits. Histories of the volume-averaged Maxwell stress and
Reynolds stress are shown in the middle panel of Figure 1,
while the history of the equivalent α parameter is shown in the
bottom panel of Figure 1. Here α is calculated as the ratio
between the time- and volume-averaged stress and total
pressure, which is 0.025 after the first 60 orbits. The average
ratio between the total Maxwell stress and Reynolds stress from
the MRI turbulence is 4.33 while the average ratio between the
total Maxwell stress and magnetic pressure is 0.25. These
statistical properties are consistent with previous local shearing
box or global simulations of MRI turbulence, either with
isothermal equation of state or self-consistent radiative transfer
(Turner et al. 2003; Guan et al. 2009; Hawley et al. 2011;
Sorathia et al. 2012; Jiang et al. 2013b).

The space-time diagram of the density ρ and toroidal
magnetic field By for this simulation after the first 60 orbits are
shown in Figure 2, where the well known butterfly diagram is
clearly observed. The turbulent magnetic field generated by
MRI peaks around x oz Hs. The butterfly pattern can be
attributed to regions of strong By buoyantly rising away from
the midplane. This pattern of By reverses roughly every 10
orbits. The buoyantly rising magnetic field provides enhanced
pressure support and causes the density scale height near the
surface to rise and fall following the same pattern. These
buoyant motions also affect the energy transport inside the
disk, and are discuss further in Section 4.2.

To confirm that the disk is in roughly thermal equilibrium,
we compare the total heating �Q and cooling �Q rates
according to Equations (2) and (3) in Jiang et al. (2013a),
which are shown in the top panel of Figure 3. Indeed, �Q and
�Q track each other very well and the midplane pressure only

varies in a very small dynamic range. This is quite different
from Figure 2 of Jiang et al. (2013a), where �Q and �Q diverge
from each other when the disk undergoes thermal runaway.
Because the disk is in thermal equilibrium, we also cannot
measure the dependence of �Q and �Q on Pz,0 as we did in
Jiang et al. (2013a).

4.1.2. Three Runs Without the Iron Opacity Bump

To confirm that the different behaviors we see between the
run OPALR20 and the simulations shown in Jiang et al.
(2013a) are indeed caused by the iron opacity bump, we have
done three comparison runs by only including the electron
scattering and free–free opacities as in Jiang et al. (2013a). For
the run ESR20a, we use the same surface density as in
OPALR20. Because electron scattering opacity is smaller than
the iron opacity, the total optical depth U0 is only 34% of the
value in OPALR20. For the run ESR20b, we increase the
surface density by a factor of 2 so that the total optical depth is
closer to the value in OPALR20. We do not increase the
surface density to match the U0 in OPALR20 because then the
surface density is larger than the maximum surface density
allowed by the thin disk model with α=0.02–0.03. Initial
conditions for the two runs are constructed in the same way as
described in Section 3. To test the effect of the initial condition,
for the run ESR20c we restart the simulation OPALR20 at 60
orbits by changing the opacity to be electron scattering and
free–free opacities while keeping all the other quantities
unchanged. In this way, ESR20c has exactly the same
turbulence as OPALR20 to start with. All the other parameters
of the three runs, such as box size and resolution, are the same
as the run OPALR20.
Histories of the volume-averaged energy densities and

Maxwell stress of the three runs are shown in Figures 4 and
5. For all the three cases, the disks continue to cool down and
collapse within ∼4–6 thermal timescales. For ESR20a and
ESR20b, where we start the simulations from the laminar
state, they collapse more quickly because there is no heating at
the beginning. The Maxwell stress reaches the peak within the
initial ∼6 orbits and declines while the disks collapse. They do
not reach any radiation-pressure-dominated thermal equili-
brium state as the run OPALR20. Instead, they behave in a

Figure 2. Space-time diagram of the density ρ (top panel, in units of S0) and
azimuthal magnetic field By (bottom panel, in units of P2 0 ) for the run
OPALR20.

Figure 3. Top: change of the heating �Q and cooling �Q rates per unit area as a
function of the midplane total pressure Pz,0 for the run OPALR20. Bottom:
change of the total optical depth U0 and flux-weighted optical depth Ū as a
function of Pz,0. The midplane pressure is in units of P0 while the units for �Q
and �Q are 8P Hs0 .
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very similar way as the simulation RSVET shown in Jiang
et al. (2013a). For the run ESR20c, where heating from the
MRI turbulence exists from the beginning, the initial radiation
energy density of the disk is pretty close to the value as
predicted by the radiation-pressure-dominated standard thin
disk solution with the same surface density and an equivalent
α=0.02. However, with only electron scattering and free–free
opacities, the disk does not adjust itself to reach a radiation-
pressure-dominated equilibrium state. Instead, Er drops by one
order of magnitude continuously within 30 orbits. The Maxwell
stress also decreases while the disk collapses. The dependen-
cies of the heating �Q and cooling �Q rates on the midplane
pressure for the run ESR20c are shown in the top panel of
Figure 6, which are very similar to the simulation RMLVET

reported by Jiang et al. (2013a). The heating rate does have a
stronger sensitivity to the midplane pressure compared with the
cooling rate when the thermal runaway occurs. Compared with
OPALR20, the three runs confirm that the different behaviors
are indeed caused by the iron opacity bump, as the opacity law
is the only difference between them.

4.2. Vertical Structure of the Disk in the Run OPALR20

In order to investigate why the iron opacity bump can make
the radiation-pressure-dominated disks last much longer, we
first study the time-averaged vertical structures of disk in the
run OPALR20. We compute time averages starting at 60 orbits
so that only the VET portion of the runs is included.
The horizontally averaged vertical profiles of ρ, Tg, Tr, Lt are

shown in Figure 7. The vertical profiles of the total optical
depths τ and Ua, which are integrated from the nearest surface
of the disk to each height for Lt and effective absorption
opacity ( )L L L�tes es , are shown in the last panel of Figure 7.
The midplane temperature is larger than T0 so that the peak of
the Fe opacity bump occurs off the midplane. The opacity Lt
peaks around x H0.5 s and drops both when the temperature
decreases toward the photosphere and when it increases toward
the midplane. At the peak, Lt is more than three times the value
of the electron scattering opacity for the solar metallicity we
adopt. The iron opacity has a very weak dependence on density
(Figure 2 of Jiang et al. 2015). The rapid drop around oHs is
primarily because of the drop in temperature.
Because local dynamic timescale 81 is much shorter than

the thermal timescale, we expect the hydrostatic equilibrium to
be maintained very well. This means the time-averaged vertical
accelerations due to various forces should be roughly balanced
as

( )� � �a a a a , 1g r Bgas

Figure 4. Histories of the volume-averaged energy densities Er (red lines), Eg

(black lines), and EB (blue lines). From the top to bottom, they are for the three
runs ESR20a, ESR20b, and ESR20c, which only include the electron
scattering and free–free opacities. The units of the energy densities are P0.

Figure 5. Histories of the volume-averaged Maxwell stress for the three runs
ESR20a, ESR20b, and ESR20c. The units of the stress are P0.

Figure 6. Change of the heating �Q and cooling �Q rates per unit area (top)
and total optical depth U0 as well as flux-weighted optical depth Ū (bottom) as a
function of the midplane total pressure Pz,0 for the run ESR20c. The units are
the same as in Figure 3.
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very similar way as the simulation RSVET shown in Jiang
et al. (2013a). For the run ESR20c, where heating from the
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energy density of the disk is pretty close to the value as
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stronger sensitivity to the midplane pressure compared with the
cooling rate when the thermal runaway occurs. Compared with
OPALR20, the three runs confirm that the different behaviors
are indeed caused by the iron opacity bump, as the opacity law
is the only difference between them.
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In order to investigate why the iron opacity bump can make
the radiation-pressure-dominated disks last much longer, we
first study the time-averaged vertical structures of disk in the
run OPALR20. We compute time averages starting at 60 orbits
so that only the VET portion of the runs is included.
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shown in Figure 7. The vertical profiles of the total optical
depths τ and Ua, which are integrated from the nearest surface
of the disk to each height for Lt and effective absorption
opacity ( )L L L�tes es , are shown in the last panel of Figure 7.
The midplane temperature is larger than T0 so that the peak of
the Fe opacity bump occurs off the midplane. The opacity Lt
peaks around x H0.5 s and drops both when the temperature
decreases toward the photosphere and when it increases toward
the midplane. At the peak, Lt is more than three times the value
of the electron scattering opacity for the solar metallicity we
adopt. The iron opacity has a very weak dependence on density
(Figure 2 of Jiang et al. 2015). The rapid drop around oHs is
primarily because of the drop in temperature.
Because local dynamic timescale 81 is much shorter than

the thermal timescale, we expect the hydrostatic equilibrium to
be maintained very well. This means the time-averaged vertical
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Figure 4. Histories of the volume-averaged energy densities Er (red lines), Eg

(black lines), and EB (blue lines). From the top to bottom, they are for the three
runs ESR20a, ESR20b, and ESR20c, which only include the electron
scattering and free–free opacities. The units of the energy densities are P0.

Figure 5. Histories of the volume-averaged Maxwell stress for the three runs
ESR20a, ESR20b, and ESR20c. The units of the stress are P0.

Figure 6. Change of the heating �Q and cooling �Q rates per unit area (top)
and total optical depth U0 as well as flux-weighted optical depth Ū (bottom) as a
function of the midplane total pressure Pz,0 for the run ESR20c. The units are
the same as in Figure 3.
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Disk collapses!

Disk achieves a long-lived thermal
equilibrium, stabilized by inverse relationship
between optical depth and pressure, as well
as enhanced cooling from advection of radiation by
buoyant magnetic fields.

Vertically stratified radiation MHD simulations by Jiang, Davis & Stone (2016).
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Figure 2. Schematic diagram of various accretion regimes. The leftmost image represents weakly magnetized discs. βp and β t correspond to poloidal and
total β (which is approximately the same as β associated with the toroidal magnetic field). The middle panel is the case we are interested in. The pinching
in of the magnetic field on the surface of the disc shows schematically where accretion is occurring. The rightmost panel shows magnetically arrested discs
(Narayan, Igumenshchev & Abramowicz 2003; McKinney, Tchekhovskoy & Bland ford 2012). The curves illustrate the poloidal magnetic field lines, which
can be compared with the actual global field structure in Fig. 3. The disc thickness variation between the left and centre images mimics the effect of strong
magnetic pressure support. The left-hand and middle panels are MRI active, whereas the rightmost panel is MRI suppressed.

The results of local simulations (Salvesen et al. 2016) imply that
the transition between weak and strong magnetization occurs for
initial values of (poloidal) β = Pgas/Pb in the range between 103

and 102. We therefore seed the initial disc with a purely vertical
magnetic field with a uniform ratio of gas pressure to magnetic
pressure as a function of radius at the disc mid-plane. To ensure an
initially divergenceless magnetic field, we initialize the magnetic
field via the magnetic vector potential defined in Zhu & Stone
(2018),

Aφ = B0

Rm
0

Rm+1

m + 2
+ B0r

m+2
min

Rm
0

(
1
2

− 1
m + 2

)
, (7)

where m = (p + q)/2 with p = −1.5 and q = −1. We adopt three
values of initial mid-plane β = Pgas/Pb, corresponding to weak,
intermediate, and strong initial magnetic field strength cases with
initial β0 = 1000 , 300, and 100, respectively. We add a sinusoidal
component to the initial vertical magnetic field to suppress the
growth of channel flows in the strongly magnetized cases. A model
similar to our β0 = 1000 case (although using a flaring disc profile)
has been studied by Zhu & Stone (2018) and serves as a point of
comparison.

3 R ESULTS

We first define the post-processing steps that we employ. An
azimuthally averaged quantity a at fixed radius is defined by

〈a(R, z)〉φ = 1
2π

∫ 2π

0
a(R, z)dφ. (8)

Similarly, a time-averaged quantity is defined by

〈a〉t = 1
(tf − ti)

∫ tf

ti

adt, (9)

where the time averaging is performed between ti and tf. We ran
the β0 = 100 case for 50 orbits at R = 1, while the total runtime of
the β0 = 1000 and β0 = 300 simulations is 23 orbits at the same
radius. We typically present time averages between ti = 19 and tf =
23. All the vertical profiles reported are azimuthally averaged at R

= 1 (similar to Zhu & Stone 2018). The radial and polar Reynolds
and Maxwell stresses are defined by

Trφ ,Rey = ρvrδvφ, (10)

Trφ ,Max = −BrBφ, (11)

and

Tθφ ,Rey = ρvθ δvφ, (12)

Tθφ ,Max = −BθBφ, (13)

respectively. The Maxwell stress defined above is normalized with
a factor of 4π to be consistent with the ATHENA++ definition of
the magnetic field strength. Here, Br, Bθ , and Bφ correspond to
components of the magnetic field in spherical polar coordinates,
and δvφ corresponds to velocity fluctuations defined by δvφ = (vφ

− 〈vφ〉φ), where 〈vφ〉φ is azimuthally averaged toroidal velocity.
The total radial Maxwell stress Trφ ,Max can be decomposed into

coherent and turbulent components. The coherent component is
defined by
〈
T Coh

rφ ,Max

〉
φ

= −〈Br〉φ〈Bφ〉φ, (14)

and the turbulent component is
〈
T Turb

rφ ,Max

〉
φ

= 〈−BrBφ〉φ + 〈Br〉φ〈Bφ〉φ . (15)

The viscosity parameter α is defined as the ratio of the volume
averaged total radial stress (including turbulent and coherent com-
ponents) to the similarly averaged gas pressure:

α = 〈Trφ〉v
〈Pgas〉v

. (16)

We distinguish this from the ‘Shakura–Sunyaev’ αSS:

αSS =
〈
T Turb

rφ ,Max

〉
v

〈Pgas〉v
, (17)

which is a similar ratio based only on the turbulent part of the
stress, i.e. (equation 17). We will see later that the coherent stress
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Magnetic pressure support also stabilizes the radiation pressure dominated instability
(Begelman & Pringle 2007, Sadowski 2016).



Figure 4: Comparison of radial profiles of the standard model of Shakura & Sunyaev (1973) (blue), the magnetically
dominated model of Begelman & Pringle (2007) (orange), and the model of Begelman & Pringle (2007) but with
the sound speed in that model given by the radiation sound speed (green). All the curves assume Thomson opacity
for simplicity, and M = 108 M�, Ṁ/(⌘ṀEdd) = 1, and ↵ = 0.1 for the Shakura & Sunyaev (1973) model. We take
↵ = 1 for the Begelman & Pringle (2007) models.
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As in massive stars, line driving could also produce powerful
winds (Murray & Chiang 1995; Proga, Stone & Kallman 2000;
Proga 2005). Laor & Davis (2014) showed that if the mass-loss rate
per unit area scaling derived in O stars holds for AGN, the total
mass-loss rate exceeds the accretion rate inside the radius ,

Req ∼ 41.5
(

M

108M"

)0.24

ṁ0.24rg. (5)

In their model, the disc truncates at Req. At smaller radii the disc
becomes geometrically thick and optically thin, greatly decreasing
the inflow time for R ! Req.

A calculation of the scale height from this model would require
self-consistently solving for accretion and outflow, whereas cur-
rently simulations including the frequency-dependent line opacity
treat the thin disc as a boundary condition and ignore its vertical
structure (e.g., Proga et al. 2000). Radiation MHD simulations in-
cluding line opacity are now possible (Jiang, Stone & Davis 2017),
but use a grey opacity. Here we instead use a schematic picture of
such a disc to estimate the inflow time. We assume H/R = 1 for R ≤
Req. The effects of mass-loss are highly concentrated near Req (Laor
& Davis 2014), so we adopt a power-law scaling of H/R ∼ R−β and
find β by matching on to the thin disc value of H/R at 2Req.

2.3 Magnetically elevated discs

The thin disc model includes gas and radiation pressure but ig-
nores magnetic fields. MHD simulations of small patches of accre-
tion discs (shearing box simulations) generically find that magnetic
pressure declines more slowly with height than radiation or gas
pressure, and so dominates in the upper atmosphere of the disc
(Miller & Stone 2000). Those simulations usually adopt an initial
condition with weak or no vertical magnetic field. If it can be ef-
ficiently brought to the black hole, the magnetic flux available in
the inner parts of galaxies could instead be large. In that case, the
toroidal field amplified by the MRI (Balbus & Hawley 1991) can
become strong enough to support the disc vertically (Bai & Stone
2013; Salvesen et al. 2016).

The vertical structure of such magnetically elevated discs remains
uncertain. In an early one-zone model, Begelman & Pringle (2007)
assumed that the toroidal field grows to a limiting field strength
beyond which the MRI shuts off (Pessah & Psaltis 2005): vA %√

2csvK , where vA, vK, and cs are the Alfvén, orbital, and sound
speeds, respectively. The gas to magnetic pressure ratio is β ∼
cs/vK, which is ∼H/R for a gas pressure supported thin disc and so
is small.

Begelman, Armitage & Reynolds (2015) took into account the
competition between the generation of toroidal field by MRI and
shear – assumed to occur at all heights – and its buoyant escape.
Their vertically stratified models agree better with shearing-box
simulations (Bai & Stone 2013; Salvesen et al. 2016) and yield a
much larger characteristic scale height, even if the Pessah–Psaltis
criterion is imposed

z2

R
∼ 0.75α−0.5ṁ0.4, (6)

where we have used their height z2 for the elevated MRI-active
layer. More recent studies of MRI in the presence of a strong toroidal
field, however, show that MRI never completely stabilizes, even for
very strong toroidal fields, although the linear growth rate passes
through a range of small values (Das, Begelman & Lesur 2018).
Moreover, shearing-box simulations, which lack toroidal field-line
curvature and should be more stable than global simulations with
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Figure 1. Estimated inflow times as a function of radius (R/rg, top) and
accretion rate (ṁ, bottom) for M = 108 M". A standard thin disc with extra
dissipation at the ISCO (grey) becomes considerably thicker near the ISCO,
but the inflow time at the optical emission region is mostly unaffected. UV
line opacity could drive a strong wind and support a thick inner disc. The
wind is expected to be strongest at small radius and high ṁ, and again
may not alter the optical emission region. Magnetically dominated discs
are generically geometrically thick, leading to much shorter inflow times !
10 yr for a wide range of ṁ (blue). The Begelman et al. (2015) estimate we
adopt gives similar results to a constant H/R = 0.1 (dashed orange).

a strong toroidal field (Blaes & Balbus 1994), show no evidence
of MRI suppression in the non-linear state. It seems reasonable to
guess that magnetically elevated discs can thicken to H/R " 0.1
(Begelman & Silk 2017). In the following we will adopt the result
of equation (6), as well as constant H/R = 0.1 for comparison. The
MRI stress also grows with magnetic flux, and in the magnetically
elevated case we assume α = 0.3. However, tinflow is independent of
α when the height is given by equation (6).

2.4 Inflow times and extreme AGN variability

Fig. 1 shows estimated inflow times (equation 3) for each of these
scenarios as a function of R/rg and ṁ for M = 108 M" (tinflow∝

∼
M).

For low accretion rates and large radii R % 50rg, the thin disc inflow
time is very long ("103 yr) even when including extra dissipation
or possible effects of line-driven outflows (dark grey and purple
curves). In both scenarios the inflow time becomes short for R !
20rg or ṁ " 0.1 where the added effects become important (R <

Rth or Req). For intrinsic disc emission at the measured size R %
50rg (Dai et al. 2010; Blackburne et al. 2014; McHardy et al. 2014),
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Figure 7. Azimuthally averaged and time-averaged vertical profiles of total
Maxwell stress (top panel), its coherent component (middle panel) and
turbulent component (lowest panel) at R = 1.

turbulent component shown in the lowest panel dominates in the disc
mid-plane but is about a factor of 4 smaller compared to the coherent
component in the accreting regions. The turbulent αSS can be easily
calculated given the total α in Fig. 6 and the turbulent Maxwell
stress component. We find that α due to the coherent component
dominates over turbulent αSS. Our strong field and intermediate field
cases are thus in qualitative agreement with Zhu & Stone (2018).

Figure 8. Slices of mass density for z = 0.2 at t = 20 orbits (at R = 1) for
three initial β models (top to bottom: β0 = 1000, 300, and 100). The colour
bar shows the logarithm of the density. The x- and y- axes are labelled by
the cylindrical radius.

The weak field case is quantitatively in agreement with Zhu & Stone
(2018), where the coherent component of the stress is a factor of 2
larger than the turbulent stress in accreting regions.

3.2 Radial structure

In Fig. 8, we show off-equatorial (z/R = 0.2) slices of the mass
density plotted at t = 20 orbital periods (measured at R = 1).
The upper panel (initial β0 = 1000) shows a weak spiral azimuthal
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Global Radiation MHD Simulations of Magnetically Elevated Disks in AGN

Hirose et al. 2006, 2009; Jiang et al. 2016, 2019). Although the
shell-averaged radiation pressure is comparable to the shell-
averaged magnetic pressure in the run AGN0.07 (Figure 4), the
radiation pressure is relatively flat with height and the whole
disk is supported by the magnetic pressure gradient. In fact
there is a small enhancement of Pr near the photosphere (see
also Figure 3) due to the significant radiation viscosity there. In
the run AGN0.2, radiation pressure partially supports the disk
near the midplane and the disk becomes completely supported
by magnetic pressure around 10° away from the midplane. This
also causes the density to drop more slowly with height around
the same location, as shown in the right panel of Figure 10. Gas
pressure is always smaller than the other pressure components
by more than a factor of 1000.

For the two magnetic field configurations used in the
simulations, besides the Maxwell stress from the turbulence,
there are always significant azimuthally averaged mean � §Br
and � §GB , although the product of these components never
becomes the dominant stress (Figure 7). This is different from
the magnetic pressure-supported disk as found by Gaburov
et al. (2012), where the Maxwell stress is primarily due to
�� §� §GB Br . Such disks also have different vertical distributions
compared with the turbulent stress as shown in the third panels
of Figure 10. The Maxwell stress generated by the turbulence
(the dashed red lines) shows double peaks away from the

midplane, which is consistent with previous simulations (Blaes
et al. 2011; Jiang et al. 2016). The stress due to the azimuthally
averaged mean magnetic field (the difference between the solid
black lines and the dashed red lines) is peaked at the midplane
and drops quickly with height.
Inside the photosphere near the midplane, the rotation speed

of the disk is pretty close to the Keplerian value with negligible
radial inflow speed (the fourth and bottom panels of Figure 10).
Inside the coronal region, the rotation speed drops to only 40%
of the Keplerian value and significant radial velocity is present.
Despite the fact that the disk is supported by magnetic

pressure, the energy dissipated in the disk is transported
vertically outward by both the radiation flux and Poynting flux
near the midplane. Vertical profiles of the poloidal components
of the energy fluxes at 10rg for the run AGN0.07 are shown in
Figure 11. We have scaled these with the critical energy flux

∣ ( )∣ ( ( ) )R Lw �F cGM r rcos 2c gBH es
2 , which is the radiation

flux if the vertical component of gravity were completely
balanced by the radiation force with the electron scattering
opacity κes. The radiation flux is less than ≈5% of the critical
value inside the disk, which confirms that radiation pressure
plays a negligible role in supporting the disk. But the radiation
flux is comparable to the Poynting flux within ≈3° away from
the midplane and it completely dominates the energy transport
beyond that. The sign of Poynting flux also suggests that

Figure 10. Time-averaged and azimuthally averaged vertical profiles of various quantities at 10rg for the runs AGN0.07 (left panels) and AGN0.2 (right panels). From
top to bottom, these quantities are density ρ in the top panel, gas (Pg, dashed red lines), radiation (Pr, solid red lines), and magnetic (PB, solid black lines) pressure in
the second panel, total Maxwell stress (solid black lines) as well as the turbulent component (dashed red lines) in the third panel, density-weighted rotation (fourth
panel), and radial velocities (bottom panel). Density is in units of ρ0 while pressure and Maxwell stress are in units of P0. The velocities are scaled with the Keplerian
value at the midplane ( )�rGM r r2 gBH .

9

The Astrophysical Journal, 885:144 (13pp), 2019 November 10 Jiang et al.

from the midplane due to buoyancy. MRI turbulence still
develops in this case (Pessah & Psaltis 2005; Das et al. 2018),
but it shows less variability than the other run. Detailed
investigations of magnetic pressure-dominated disks resulting
from this magnetic field configuration are described in
Section 3.3.

In most MHD simulations of accretion disks where radiative
transfer is not calculated self-consistently, density or stress is
usually used as the proxy to understand the observed properties
of these systems. Since our simulations calculate the photons
emitted by the disk directly, we can calculate the frequency-
integrated light curves for the timescale that our simulations
can cover. In order to avoid contamination from photons
generated by the torus at large radii where the disk has not
reached a steady state, we convert the radiation flux Fr to the
radial and vertical components, FR and Fz, in cylindrical
coordinates and then integrate the total radiative luminosity
that leaves the cylindrical surface at R=10rg and height
z=100rg, which is well beyond the photosphere. The
resulting light curves are shown in the right column of
Figure 1 and have much weaker short-timescale variations than
the variability in Ṁ . This is likely due to the scattering of
photons through the optically thick disks. Indeed, the power
spectrum of the light curve from the run with a lower accretion
rate (AGN0.07) has more power at high frequencies than that
from the run with a higher accretion rate (AGN0.2). This is
because the midplane optical depth increases with increasing
mass accretion rate (see Figure 6). The changes of variability

amplitude with luminosity are also different in the two light
curves, revealing different dynamo actions in the disk, which
will be discussed in Section 4.
Histories of the poloidal profiles of azimuthally averaged

density ρ, gas temperature Tg, and toroidal magnetic field Bf at
10rg for the two runs are shown in Figure 2. The disk
photosphere only extends to ≈6° away from the disk midplane
for the run AGN0.07, while it covers more than 14° in the
simulation AGN0.2. Once above the photosphere, as indicated
by the blue lines in the top panels, gas temperature increases
rapidly to ≈109 K. We label this the “corona” region, although
whether and how this might be related to the observationally
inferred corona in AGNs will be discussed below in
Section 3.6. In the optically thick part of the disk, gas and
radiation are in thermal equilibrium with a temperature around
105 K. The grid-scale variation of gas temperature is unrealistic
because the gas pressure is smaller than 0.1% of the radiation
and magnetic pressures and it suffers from numerical noise.
The toroidal magnetic field switches sign near the disk
midplane after ≈104rg/c for the run AGN0.2, which creates
the well known butterfly diagram caused by the MRI dynamo
(Stone et al. 1996; Miller & Stone 2000; Davis et al. 2010;
O’Neill et al. 2011; Simon et al. 2012; Jiang et al.
2013a, 2014a). This does not happen for the run AGN0.07,
although MRI turbulence has also developed there. This is
because shearing of the net radial magnetic field near the disk
midplane for the run AGN0.07 always forms Bf with the same
sign in addition to the Bf generated by MRI (see Section 3.5).

Figure 1. Left: histories of the net mass accretion rate (negative values for inflow) at 10rg for the two simulations AGN0.07 (top panel) and AGN0.2 (bottom panel).
The total durations of the simulations correspond to more than 10 thermal timescales at 10rg. Right: histories of total radiative luminosity emitted within the cylindrical
radius 10rg of the disk for simulations AGN0.07 (top panel) and AGN0.2 (bottom panel). Note that the horizontal axes have different offsets in the panels.
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Hirose et al. 2006, 2009; Jiang et al. 2016, 2019). Although the
shell-averaged radiation pressure is comparable to the shell-
averaged magnetic pressure in the run AGN0.07 (Figure 4), the
radiation pressure is relatively flat with height and the whole
disk is supported by the magnetic pressure gradient. In fact
there is a small enhancement of Pr near the photosphere (see
also Figure 3) due to the significant radiation viscosity there. In
the run AGN0.2, radiation pressure partially supports the disk
near the midplane and the disk becomes completely supported
by magnetic pressure around 10° away from the midplane. This
also causes the density to drop more slowly with height around
the same location, as shown in the right panel of Figure 10. Gas
pressure is always smaller than the other pressure components
by more than a factor of 1000.

For the two magnetic field configurations used in the
simulations, besides the Maxwell stress from the turbulence,
there are always significant azimuthally averaged mean � §Br
and � §GB , although the product of these components never
becomes the dominant stress (Figure 7). This is different from
the magnetic pressure-supported disk as found by Gaburov
et al. (2012), where the Maxwell stress is primarily due to
�� §� §GB Br . Such disks also have different vertical distributions
compared with the turbulent stress as shown in the third panels
of Figure 10. The Maxwell stress generated by the turbulence
(the dashed red lines) shows double peaks away from the

midplane, which is consistent with previous simulations (Blaes
et al. 2011; Jiang et al. 2016). The stress due to the azimuthally
averaged mean magnetic field (the difference between the solid
black lines and the dashed red lines) is peaked at the midplane
and drops quickly with height.
Inside the photosphere near the midplane, the rotation speed

of the disk is pretty close to the Keplerian value with negligible
radial inflow speed (the fourth and bottom panels of Figure 10).
Inside the coronal region, the rotation speed drops to only 40%
of the Keplerian value and significant radial velocity is present.
Despite the fact that the disk is supported by magnetic

pressure, the energy dissipated in the disk is transported
vertically outward by both the radiation flux and Poynting flux
near the midplane. Vertical profiles of the poloidal components
of the energy fluxes at 10rg for the run AGN0.07 are shown in
Figure 11. We have scaled these with the critical energy flux

∣ ( )∣ ( ( ) )R Lw �F cGM r rcos 2c gBH es
2 , which is the radiation

flux if the vertical component of gravity were completely
balanced by the radiation force with the electron scattering
opacity κes. The radiation flux is less than ≈5% of the critical
value inside the disk, which confirms that radiation pressure
plays a negligible role in supporting the disk. But the radiation
flux is comparable to the Poynting flux within ≈3° away from
the midplane and it completely dominates the energy transport
beyond that. The sign of Poynting flux also suggests that

Figure 10. Time-averaged and azimuthally averaged vertical profiles of various quantities at 10rg for the runs AGN0.07 (left panels) and AGN0.2 (right panels). From
top to bottom, these quantities are density ρ in the top panel, gas (Pg, dashed red lines), radiation (Pr, solid red lines), and magnetic (PB, solid black lines) pressure in
the second panel, total Maxwell stress (solid black lines) as well as the turbulent component (dashed red lines) in the third panel, density-weighted rotation (fourth
panel), and radial velocities (bottom panel). Density is in units of ρ0 while pressure and Maxwell stress are in units of P0. The velocities are scaled with the Keplerian
value at the midplane ( )�rGM r r2 gBH .
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3.3. Disk Structure

The time-averaged and azimuthally averaged spatial struc-
tures inside 30rg for the density, flow velocity, radiation energy
density, and magnetic field lines of the two simulations are
shown in Figure 3. Radial profiles of different shell-averaged
pressure components, the mass accretion rate, as well as the
total optical depth are shown in Figures 4–6. The disk is thinner
in the run AGN0.07 compared with AGN0.2 due to the lower
accretion rate, but the thickness of the disk differs significantly
from predictions of the standard accretion disk model. In an
α-disk model dominated by radiation pressure and electron
scattering in a spherically symmetric gravitational potential,
vertical hydrostatic equilibrium implies that the thickness of the
disk is [ ˙ ( )]∣ ∣L Q� 8H M c d d r4 ln lns away from the inner
boundary. Near the inner boundary rin, it is smaller by a factor

( )� r r1 in
1 2. This is nearly independent of radius (and of α),

and implies xH r 1.1g (Frank et al. 2002) for ˙ ˙�M M7% Edd

and xH r 3.0g for ˙ ˙�M M20% Edd. It will be even smaller if
we take into account the boundary effect. As shown in
Figure 3, the heights of the photospheres clearly increase
rapidly with radius in the two runs, and become larger than
the values in the standard α-disk model beyond ≈10rg.
The contrast of radiation energy density inside and above the
photosphere is much smaller in AGN0.07 than in the run
AGN0.2 because of the reduced total optical depth as well as
different spatial distributions of dissipation. Although the shell-
averaged radiation pressure is still larger than or comparable to
the magnetic pressure (Figure 4), the vertical gradient of
radiation pressure is actually smaller, particularly in the run
AGN0.07. The disk is actually supported by the magnetic
pressure gradient in this region (Section 3.5). There are two
magnetic field loops above and below the disk midplane in the
run AGN0.07, and they are configured in such a way as to have
a net radial magnetic field near the midplane. In the run
AGN0.2, there are net poloidal magnetic fields threaded
through the disk by design. We emphasize, however, that with
both magnetic field configurations, the strong magnetic
pressure is dominated by the turbulent component, since the

magnetic pressure due to the azimuthally averaged mean
magnetic field B 22 is smaller than the total magnetic pressure
by a factor of ≈10 (Figure 4).

Figure 2. Space–time diagrams for the histories of azimuthally averaged density (ρ in units of ρ0 = 10−8 g cm−3, top panels), gas temperature (Tg in units of
T0 = 2 × 105 K, middle panels), and toroidal magnetic field (Bf in units of B0 = 1.87 × 103 G, bottom panels) at 10rg. The two columns are for the run AGN0.07
(left) and AGN0.2 (right). The blue lines in the top panel indicate the location where the optical depth for the Rosseland mean opacity measured along the polar (±θ)
direction to the rotation axis is one.

Figure 3. Time-averaged and azimuthally averaged spatial structures for the
inner 40rg of the disks from the two simulations, AGN0.07 (top panels) and
AGN0.2 (bottom panels). The left column is for density (the color) and flow
velocity (the streamlines) while the right column is for radiation energy density
(the color) and magnetic field lines (the streamlines). The dashed black line in
the left column indicates the location where the polar (±θ) optical depth to the
rotation axis for Rosseland mean opacity is 1.
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Slow photon diffusion:
density inversion wiped out
and convection is efficient.

Rapid photon diffusion:
strong turbulence results in
porous medium.  Density inversion is
maintained in time/space average.

Iron Opacity Effects in Massive Stars
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near the disk midplane). This provides more detail on why the
opacity is driving convection: the creation of unstable vertical
density inversions, which are buoyantly unstable (note the drop
in specific entropy as one enters the inversion from below). The
formation of these inversions is due to the presence of the iron
opacity bump. In an optically thick, radiation pressure
supported disk, hydrostatic equilibrium requires the temper-
ature to drop vertically away from the midplane. If the
midplane is on the high temperature side of the iron opacity
bump, then opacity can increase vertically outward, increasing
the radiation pressure force for a given vertical radiation flux.
This can overcome the downward gravitational force, requiring
a large increase in density in order to have a compensating gas
pressure gradient force to maintain hydrostatic equilibrium.
This is exactly the same thing that happens in one-dimensional

Figure 3. Density (top panels) and radiation energy density (bottom panels) distributions in the equatorial plane out to radius 100rg at the same four representative
epochs as shown in Figure 2. The density is scaled with the same fiducial value ρ0, while the radiation energy density is scaled with arT0

4 with the fiducial temperature
T0=2×105 K.

Figure 4. Evolution of shell-averaged surface mass density (in unit of ρ0rg) and
ratio of Rosseland opacity to Thomson opacity (κes) as a function of radius (in
units of gravitational radius rg) and time (in units of wGM c10 0.784

BH
3 yr).

Figure 5. (Top) Evolution of shell-averaged radiation pressure (black),
magnetic pressure (red), turbulent kinetic energy density (green), and gas
pressure (blue) at radius 50 gravitational radii. These are all scaled with the
fiducial pressure unit P0=2.77×105 dyn cm−2. (Middle) Evolution of shell-
averaged Maxwell stress Sm and Reynolds stress Sh at the same radius. The
Reynolds stress is smoothed over the neighboring 100 data points to reduce
noise. Both Sh and Sm are scaled with P0. (Bottom) Evolution of shell-averaged
Rosseland mean opacity (scaled with the electron scattering value) at the same
radius.
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electron scattering value. The iron opacity bump is playing a
critical role in driving the density variability.

To see why, it is helpful to examine the evolution of
various quantities at a particular radius. Figure 5 shows the
evolution of various shell-averaged pressures, energy densities,
and stresses, as well as the opacity, at r= 50 gravitational
radii. The turbulent kinetic energy density is calculated as

[( ) ( ) ( ) ]S� � � � � �R R G GE v v v v v vk r r
2 2 2 /2, where vr, vθ,

and vf are the three velocity components and Rv v,r , and Gv
are averaged values (mass weighted) along the azimuthal
direction. The dominant form of thermal pressure is radiation
pressure, with gas pressure always being completely negligible.
However, there are also significant, and sometimes dominant,
contributions from turbulent kinetic energy density and
magnetic pressure. The temporal relationship of these quan-
tities is shown more clearly in Figure 6. After t=50×
104rg/c, the pressures and energy densities form a repeating
cyclic pattern with large turbulent kinetic energy followed by

magnetic pressure followed by radiation pressure. These cycles
are clearly correlated with the opacity, with an enhancement in
opacity followed in time by an enhancement in turbulent
kinetic energy density. Figure 7 shows how the three
components of turbulent velocity (radial, polar, and azimuthal)
contribute to the turbulent kinetic energy as a function of time.
While MRI turbulence is typically dominated by radial and
azimuthal motions, here the epochs of large turbulent kinetic
energy density are dominated by polar (i.e., vertical in the disk
midplane regions) motions, with radial motions making a
secondary contribution. It is clear that these motions are due to
vertical convection, which is driven by the epochs of enhanced
opacity.

3.2. Opacity-driven Convection

Figure 8 shows the evolution of azimuthally averaged
density, opacity, and specific entropy at radius 50rg, but now
also as a function of height (represented by the polar angle θ

Figure 2. Poloidal distribution of azimuthally averaged density at four representative epochs. The dashed black lines represent the location where the integrated
Rosseland mean optical depth from the rotation axis is unity. The density is scaled with the fiducial value ρ0=10−8 g cm−3.
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electron scattering value. The iron opacity bump is playing a
critical role in driving the density variability.

To see why, it is helpful to examine the evolution of
various quantities at a particular radius. Figure 5 shows the
evolution of various shell-averaged pressures, energy densities,
and stresses, as well as the opacity, at r= 50 gravitational
radii. The turbulent kinetic energy density is calculated as

[( ) ( ) ( ) ]S� � � � � �R R G GE v v v v v vk r r
2 2 2 /2, where vr, vθ,

and vf are the three velocity components and Rv v,r , and Gv
are averaged values (mass weighted) along the azimuthal
direction. The dominant form of thermal pressure is radiation
pressure, with gas pressure always being completely negligible.
However, there are also significant, and sometimes dominant,
contributions from turbulent kinetic energy density and
magnetic pressure. The temporal relationship of these quan-
tities is shown more clearly in Figure 6. After t=50×
104rg/c, the pressures and energy densities form a repeating
cyclic pattern with large turbulent kinetic energy followed by

magnetic pressure followed by radiation pressure. These cycles
are clearly correlated with the opacity, with an enhancement in
opacity followed in time by an enhancement in turbulent
kinetic energy density. Figure 7 shows how the three
components of turbulent velocity (radial, polar, and azimuthal)
contribute to the turbulent kinetic energy as a function of time.
While MRI turbulence is typically dominated by radial and
azimuthal motions, here the epochs of large turbulent kinetic
energy density are dominated by polar (i.e., vertical in the disk
midplane regions) motions, with radial motions making a
secondary contribution. It is clear that these motions are due to
vertical convection, which is driven by the epochs of enhanced
opacity.

3.2. Opacity-driven Convection

Figure 8 shows the evolution of azimuthally averaged
density, opacity, and specific entropy at radius 50rg, but now
also as a function of height (represented by the polar angle θ

Figure 2. Poloidal distribution of azimuthally averaged density at four representative epochs. The dashed black lines represent the location where the integrated
Rosseland mean optical depth from the rotation axis is unity. The density is scaled with the fiducial value ρ0=10−8 g cm−3.
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near the disk midplane). This provides more detail on why the
opacity is driving convection: the creation of unstable vertical
density inversions, which are buoyantly unstable (note the drop
in specific entropy as one enters the inversion from below). The
formation of these inversions is due to the presence of the iron
opacity bump. In an optically thick, radiation pressure
supported disk, hydrostatic equilibrium requires the temper-
ature to drop vertically away from the midplane. If the
midplane is on the high temperature side of the iron opacity
bump, then opacity can increase vertically outward, increasing
the radiation pressure force for a given vertical radiation flux.
This can overcome the downward gravitational force, requiring
a large increase in density in order to have a compensating gas
pressure gradient force to maintain hydrostatic equilibrium.
This is exactly the same thing that happens in one-dimensional

Figure 3. Density (top panels) and radiation energy density (bottom panels) distributions in the equatorial plane out to radius 100rg at the same four representative
epochs as shown in Figure 2. The density is scaled with the same fiducial value ρ0, while the radiation energy density is scaled with arT0

4 with the fiducial temperature
T0=2×105 K.

Figure 4. Evolution of shell-averaged surface mass density (in unit of ρ0rg) and
ratio of Rosseland opacity to Thomson opacity (κes) as a function of radius (in
units of gravitational radius rg) and time (in units of wGM c10 0.784

BH
3 yr).

Figure 5. (Top) Evolution of shell-averaged radiation pressure (black),
magnetic pressure (red), turbulent kinetic energy density (green), and gas
pressure (blue) at radius 50 gravitational radii. These are all scaled with the
fiducial pressure unit P0=2.77×105 dyn cm−2. (Middle) Evolution of shell-
averaged Maxwell stress Sm and Reynolds stress Sh at the same radius. The
Reynolds stress is smoothed over the neighboring 100 data points to reduce
noise. Both Sh and Sm are scaled with P0. (Bottom) Evolution of shell-averaged
Rosseland mean opacity (scaled with the electron scattering value) at the same
radius.
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-Jiang & Blaes (2020)
The shell averaged total stress as a function of the shell

averaged radiation pressure at 50rg for two oscillation cycles
(within the time intervals [5, 6.5]×105 rg/c and [6.5, 7.8]×
105 rg/c) is shown in Figure 11. Each data point is color coded
with the corresponding turbulent kinetic energy density. When
the disk oscillates, the stress and pressure form closed loops
in this plot. When convection is active, as indicated by the
large turbulent kinetic energy density, stress increases rapidly,
while Pr increases more slowly. This heating then reduces
the opacity, turning off convection and decreasing Ek. The
stress then decreases while Pr continues to increase further,
presumably because of the dissipation of the convective
turbulent kinetic energy and magnetic energy. Finally, both
stress and Pr decrease at roughly the same rate. This confirms
that when convection is on, stress follows turbulent kinetic
energy density closely. The heating rate increases more rapidly
than the change of the cooling rate and that is why the disk
heats up. When convection is off, the heating and cooling rate
have roughly the same dependence on the radiation pressure.
This is perhaps why the disk does not undergo a runaway
collapse during the phase when it cools down, which is similar
to what Jiang et al. (2016) found.

3.5. Radial Mass Diffusion and Clumping

With the assumption that angular momentum transport is
dominated by local turbulent stresses, the vertically averaged
equations of mass and angular momentum conservation can be
used to write an equation for surface density evolution (Balbus
& Papaloizou 1999):
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where R is the cylindrical polar coordinate radius and the
accretion rate (assumed negative for inflow) is given by
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Here ℓ′ is the radial specific angular momentum gradient and
WRf is the vertically integrated turbulent stress. In viscous or
alpha-disk theory, these two equations can be combined to give
a radial mass diffusion equation (Lightman & Eardley 1974;
Lynden-Bell & Pringle 1974), but we choose not to do that as it

is the radial gradients in stress that most clearly drive the
clumping of surface mass density observed in our simulation.
That this is so may be seen in Figure 12. The upper panel

shows a spacetime plot of the shell-averaged mass accretion
rate �M , and it is clear that radial gradients of this quantity
match very well the clumping pattern observed in the surface
density evolution in Figure 4, in accordance with Equation (1).
Of course, this had to be true as it merely tests mass
conservation in Athena++.
Less trivial is Equation (2), which relies on the assumption

that all angular momentum transport is done through local
turbulent stresses rather than nonlocal processes (e.g., the spiral
waves that are evident in Figure 3). If this is true, then a plot of
−r1/2(∂/∂r)(r3S), where S is the shell-averaged Maxwell plus
turbulent Reynolds stress, should resemble the pattern in
accretion rate. This is plotted in the lower panel of Figure 12,
and does indeed approximately match the accretion rate
behavior shown in the upper panel.
It is therefore radial gradients in the turbulent stresses that are

largely responsible for the clumping. These radial gradients can be
strong enough that mass can actually sometimes diffuse outward,
as is evident in the upper panel of Figure 12. Note from the bottom
panel of this Figure that clumping is occurring because there is a
radially local deficit of stress. Even though convection enhances
the stress overall, high opacity is actually anticorrelated in time
with stress in the convective cycles shown in Figure 5, and this
produces the local deficit. As convection kicks in and the stress is
enhanced, and the opacity drops, the clump diffuses away.
Note that the derivation of the pure “viscous” instability

associated with electron scattering and radiation-pressure-
dominated classical alpha-disk accretion models relies on an
assumption of local thermal equilibrium in order to derive an
inverse relationship between stress and surface mass density
(Lightman & Eardley 1974). This results in an effective
negative diffusion coefficient in the radial mass diffusion
equation that results from combining Equations (1) and (2)
(Pringle 1981). This analysis can be generalized to include

Figure 11. Correlations between the shell averaged total stress (Maxwell plus
Reynolds) and radiation pressure at r=50gravitational radii for two
oscillation cycles as indicated at the top of each panel. Each data point is
color coded according to the turbulent kinetic energy density. All the variables
are scaled with the fiducial pressure unit P0. Figure 12. Spacetime diagrams of the local mass accretion rate �M (top panel,

in units of the Eddington mass accretion rate �MEdd), and derivatives of the total
stress ( )� s sr r S r1 2 3 . Negative and positive values of �M mean inward and
outward accretion correspondingly. Both S and �M are smoothed over the
neighboring 100 data points in time to reduce the noise. The Eddington
accretion rate is defined as L c10 Edd

2 with LEdd to be the Eddington
luminosity.
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in Figure 3 probably contribute to the epochs of enhanced
Reynolds stress.

Figure 9 provides more detail on how convection is affecting
the magnetic field in the midplane regions of the disk.
Azimuthal field reversals are commonly observed in vertically
stratified simulations of MRI turbulence (the so-called “butter-
fly diagram”; Brandenburg et al. 1995; Davis et al. 2010; Hogg
& Reynolds 2016) and such field reversals are occurring here
too. However, they are happening on much longer timescales
than the usual ∼10 orbital period timescale (∼2×104 rg/c at
r=50rg). In fact, the polarity of the field maintains a
consistent sign during epochs of strong convection, with ∼10
orbital period field reversals happening only between the
convective epochs, e.g., at ;62×104rg/c in Figure 9. This is
exactly the behavior that is observed in vertically stratified
shearing box simulations of MRI turbulence with convection
(Coleman et al. 2017). The poloidal component of magnetic
field Bθ is also enhanced due to convection but with a random
sign near the disk midplane. It was this enhancement of vertical
field that was suggested to be the reason behind the enhanced
MRI turbulent stresses in strong convection by Hirose et al.
(2014).

3.3. Turbulent Pressure Support in the Disk

In accretion disks without strong convection, turbulent
pressure caused by the MRI turbulence is typically much
smaller than the thermal pressure. The disk is usually supported
against vertical gravity by gas pressure, radiation pressure, or
even magnetic pressure (Hirose et al. 2006; Begelman &
Pringle 2007; Jiang et al. 2013, 2019a). However, as shown in
Figure 5, the turbulent kinetic energy density can be
comparable to the radiation pressure in this simulation, which
is another characteristic property of radiation-pressure-domi-
nated convection in the rapid diffusion regime (Jiang et al.
2015, 2018). Therefore, the kinetic term Svv in the momentum
equation can in principle provide additional support against
gravity in the vertical direction. To check this, we plot the time
and azimuthally averaged profiles of Pr, PB, and ρvθ

2 along the θ
direction at radius 50rg in Figure 10. The gas pressure is
completely negligible here and we neglect it. The gradient of
S Rv

2 is clearly much larger than the radiation pressure gradient

and it balances more than 75% of the gravitational force near
the disk midplane in this time-average.
This provides an alternative or additional explanation as to

why the stress is increased when convection is on compared
with the suggested mechanism proposed by Hirose et al.
(2014). Since the typical size of MRI turbulent eddies in the
disk is ultimately limited by the disk scale height, the larger the
disk scale height is, the larger the stress can be. This is also
the original argument of the α disk model (Shakura &
Sunyaev 1973), where the scale height is determined by the
thermal pressure and thus the stress is assumed to be
proportional to the thermal pressure. Here strong convection-
driven turbulent pressure can itself support the disk, allowing a
higher stress than we would expect from radiation pressure
alone. If we still calculate an effective α as the ratio of stress
and radiation pressure, it will be significantly larger when
convection is on.

3.4. Correlations between Stress and Pressure

As mentioned in the 1, a radiation pressure supported
accretion disk in the classical α disk model is thermally
unstable (Shakura & Sunyaev 1976), because the total heating
rate changes more rapidly with radiation pressure (Pr

2) than the
change of the total cooling rate (Pr). Although the accretion
disk structures we find here, as well as the physics we are
simulating, are much more complicated than those in the α disk
model, it is still interesting to check how the stress varies with
the radiation pressure while intermittent convection is operating
in the disk.

Figure 9. Evolution of azimuthally averaged polar (top panel) and azimuthal
(bottom panel) magnetic field components as a function of height and time at
r=50gravitational radii.

Figure 10. Time and azimuthally averaged vertical profiles of radiation
pressure (Pr), magnetic pressure (PB), and kinetic term (S Rv

2) at radius 50rg. The
time average is done between 4×105rg/c and the end of the simulation. All
the pressure terms are in units of P0. The stair step pattern in the profiles is due
to prolongation of the data in the region with lower resolutions.
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Hydrostatic support is provided by
turbulent kinetic energy, not thermal
or magnetic pressure.

departures from thermal equilibrium (Shakura & Sunyaev
1976), but the coupling with varying opacity in the convective
cycles clearly makes things far more complicated here. We
have attempted to analyze the local behavior of stress as a
function of surface density, just as we did with stress as a
function of radiation pressure in Figure 11. There are epochs
where loops in such a diagram form and there is some evidence
of stress being inversely proportional to surface density when
there is no convection present, e.g., the bottom of the loop in
Figure 13, which shows the cycle between [65, 78]×104rg/c
at r=50rg. However, this inverse trend is broken by the onset
of iron opacity-driven convection, and this behavior is not
always generic. It is therefore unclear that such a classical
analysis is appropriate in the presence of these complex
convective cycles.

3.6. Resolution

To check how well the MRI turbulence is resolved during
different phases of the oscillation cycles in the simulation, we
calculate the ratios between the wavelength of the fastest
growing MRI mode and the cell sizes along the polar and
azimuthal directions, i.e., the quality factors Qθ and Qf
(Hawley et al. 2011; Sorathia et al. 2012). These are widely
used in nonradiative ideal MHD simulations and indicate that
MRI turbulence is fully resolved when Qf25, Qθ6 or
both of them are larger than 10. Following Jiang et al. (2019a;
Section 3.1), we also use them as a check for our radiation
MHD simulations. For the first representative snapshot shown
in Figure 2, Qf stays around 40 near the disk midplane for radii
smaller than ≈55rg and then drops to 11 inside the high density
clump. Similarly, Qθ stays around seven until reaching the high
density clump, where it drops to two. At time t=8×105rg/c
when the disk expands, Qf varies from 30 to 100 over the
whole radial range from 30rg to 100rg, while Qθ varies from 20

to ≈3. When the disk collapses at t=6.5×105rg/c, Qf varies
from 30 inside 45rg to 10 from 45rg to ≈100rg. The averaged
Qθ varies from 6 to 3 over the same radial range. This suggests
that MRI turbulence is reasonably well-resolved in this
simulation and we have the worst resolution when the disk
collapses, which is not surprising. Fortunately, the accretion
does not stop during the collapsing phase as the opacity-driven
oscillation cycle continues.

3.7. Lightcurve Variability

The disk oscillation cycles driven by the opacity also cause
the total luminosity coming from the photosphere to vary
significantly with time. The total luminosities in the simulation
emerging from radii inside 60rg and 80rg, respectively, are
shown in Figure 14. Normal MRI turbulence without
convection can cause the luminosity to vary by a factor of
∼2 over the local thermal timescale. Smaller amplitude
variability over the local dynamical timescale can also show
up in the luminosity when the optical depth across the disk is
low enough (see Figure 1 of Jiang et al. 2019a). However, with
convection-driven oscillations in the disk, the luminosity can
vary by a factor of ≈3–6 over the local thermal timescale,
which is roughly a few years in this radial range.

4. Discussion

The timescale of luminosity variations depicted in Figure 14
are remarkably consonant with those observed in changing
look quasars, and we also see amplitudes of variation by as
much as a factor of four. In addition, the variations in scale

Figure 13. Correlations between surface density Σ and shell averaged total
stress at r=50gravitational radii for the convective cycle between [65,
78]×104 rg/c. Each data point is color coded with the corresponding
turbulent kinetic energy density.

Figure 14. History of the total luminosity Lr (scaled with the Eddington
luminosity LEdd) coming from the disk. The top panel shows the luminosity if
we only include the disk inside 60rg while the bottom panel shows the
luminosity inside 80rg.
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A possible mechanism for driving AGN variability?

-Burke et al. (2021)

(Rest frame) damping time scale from DRW modeling of AGN light curves:

BLACK HOLES

A characteristic optical variability time scale in
astrophysical accretion disks
Colin J. Burke1,2, Yue Shen1,3*, Omer Blaes4, Charles F. Gammie1,3,5,6, Keith Horne7, Yan-Fei Jiang8,
Xin Liu1,3, Ian M. McHardy9, Christopher W. Morgan10, Simone Scaringi11, Qian Yang1,3

Accretion disks around supermassive black holes in active galactic nuclei produce continuum radiation
at ultraviolet and optical wavelengths. Physical processes in the accretion flow lead to stochastic
variability of this emission on a wide range of time scales. We measured the optical continuum variability
observed in 67 active galactic nuclei and the characteristic time scale at which the variability power
spectrum flattens. We found a correlation between this time scale and the black hole mass extending
over the entire mass range of supermassive black holes. This time scale is consistent with the expected
thermal time scale at the ultraviolet-emitting radius in standard accretion disk theory. Accreting white
dwarfs lie close to this correlation, suggesting a common process for all accretion disks.

A
ccretion disks are present around grow-
ing supermassive black holes (SMBHs)
found in active galactic nuclei (AGNs).
Standard theory of radiatively efficient
accretion disks (1) can reproduce the

broadband emission from AGNs (2, 3), but the
exact structure and physical processes occur-
ring in accretion disks remain unknown. Be-
cause AGN accretion disks are too small to
resolve in direct observations, constraints on
their structure have been derived from gravi-
tational microlensing (4, 5) and time delay
measurements of accretion disk echoes to flux
variations from the innermost region around
the SMBH (reverberation mapping) (6–9).
For unknown reasons, optical emission from

AGN accretion disks exhibits stochastic varia-
bility (10, 11). Optical light curves (the time
series of fluxes tracing the variable accretion
disk emission) for large samples of AGNs can
be used to measure the variability character-
istics of the accretion disk emission. The
power spectrum density (PSD) of AGN optical
variability can be approximated by a damped
random walk (DRW) model (12–17), which
varies smoothly between a f –2 power law (where
f is the frequency) at the high-frequency end
and white noise at the low-frequency end

(12, 13). There are deviations from the f –2 scal-
ing at the highest frequencies (16, 18) in some
individual AGNs. The transition frequency,
corresponding to a characteristic damping time
scale (tdamping), is typically several hundred
days for quasars (14, 15, 17), the most lumi-
nous subset of AGNs with a bolometric lumi-
nosity Lbol ≳ 1045 erg s–1. There is no widely
accepted physical interpretation for this damp-
ing time scale. There is tentative evidence that
it may correlate with the mass of the SMBH
and/or luminosity of the AGN (12, 14, 19), but
such claims have been controversial (17) and
the results inconsistent (12, 14, 15). The range
of SMBH mass in those studies has been lim-
ited to two orders of magnitude, and the mea-
surements of the damping time scales are
susceptible to biases because of the limited
observing period (20, 21).
To address these limitations, we compiled

optical light curves from the literature for AGNs
with estimated SMBHmasses. To robustly con-
strain the damping time scale, we excluded
any light curves that did not have sufficient

signal-to-noise ratio or duration (21). Starting
from an initial set of ~400 AGNs, our selection
criteria led to a final sample containing 67
AGNs that spanned the entire SMBH mass
range of ~104 to 1010 solar masses (M⨀). We
derived tdamping for each AGN by fitting DRW
models to each light curve (21). Herein, all
time scales have been converted to the rest
frame of the AGN and all quoted uncertainties
and scatter are 1s unless otherwise specified.
Figure 1 shows the relation between our de-

rived damping time scales and the SMBH
masses. There was a correlation (Pearson cor-
relation coefficient r = 0.82) over the SMBH
mass range of ~104 to 1010 M⨀. We verified
that this correlation persisted if we made dif-
ferent choices for the details in measuring the
damping time scale or methods of SMBH
mass estimation (21). The best-fitting model
relation is

t damping ¼ 107þ11
#12 days

MBH

108 M⊙

! "0:38þ0:05
#0:04

ð1Þ
where MBH is the mass of the SMBH. The
data have an additional 1s intrinsic scatter of
0:09þ0:05

#0:04 dex around the best-fitting model.
This relation is sufficiently tight that inversion
of Eq. 1 can predict SMBHmass given tdamping

with a 1s precision of ~0.3 dex. Alternatively,
fitting a linear model for MBH given tdamping

yields
MBH ¼ 107:97

þ0:14
#0:14 M⊙ t damping=100 daysð Þ2:54

þ0:34
#0:35

ð2Þ

with an intrinsic scatter of 0:33þ0:11
#0:11 dex in

MBH. This intrinsic scatter in the predicted
SMBH mass is similar to the systematic un-
certainties in SMBH mass measurements
(22, 23). Previous studies of AGN optical var-
iability (14, 15) have found that the damping
time scale depends weakly on wavelength l as
tdamping º l0.17. The measured damping time
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Fig. 1. Optical variability damping time scale as a function of accretor mass. (A) Rest frame damping time
scale (tdamping) measured from AGN light curves plotted as a function of SMBH mass MBH for AGNs (black circles).
The orange line and shaded band are the best-fitting model and 1s uncertainty for the AGN sample, respectively.
Purple crosses show equivalent measurements for white dwarfs (26), where MWD denotes the mass of the white
dwarf; these do not fall in the orange band but are consistent with a model that has a fixed mass slope of 0.5
(blue dashed line). The typical uncertainties on MWD and the white dwarf damping time scale are 0.2 dex and
0.01 days, respectively (26). All error bars are 1s. (B) Magnified view of the region within the gray box in (A).
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Fig. 1. Optical variability damping time scale as a function of accretor mass. (A) Rest frame damping time
scale (tdamping) measured from AGN light curves plotted as a function of SMBH mass MBH for AGNs (black circles).
The orange line and shaded band are the best-fitting model and 1s uncertainty for the AGN sample, respectively.
Purple crosses show equivalent measurements for white dwarfs (26), where MWD denotes the mass of the white
dwarf; these do not fall in the orange band but are consistent with a model that has a fixed mass slope of 0.5
(blue dashed line). The typical uncertainties on MWD and the white dwarf damping time scale are 0.2 dex and
0.01 days, respectively (26). All error bars are 1s. (B) Magnified view of the region within the gray box in (A).



Thermal Time in Iron Opacity Region (T=200,000 K) According to Standard Model
Figure 5: Characteristic time scales in the standard alpha disk model with realistic opacities, assumingM = 108 M�,
Ṁ/(⌘ṀEdd) = 1, and ↵ = 0.1.

6 Modifications: Variability

In the standard model, where radiation pressure provides hydrostatic support against the tidal gravity, equation
(20) implies that the iron opacity region is

the thermal time in the iron opacity region (T ⇠ 2⇥ 105 K) is given from equation (20) by3
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This remarkable formula does not assume inflow equilibrium, and is independent of accretion rate and black hole
mass. The thermal time scale does depend on ↵, though. Taking ↵ = 0.04 gives a thermal time of 100 days with
the chosen scalings, though the enhancement of  would reduce this time somewhat.

The characteristic sound crossing time in the iron opacity region is
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This time scale does depend on mass and accretion rate, but with the chosen scalings, it is remarkably close to tth.
Figure 5 shows these two time scales as a function of radius, computed using the full OPAL opacity table.

3The thermal time is the time it takes to radiate away the internal energy content of the disk, i.e. ⇠ pH/F
�. In the standard model,

thermal equilibrium (11) and the alpha prescription (14) then give (↵⌦)�1.
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Does NOT assume inflow equilibrium, and is independent of black hole mass and accretion rate. a=0.04 implies 100 days.

4.2 Convection

5 Modifications: Vertically Layered Accretion

Global simulations (Zhu & Stone, 2018) show that accretion disks with net vertical flux tend to form three distinct
vertical layers: a thermal pressure dominated (high plasma beta) midplane region, a magnetically dominated region
at altitude through which surface accretion can occur, and a magnetically dominated wind region further out.
Accretion in the middle region can dominate the overall accretion rate, with both r� and z� stresses from large
scale, ordered magnetic fields contributing to the loss of angular momentum from these regions. The z� stresses
are mostly communicated to the midplane, where they help cancel the r� (MRI turbulent) torques resulting in
less (or even negative) accretion there. At least in their simulations, magnetocentrifugal winds contributed at most
five percent to the angular momentum budget of the flow. Two dimensionsional, stationary analytic flow models
in which advection of poloidal magnetic field lines is balanced by (turbulent) resistive di↵usion appear to provide
a good description of the behavior they observe, with an e↵ective magnetic Prandtl number of order unity. This
di↵ers from predictions of older analytic models due to the fact that they have faster accretion in the surface layers
and slower vertical di↵usion over a scale length comparable to the radius.

DISTINGUISH SURFACE ACCRETION FROM OLD MODELS LIKE FIELD AND ROGERS WHO SIMPLY
PUT ALL THE DISSIPATION IN A LOCAL CORONA AND THEN IRRADIATED THE DISK.

YAN-FEI IS FINDING, TENTATIVELY, THAT THE FRACTION OF MDOT THROUGH THE THERMAL
PRESSURE DOMINATED MIDPLANE IS SMALLER WITH SMALLER OVERALL MDOT.

IS RADIAL ADVECTION OF ENERGY IMPORTANT HERE, PARTICULARLY IN THE MAGNETICALLY
DOMINATED SURFACE LAYERS?

6 Modifications: Variability

In the standard model, where radiation pressure provides hydrostatic support against the tidal gravity, equation
(20) implies that the iron opacity region is located at radius given by
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and ranges from 44rg (↵ = 0.1) to 210rg (↵ = 0.01), depending on ↵. The corresponding e↵ective temperature at
the photosphere at this radius is

Te = 9800 K
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corresponding to an emission wavelength from Wien’s displacement law of

� = 3000Å
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The thermal time in the iron opacity region (T ⇠ 2⇥ 105 K) is given from equation (20) by3
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This remarkable formula does not assume inflow equilibrium, and is independent of accretion rate and black hole
mass. The thermal time scale does depend on ↵, though. Taking ↵ = 0.04 gives a thermal time of 100 days with
the chosen scalings, though the enhancement of  would reduce this time somewhat.

The characteristic sound crossing time in the iron opacity region is

tsound ⌘ r

cs
= r

✓
9⇢

4aT 4

◆1/2

=
8⇡

Ṁ
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3The thermal time is the time it takes to radiate away the internal energy content of the disk, i.e. ⇠ pH/F
�. In the standard model,

thermal equilibrium (11) and the alpha prescription (14) then give (↵⌦)�1.
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Figure 5: Characteristic time scales in the standard alpha disk model with realistic opacities, assumingM = 108 M�,
Ṁ/(⌘ṀEdd) = 1, and ↵ = 0.1.
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This time scale does depend on mass and accretion rate, but with the chosen scalings, it is remarkably close to tth.
Figure 5 shows these two time scales as a function of radius, computed using the full OPAL opacity table.

7 Modifications: Mass Loss

Luminous AGN appear to have a spectral energy distribution (SED) that peaks in ⌫F⌫ at a wavelength of around
1000Å, transitioning to what appears to be a power-law that sometimes extends to the X-rays. This wavelength
corresponds to a blackbody temperature of 37,000 K.4 Laor & Davis (2014) pointed out that this disagrees with
standard accretion disk theory. A stationary disk must have a radial flux distribution given by equation (12).
Neglecting torques at the inner edge (⌧r�in = 0), this equation predicts a peak flux at r = (49/36)rin, giving a
maximum e↵ective temperature of
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Laor & Davis (2014) point that AGN masses range from 106 � 109 M�, and Eddington ratios vary from 10�2-1, so
that equation (76) would lead to a variation in peak wavelength by a factor of (105)1/4 ' 20, broader than what
is observed. Introducing general relativity with a distribution of black hole spins, or varying inner disk torques, or
varying color temperature corrections due to radiative transfer e↵ects, likely only makes the problem worse. They
instead attribute this to line-driven outflows, which are likely to kick in at these temperatures and will e↵ectively
truncate the emitting region of the disk at these temperatures.

MANY PEOPLE HAVE PROPOSED MODELS, SUCH AS A MASS LOSS RATE THAT GOES AS A POWER
LAW IN RADIUS (Li, Yuan & Dai, 2019). MAGNETO-CENTRIFUGAL VS. RADIATIVE OR THERMAL MASS
LOSS.

4Both ⌫B⌫ and �B� peak at a value of x ⌘ h⌫/(kT ) = hc/(�kT ) given by x ' 3.92 (the solution of x = 4(1� e
�x)). A wavelength

of 1000Å then gives T = 37, 000 K. Laor & Davis (2014) quote a value of ⇠ 50, 000 K. This does not come from the standard Wien
displacement law for wavelength, which gives 29,000 K. Instead, it comes from the standard law for frequency, which gives 51,000 K,
i.e. B⌫ will peak at a frequency corresponding to 1000Å at this temperature. The di↵erences here are of course just splitting hairs.
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10 Stone & Shen

Figure 6. An example summary file for one of the objects included in the sample of SDSS-RM spectra. This summary file includes: (1) the filter kernels used
to get the range of radii probed by the spectra (see Fig. 1), (2) parameters of the AGN, (3) a figure showing the change in the spectra over time, with the change
in spectra relative to the mean (steady-state) spectrum and color-coded by the time of the observation in the quasar rest-frame, (4) the output temperature profile
map.

Figure 7. Reconstructed temperature maps for three SDSS-RM quasars. Each temperature map is labeled on the right of the rightmost panel with its name
from the SDSS-RM catalog. The maps for each object were visually inspected to determine the direction, speed, and period of their perturbations. Each panel
contains dashed lines representing the direction and approximate speed of these perturbations. The width between these lines corresponds to the approximate
radial/temporal period of these perturbations as well.

MNRAS 000, 1–15 (2022)

Propagating Temperature Fluctuations from Reverberation Mapping Campaigns in SDSS Quasars

-Stone & Shen 2022 (based on method developed
by Neustadt & Kochanek 2022)
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LETTER RESEARCH

Owing to a smaller pressure scale height and a smaller optical depth 
across the typical convective element, the gas rising as a result of  
convection experiences a much smaller temperature change. This 
results in a much lower value of the opacity at the helium peak  
compared with run T9L6.2, and thus a smaller total optical depth above 
the iron-opacity-peak region. Although the luminosity for run T19L6.4 
is slightly larger than for run T9L6.2, the less substantial helium opacity 

peak places the time-averaged location of the photosphere at a smaller 
radius of 102R!, with a higher effective temperature of 1.87 × 104 K. 
This finding confirms that without the helium opacity peak the star 
will not undergo an outburst and shift into the constant-temperature 
strip in the Hertzsprung–Russell diagram (see Fig. 1). The presence of 
a smaller helium opacity peak results in a substantial reduction in the 
amplitude of the envelope oscillation and a lower associated mass loss 
rate of around 1 × 10−6M! yr−1.

Finally, run T19L6 has very similar properties to T19L6.4, in particular  
a comparable value of the pressure scale height at the iron opacity peak. 
However, this model is calculated for a smaller core mass and a lower 
luminosity. At the steady state, the envelope has an effective temper-
ature of 1.89 × 104 K, a time-averaged photosphere radius of 63.7R! 
and an episodic mass loss rate associated with envelope oscillations 
of only around 5 × 10−7M! yr−1. This result confirms that when the 
iron opacity peak is in a region with a small pressure scale height the 
effective temperature remains too hot for the helium opacity to become 
important, and the star stays closer to the S Dor instability strip in the 
Hertzsprung–Russell diagram (see Fig. 1).

Our simulations predict that LBVs undergoing outbursts should 
exhibit irregular variability with typical timescales of days. In particular, 
we expect the variability pattern to be different for massive stars in the 
S Dor instability strip and during outburst (see Fig. 4). For massive stars 
with effective temperatures near 9 × 103 K, a substantial helium opacity 
peak exists in the envelope and causes large-amplitude oscillations. The 
predicted stellar brightness then varies by a factor of roughly 1.5−2 
in a day at the steady state (Fig. 4, top). For stars with hotter effective  
temperatures of nearly 1.9 × 104 K and a weaker helium opacity 
peak, the variability at the steady state has a much smaller amplitude. 
However, the luminosity can still vary by about 20% on timescales of a 
week to a few weeks, which corresponds to the thermal timescale of the 
envelope above the iron-opacity-peak region. This kind of variability 
has been seen in recent high-cadence observations of massive stars12–14, 
and the correlation between variability and effective temperature can 
be tested with future observations. The envelope is loosely bound and  
dominated by turbulent convection (Fig. 2), so the oscillation at the stellar  
surface is chaotic. However, there are moments in the evolution of the 
envelope when the majority of the photosphere is falling back onto the 
core, as suggested by the integrated luminosity in Fig. 4. This finding 
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Fig. 2 | Evolution of spherically averaged radial profiles for run 
T9L6.2. The left and right columns break at t = 426 h to separate the 
initial transition and the steady-state structures. From top to bottom, 
the colour scales indicate density ρ (scaled by the fudicial density 
ρ0 = 3.6 × 10−9 g cm−3), turbulent flow velocity v (scaled by the local 
isothermal sound speed cg, which takes the value  cg = 1.05 × 106 cm s−1  
at the photosphere), radiation temperature Tr (scaled by the fudicial 

temperature T0 = 1.67 × 105 K) and opacity κ (scaled by the fudicial 
opacity κ0 = 0.34 cm2 g−1). The dashed blue lines indicate where the time-
averaged optical depth to the outer boundary of the simulation domain 
is unity at the steady state. The iron opacity peak is evident in the bottom 
two panels as the region of larger κ at smaller R, where R is the radial 
distance from the centre of the star.
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Clumping in Compressible Convection can Trigger the (huge!) Helium Opacity, Driving Outflows
Can We Simulate this in AGN Disks?

Spherically-averaged quantities from simulation of iron opacity driven convection in a massive star (Jiang et al. 2018)



G. Marcel et al.: A unified accretion-ejection paradigm for black hole X-ray binaries. III.

Fig. 11. Computed geometrical shape of the hybrid disk, consistent with
the dynamical resolution (Fig. 9) and SED (Fig. 10) for each of the five
canonical states. The color background is the central electron tempera-
ture. We note that the X-scale is logarithmic and the Y-scale is linear.

vertical magnetic field, building two jets that produce a torque
responsible for supersonic accretion.

In this article, we extend the code to compute thermal equi-
libria of hybrid disk configurations. This configuration assumes
an inner JED and an outer SAD, characterized by a highly sub-
sonic accretion speed. The transition between those two flows is
assumed to be abrupt (�R/R⌧ 1) at some transition radius rJ . As
argued in Sect. 2.1.3, such a transition requires a discontinuity in
the disk magnetization µ that can be obtained if the transition
radius rJ is a steep density front. The transition radius rJ would
therefore correspond to a density front advancing or receding
within the disk during an outburst, as also found in the context of
ADAF-SAD transitions (Honma 1996; Manmoto & Kato 2000).
Why such a density front would be present is an open question,
possibly answered by how matter is initially brought in towards
the disk inner regions. In any case, if such a front is indeed pro-
duced, it is not clear how it would be maintained over the long
duration of the outburst.

Regardless, such a density front is known to be favorable
to the Rossby wave instability (Tagger & Pellat 1999; Lovelace
et al. 1999; Li et al. 2000; Tagger et al. 2004; Meheut et al.
2010, and references therein), which leads to the formation of
non-axisymmetric vortices within the disk. Whether or not the
density front is smeared out and destroyed or simply perturbed
(leading possibly to quasi-periodic oscillations) remains to be
investigated. We refer the interested reader to the discussion on
timing properties in Paper I, Sect. 4.

On the other hand, one might argue as well that such a
discontinuity in the disk magnetization is unrealistic, and that,

instead, there is a continuous increase in µ towards the disk in-
ner regions (Petrucci et al. 2008). Assuming that such a situa-
tion were indeed possible, the transition radius rJ required in our
spectral calculations would then be interpreted as the transition
from the outer optically thick disk to the inner optically thin disk.
Correspondingly, one could argue that the outer low-magnetized
disk regions would give rise to winds, whereas jets would be
launched from the inner highly magnetized disk regions (JED).
The di�culty with this scenario is that it relies on the disk mass
loss and the radial distribution of the large-scale vertical mag-
netic field, both unknown to date. Our simple approach, which
assumes a sharp JED-SAD radial transition, can be seen as a
first step towards addressing this di�cult topic in XRB accretion
disks.

The outside-in radial transition in accretion speed translates
thermally, from an outer optically thick and cold accretion flow
to an inner optically thin and hot flow. The soft photons emitted
by the outer disk also provide a nonlocal cooling term which,
added to advection of internal energy, allows a smooth thermal
transition between these two regions. For a given JED-SAD dy-
namical solution, the corresponding spectrum depends only on
the mass accretion rate onto the black hole ṁin and the transi-
tion radius rJ between the two flows. We explore in this article a
large range in ṁin and rJ . Using XSPEC, we build synthetic spec-
tra and fit them using a standard observers procedure (Sect. 3.1),
allowing us to easily compare the resulting fits to observations.

We show that this framework is able to cover the whole
domain explored by typical cycles in a disk fraction luminos-
ity diagram (Fig. 5). Furthermore, five canonical X-ray spectral
states representative of a standard outburst are quantitatively re-
produced with a reasonable set of parameters (Figs. 9–11 and
Table 1). A very interesting and important aspect of this frame-
work is its ability to simultaneously explain both X-ray and radio
emissions (Fig. 7 and Table 1). In a forthcoming paper, we will
show the required time sequences ṁin(t) and rJ(t) needed to re-
produce a full cycle within the JED-SAD paradigm.
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Fig. 15. Upper panel: best-fitting Comptonized SAD and JED model
components (dashed and dotted lines, respectively). Lower panel: resid-
uals of the SAD–JED model.

constraining the physics and geometry of its accretion flow.
Below we summarize the main results, then we discuss in more
detail their physical interpretation.

The source is clearly variable in flux during the campaign; a
significant variation is seen between the “low-flux period”, cor-
responding to observations 1 and 2, and the “high-flux period”,
corresponding to observations 3, 4, and 5. The spectral shape
also shows some variability in the soft band (below 10 keV),
while little spectral variability is found in the hard band. The
data indicate the presence of a correlation between the UV and
soft X-ray emission, consistent with a Comptonization origin for
the latter, as we discuss below.

The time-averaged spectrum shows a clear indication of a
turnover at high energies above 30 keV. This turnover can be
phenomenologically reproduced by a power law with exponen-
tial cut-o↵ plus a moderate reflection bump; in this case, the cut-
o↵ energy is 100+50

�20 keV. Alternatively, the spectral turnover is
nicely described by thermal Comptonization, with an electron
temperature of ⇠20 keV.

We find the presence of a Fe K↵ emission line at 6.40 keV
(rest-frame), with an intrinsic width of 0.11 keV, and consistent
with being constant in flux during our campaign. The line is con-
sistent with originating from a mildly ionized medium and is
accompanied by a moderate reflection component, also consistent
with being constant. The X-ray spectral properties are consistent
with an ionized reflector with log ⇠ ' 1.7 erg s�1 cm and an iron
overabundance of ⇠3. These values explain the moderate broad-
ening of the line. The reflecting material can be identified with the
outer part of the accretion disc since we find no strong evidence
of relativistic e↵ects due to the proximity of the black hole.

We confirm the presence of a significant soft X-ray excess
below 2 keV in addition to the primary power law. Relativistic
reflection can reproduce this excess, but only assuming a very
low inclination and with a fit of the X-ray spectrum, which is not
completely satisfactory, especially in the high-energy band. On
the other hand, the broad-band (optical–UV to X-rays) data are
consistent with a two-corona scenario.

5.1. Two-corona scenario

According to our results, the warm corona is consistent with hav-
ing a constant temperature of ⇠0.5 keV. However, the observed
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Fig. 16. Accretion rate vs. transition radius of the SAD–JED model for
the di↵erent observations (see Table 5).

variability of the photon index of the asymptotic power law
implies some physical and/or geometrical variations. We can
distinguish between the low-flux period, namely observations 1
and 2 (with �w ' 2.9) and the high-flux period (�w ' 2.75).
The optical depth is consistent with being in the range 16–17
during the low-flux period and in the range 18–20 during the
high-flux period. To constrain the geometry of the warm corona,
we can estimate the Compton amplification factor Aw (i.e. the
ratio between the total power emitted by the corona and power
of the seed soft photons from the disc). Following the procedure
of Petrucci et al. (2018), later corrected in Petrucci et al. (2020),
we estimate Aw ' 1.1. Given the values of the photon index,
this amplification indicates that the disc is consistent with hav-
ing an intrinsic emission of around 10% of the total, rather than
being completely passive (see the Appendix in Petrucci et al.
2020).

The observed anticorrelation between the photon index and
the flux of the warm Comptonization component, previously
reported in NGC 4593 (Middei et al. 2019), indicates that the
spectrum of the soft excess hardens as the source brightens. This
behaviour could be an e↵ect of the X-ray illumination of the
warm corona by the hot one. As the hot corona brightens, the
warm corona is more illuminated and thus heated, producing a
harder spectrum.

The parameters of the hot corona do not exhibit a strong
variability: the temperature is consistent with 15–20 keV, while
the optical depth is around 4 (assuming a spherical geometry).
We also estimate an amplification factor Ah ' 13�17 for the hot
corona, with no clear trend between the low-flux and high-flux
periods. In any case, the estimate of Ah allows us to estimate
the geometrical parameter g that describes the compactness or
patchiness of the corona, since g ' 2/Ah (Petrucci et al. 2018).
We find g ' 0.12�0.15, indicating that the hot corona intercepts
around 12–15% of the seed soft photons. The observed corre-
lation between the primary flux and the flux of the soft excess
suggests an interplay between the hot and warm coronae, and
can be explained if the photons Comptonized in the hot corona
are emitted by the warm corona. In the spectral model used in
this work, the two components are independent. Exploring the
consequences of their coupling will be a future extension of the
two-corona scenario. We note, however, that the warm corona
emits most of the photons in the optical–UV band, similarly to
a standard disc. Therefore, our assumption of a hot corona illu-
minated by a multicolour disc black body can be considered as a
fair approximation.

Finally, we note that the warm Comptonization model for the
soft excess has been critically examined by García et al. (2019).
Theseauthorsargued that inawarmcorona thephotoelectricopac-
ity is expected to dominate over the Thomson opacity, yielding
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Table 5. Best-fitting parameters of the SAD–JED model described in Sect. 4.6: smallBB+zgauss+highecut*simpl*sad+jed+xillverCp
in xspec notation.

All obs. Obs. 1 Obs. 2 Obs.3 Obs. 4 Obs. 5

FsmallBB (10�12 erg s�1 cm�2) 7.2 ± 0.6
Ezgauss (keV) 0.533+0.009

�0.004
Nzgauss (10�4) 2.3 ± 0.4
�s 2.55 ± 0.02 2.58 ± 0.02 2.40 ± 0.0 2.44 ± 0.02 2.41 ± 0.02
Es (keV) 1.37+0.16

�0.13 1.5 ± 0.2 1.20+0.08
�0.04 1.20+0.10

�0.09 1.13 ± 0.07
MBH (107

M�) 3.69 ± 0.07
rJ (RG) 17.7 ± 0.5 18.6 ± 0.6 19.1 ± 0.4 19.5 ± 0.4 18.7 ± 0.4
ṁ (LEdd/c2) 0.79 ± 0.02 0.737 ± 0.014 0.93 ± 0.02 0.89 ± 0.02 0.90 ± 0.02
�xillverCp 1.82(f)
kTxillverCp (keV) 18.5(f)
AFe,xillverCp 2.8(f)
log ⇠xillverCp (erg s�1 cm) 1.71(f)
NxillverCp(10�5) 2.9(f)
�� 0.039 ± 0.013
�2/d.o.f. 2052/1999

Notes. The parameters of xillverCp were frozen at the values found in Sect. 4.5 (see Table 4).

significant absorption features in the soft X-ray band that are not
actually observed. Petrucci et al. (2020) addressed this problem by
performing new simulations of spectra emitted by warm and opti-
cally thick coronae. Petrucci et al. used the radiative transfer code
titan (Dumont et al. 2003) coupled with the Monte Carlo code
noar (Dumont et al. 2000), the latter fully accounting for Comp-
ton scattering of continuum and lines. These simulations show, in
a large part of the parameter space, that the warm corona is dom-
inated by Compton cooling and the emitted spectrum presents no
strong absorption or emission lines. Furthermore, the spectrum
is consistent with the generally observed properties of the soft
excess. The results rely on the crucial assumption that the warm
corona has a source of internal heating power. In other words, the
upper layer of the disc must be heated via dissipation of accre-
tion power, which is possible for example by means of magnetic
fields (e.g. Gronkiewicz & Różańska 2020)3. This is consistent
with the concept of an energetically dominant warm corona cov-
eringaquasi-passivedisc.The resultsof thesesimulationsvalidate
warm Comptonization as a scenario to explain the soft excess.

5.2. A jet-emitting disc?

The SAD–JED model also provides a nice description of
the data. Perhaps the most striking feature of this model is the
relatively small number of free parameters needed to fit the
data. There are essentially two parameters, namely the accretion
rate and the SAD–JED transition radius. The accretion rate (in
Eddington units) is found to vary between ⇠0.7�0.8 in the low-
flux period and ⇠0.9 in the high-flux period. The data also indi-
cate small (⇠10%) fluctuations of the transition radius around 19
RG. Moreover, the SAD model nicely describes the optical–UV
emission, both in terms of flux and temperature. The black hole
mass is tightly constrained by the total luminosity and by the
observed spectral shape in the optical–UV band. In the SAD–

3 This assumption is especially realistic in the SAD–JED configura-
tion, as the SAD portion is threaded by a large-scale vertical magnetic
field. Moreover, the existence of a large-scale magnetic field does not
preclude the existence of small-scale fields, such as those invoked in ear-
lier works to explain the X-ray emission from accretion disc coronae
(e.g. Galeev et al. 1979).

jet

JED

B⃗

ṁ

rJ

warm corona

optical/UV/soft X hard X

SAD

Fig. 17. Sketch of the two-corona scenario in which the JED plays the
role of the hot corona. The best-fitting parameters for HE 1143-1810
are rJ ⇠ 19RG and ṁ ⇠ 0.7�0.9 LEdd/c2.

JED model, the precise value of the black hole mass depends on
the distance and, potentially, on the other fixed parameters. How-
ever, there is good agreement between the best-fitting mass and
the independent estimates based on the X-ray variability and the
H � line. We note that the Comptonized tail of the SAD is, in this
context, essentially a phenomenological component to account
for the soft excess. Future extensions of the model will be needed
to treat the emission from the warm corona in a more physical
and self-consistent way.

The relation between the radio power of the disc-driven jet
and the SAD–JED physical properties is (Eq. (3) in Marcel et al.
2019)

⌫L⌫
LEdd

= f̃R ṁ
17/12

rin (rJ � rin)5/6, (2)

where ⌫L⌫ is the radio power and f̃R is a dimensionless factor.
In general, the radio emission of radio-quiet sources can have
di↵erent origins (Panessa et al. 2019, and references therein); in
any case, assuming that the observed 1.4 GHz flux of HE 1143-
1810 is due to a jet, and taking ṁ = 0.8 and rJ = 19 RG, we derive
f̃R = 1.3 ⇥ 10�9. Interestingly, this factor is not too far from that
derived by Marcel et al. (2019) for the X-ray binary GX 339-4
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Summary
• The standard Shakura-Sunyaev disk model should not be used, beyond perhaps the trivial scaling of effective

temperature with radius.

• Three significant effects must be at work and are currently under active theoretical investigation: opacity-driven
convection interacting with MRI turbulence, various forms of magnetically elevated disks, and outflows.

• Iron opacity bump imparts intermittent convection which temporarily enhances MRI stresses, driving transient
clumping of surface density and large amplitude variability on the local thermal time scale.  This might explain
the characteristic time scale observed in DRW modeling, and may be a source of acoustic waves in the disk.

• Magnetically elevated disks can show substantial density (and presumably temperature and luminosity
variations).  It also results in geometrically thicker, less dense (and less self-gravitating) structures with shorter
inflow time scales.

• Nobody is yet able to simulate line-driven outflows self-consistently with the (uncertain!) disk structure.  Iron
opacity might be a mechanism for launching continuum-driven outflows via helium bound-free opacity.


