

AGN Optical/UV Variability: Pleasures and Pains

Demetra De Cicco University of Napoli "Federico II"

20 Years Ago...

- What are the timescales of variability?
- How is the variability amplitude related to the timescales?
- What is the variability amplitude in different wavebands?
- Is variability periodic?
- Is there evidence for non-linear behavior?
- How is the variability of the various continua related?
- How does variability vary with luminosity?
- Can the variability properties of an AGN change with time?

VARIABILITY OF ACTIVE GALACTIC NUCLEI FROM THE OPTICAL TO X-RAY REGIONS

C. MARTIN GASKELL^{1,2} and ELIZABETH S. KLIMEK³

Department of Physics & Astronomy, University of Nebraska, Lincoln, NE 68588-0111, USA

(Received: 28 May 2003)

AGN Variability Overview

ubiquitous: detected at all wavelengths, timescales, in continuum emission and in emission lines

erratic, aperiodic, red-noise type >20 orders of magnitude in frequency, from radio to γ rays

timescales: from minutes to years, depending on wavelength, viscosity, disk height

correlations among different wavebands

origin: instability in the accretion flow, variations of the accretion rate, shocks or bulk injection of new particles (jet variability)

information about the physics of the central black hole and the AGN emission mechanism; probe connection with the host

The Beginning of Pains: Origin of Optical Variability

Reprocessing of X-ray emission

optical/UV lags behind X-rays (lag = light travel time, ~hours)

- explains the observed short-term lags among different bands
- does not explain long-term X-rays vs. optical variation amplit

Yesterday's talks

Intrinsic variability

optical/UV emission => inverse Compton scattering, in the corona => X-rays will lag behind optical/UV OR

inwardly propagating variations (lag ~ viscous timescale, years)

- observed also on short timescales => conflict with the standard accretion disk model?
- correlations observed among different bands => who leads?

the observed emission is very likely

intrinsic + reprocessed emission

McHardy+16, Arévalo+08, Uttley+03, and references therein

Nearby AGN: An Asset for Variability Monitoring

The study of individual sources in multi-wavelength campaigns proved crucial

- two component: fast flares (10-100 d) + slower variations (4-14 yr)
- no periodicity
- pulsating accretion disk?
- correlation between UV and optical variability
- correlation between continuum and emission line-variability Luytyi&Oknianskii87, Ulrich+91

3C 273: IUE observations, 1978-1992
◆ variation by a factor of 1.5-2 Ulrich+93

NGC 5548: IUE observations, Dec. 1988-Aug. 1989, 4 d cadence

- variability amplitude decreases with wavelength
- continuum variations are simultaneous in the 4 UV/optical bands tested

Clavel+91

The First Ensemble Studies

Selection of variable AGN candidates from multiple images: 9 Mayall plates covering an 11 yrbaseline, down to B = 22.6 mag, then extended to 11 observations covering 15 yr (*Trevese+89, 94*)

Selected Area 57, extension of the search to low-luminosity AGN with extended light profiles: **at least 10% of the AGN population consists of extended AGN** (14 candidates/0.284 sq. deg., B_J = 22.5 mag) *Bershady+98*

Optical Variability Selection of AGN: Pleasures...

large source samples from SDSS, PanSTARRS, ZTF, etc.

good characterization

- allows exploration of large areas
- ♦ identifies AGN missed by X-ray surveys (Villforth+12)
- ◆ does not miss **host-dominated AGN** (Sarajedini+03)
- ◆ identifies low-luminosity AGN (Barr&Mushotzky86, Cristiani+96; Villfort+12)
- ◆ returns **higher AGN surface density** than estimated via other selection methods (*Sarajedini+03*)
- ◆ allows **completeness studies** (*Trevese*+08, *Boutsia*+09)
- ◆ **lower costs** compared to space-based surveys

De Cicco+21

...and Pains: Irregular Sampling

Further Pains: Baseline Dependence

5 month baseline

3.3 yr baseline

De Cicco+15, 19

More Pains: Baseline and Cadence Dependence

De Cicco+19

Additional Pains: Depth Dependence

each point represents the fraction of sources retrieved if the sample is cut to the corresponding depth (x axis)

The Current VST-COSMOS Data Set

	visit	obs. date	seeing (FWHM)		visit	obs. date	seeing (FWHM)	-
	1	2011 Dec 19			27	2014 E-1 22		
	1	2011-Dec-18	0.64		3/ 20	2014-Feb-25	0.81	• •
	2	2011-Dec-22 2011 Dec 27	0.94		20 20	2014-Feb-20 2014 Eab 28	0.81	more visits
	5	2011 - Dec - 27 2011 Dec 21	1.04		59 40	2014-Feb-20 2014 Mar 08	0.77	
	4 5	2011 - Dec - 51 2012 Jan 02	1.15		40	2014-Mar-06	0.91	now being reduced
	5	2012-Jan-02	0.67		41	2014-Mar-21 2014 Mar 22	0.90	U
	0	2012-Jan-00 2012 Jan 18	0.58		42	2014-Mar 25	0.92	
	8	2012-Jan-18 2012 Jan 20	0.88		43	2014-Mar 20	0.00	< 11 . 1 1 [•]
	0	2012-Jan-20 2012-Jan-22	0.80		44	2014 - 101a1 - 29 2014 - 4 pr - 04	0.89	> 11 yr baseline
	10	2012-Jan-24	0.67		46	2014 - Apr = 07	0.50	
	10	2012-Jan-24 2012-Jan-27	0.98	9 month gap	7 47	2014-Apr-07 2014-Dec-03	1 00	
.	12	2012-Jan-29	0.96	o monui-gap	48	2015-Jan-10	0.71	
:	13	2012-Feb-02	0.86		49	2015-Jan-28	0.90	
	14	2012-Feb-16	0.50		50	2015-Jan-31	0.73	
Ś	15	2012-Feb-19	0.99		51	2015-Feb-15	0.70	
5	16	2012-Feb-21	0.79		52	2015-Mar-10	0.80	
	17	2012-Feb-23	0.73		53	2015-Mar-14	0.84	
	18	2012-Feb-26	0.83	X /	54	2015-Mar-19	1.00	
	19	2012-Feb-29	0.90	õ.	55	2021-Dec-06	0.94 6 yr	9 month-gap
	20	2012-Mar-03	0.97	S.	56	2021-Dec-28	0.57	5
	21	2012-Mar-13	0.70	м /	57	2022-Jan-05	0.58	
	22	2012-Mar-15	1.08		58	2022-Jan-13	0.69	
	23	2012-Mar-17	0.91		59	2022-Jan-25	0.71	
	24	2012-May-08	0.74	/ 🧕	60	2022-Feb-03	0.96	
	25	2012-May-11	0.85		61	2022-Feb-10	0.62	
	26	2012-May-17	0.77	Š /	62	2022-Feb-24	0.56	
	27	2013-Dec-27	0.72		63	2022-Mar-04	0.58	
<u> </u>	28	2013-Dec-30	1.00		64	2022-Mar-11	0.75	
Ρ	29	2014-Jan-03	0.86		65	2022-Mar-24	0.68	
	30	2014-Jan-05	0.81		66	2022-Mar-31	0.70	
	31	2014-Jan-12	0.73	8 month-gap	67	2022-Nov-23	0.91	
	32	2014-Jan-21	1.18		68	2022-Dec-10	0.56	
	33	2014-Jan-24	0.80		69	2022-Dec-31	1.07	
	34	2014-Feb-09	1.28		70	2023-Jan-02		
	35	2014-Feb-19	0.89		/1	2023-Jan-03	0.84	
	36	2014-Feb-21	0.93		stacked	-	0.67	

Season 1

1 yr 7 month-gap

Light Curve Analysis: Structure Function

Analyzes the amplitude of variability as a function of the time lag between each pair of observations; model-independent; non affected by irregularity of sampling

Light Curve Analysis: Power Spectral Density

Kozłowski16 and references therein

total power =
$$\int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |Y(\nu)|^2 d\nu$$

Aperiodic variability => spectra are well fitted by a
broken power law (PSD ~ ν^{-2} , i.e., red-noise type)
No correlation among the points, well-constrained
statistical properties, but issues with irregular sampling

The variability of a light curve can be estimated via continuous-time autoregressive moving average (CARMA) models; first-order => damped random walk (*Kelly+09, MacLeod+10, Kelly+14, Kozłowski16, Burke+21*)

also Vincenzo Petrecca's talk, Weixiang Yu's talk & Priscilla Behar's poster

Variability Amplitude Properties

- increases with time lag
- decreases with increasing wavelength and with luminosity
- high correlation among different bands

(e.g., Vanden Berk+ 2004 (both figures up here), de Vries+03, MacLeod+10)

Connections with the Central Engine

Variability amplitude and timescales are connected to rest-frame wavelength as well as to some properties (e.g., M_{BH} , λ_E , L_{bol} ; e.g., *McHardy+06*, *Gonzalez-Martín & Vaughan12*, *Paolillo+17*) of the central black hole => can be used to characterize and estimate these properties, especially in the era of wide-field surveys

Conflicting results for BH mass dependence;

Measure of Amplitude/Timescale	$M_{ m BH}$	A vs. $f_{ m Edd}$	$L_{ m Bol}$	$M_{ m BH}$	$ au$ vs. $f_{ m Edd}$	$L_{ m Bol}$
SF (ensemble study)	+			X	X	X
DRW: τ -decorrelation timescale, σ		0	!—	+	Х	$\sim +$
DRW: τ , σ	+	!—	!—	+	х	$\sim +$
SF: A, γ	Х	X	_	X	Х	+
DRW: τ , σ	Х	X	!—	+	х	$\sim +$
EV, and PSD (break timescale)	0			0	0	0
SF: τ , σ	\sim	Х	!—	Х	Х	+
DRW: τ , σ	+	!—	$\sim +$	Х	Х	Х
SF: τ , σ	Х	Х	!—	Х	+	!+
SF: A, γ	$\sim +$			+	Х	+
SF: A	0		Х	X	Х	Х
DRW: τ -decorrelation timescale, σ	+	!—	+	+	Х	$\sim +$
SF: A	0	-	!-	Х	Х	Х
SF: A	0	-	-	Х	Х	X
	Measure of Amphude/Timescale SF (ensemble study) DRW: τ -decorrelation timescale, σ DRW: τ , σ SF: A , γ DRW: τ , σ EV, and PSD (break timescale) SF: τ , σ DRW: τ , σ SF: π , σ SF: A , γ SF: A , γ SF: A DRW: τ -decorrelation timescale, σ SF: A	Measure of Amplitude/TimescaleSF (ensemble study)+DRW: τ -decorrelation timescale, σ DRW: τ, σ +SF: A, γ xDRW: τ, σ xEV, and PSD (break timescale)0SF: τ, σ ~DRW: τ, σ +SF: A, γ ×SF: A, γ ~DRW: τ -decorrelation timescale, σ +SF: A 0SF: A 0SF: A 0SF: A 0	Measure of Ampirude/Timescale A vs. $M_{\rm BH}$ $f_{\rm Edd}$ SF (ensemble study)+DRW: τ -decorrelation timescale, σ DRW: τ, σ +SF: A, γ xXXDRW: τ, σ xSF: τ, σ 0SF: τ, σ \sim DRW: τ, σ +SF: τ, σ \sim SF: τ, σ xXXSF: A, γ \sim SF: A, γ \sim DRW: τ -decorrelation timescale, σ +Intersection timescale, σ +SF: A 0ORW: τ -decorrelation timescale, σ +SF: A 0SF: A 0SF: A 0SF: A 0	Measure of Amplitude/Timescale A vs. M_{BH} f_{Edd} L_{Bol} SF (ensemble study)+-DRW: τ -decorrelation timescale, σ DRW: τ, σ + $PRW: \tau, \sigma$ xxx $T_{FE}A, \gamma$ xXxDRW: τ, σ xXxPRW: τ, σ SF: τ, σ xXxPRW: τ, σ SF: τ, σ xXxSF: τ, σ SF: A, γ XxXDRW: τ -decorrelation timescale, σ +1-SF: A0-SF: A0-SF: A0-SF: A0 </td <td>Measure of Aniphtude/TimescaleA vs.$M_{\rm BH}$$f_{\rm Edd}$$L_{\rm Bol}$$M_{\rm BH}$SF (ensemble study)+xDRW: τ-decorrelation timescale, σ0!-+DRW: τ, σ+!-!-+SF: A, γxx-xDRW: τ, σxx-xDRW: τ, σxx-xDRW: τ, σxx!-+EV, and PSD (break timescale)00SF: $\tau, \sigma$$\sim$x!-xDRW: τ, σ+!-\sim+xSF: Λ, σxxx!-SF: $A, \gamma$$\sim$++SF: A0xxDRW: τ-decorrelation timescale, σ+!-+SF: A0-!-xSF: A0x</td> <td>Measure of Amplitude/TimescaleA vs.T vs.$M_{BH}$$f_{Edd}$$L_{Bol}$$M_{BH}$$f_{Edd}$SF (ensemble study)+xxDRW: τ-decorrelation timescale, σ0!-+xDRW: τ, σ+!-!-+xSF: A, γxxx-xxDRW: τ, σxxx!-+xDRW: τ, σxxx!-+xDRW: τ, σxxx!-xxDRW: τ, σ+!00SF: τ, σxxx!-xxDRW: τ, σ+!+xSF: Λ, σxxx!-xxDRW: τ-decorrelation timescale, σ+!-+xxSF: A0-!-xxxSF: A0-!-xxx</td>	Measure of Aniphtude/Timescale A vs. $M_{\rm BH}$ $f_{\rm Edd}$ $L_{\rm Bol}$ $M_{\rm BH}$ SF (ensemble study)+xDRW: τ -decorrelation timescale, σ 0!-+DRW: τ, σ +!-!-+SF: A, γ xx-xDRW: τ, σ xx-xDRW: τ, σ xx-xDRW: τ, σ xx!-+EV, and PSD (break timescale)00SF: τ, σ \sim x!-xDRW: τ, σ +!- \sim +xSF: Λ, σ xxx!-SF: A, γ \sim ++SF: A 0xxDRW: τ -decorrelation timescale, σ +!-+SF: A 0-!-xSF: A 0x	Measure of Amplitude/TimescaleA vs.T vs. M_{BH} f_{Edd} L_{Bol} M_{BH} f_{Edd} SF (ensemble study)+xxDRW: τ -decorrelation timescale, σ 0!-+xDRW: τ, σ +!-!-+xSF: A, γ xxx-xxDRW: τ, σ xxx!-+xDRW: τ, σ xxx!-+xDRW: τ, σ xxx!-xxDRW: τ, σ +!00SF: τ, σ xxx!-xxDRW: τ, σ +!+xSF: Λ, σ xxx!-xxDRW: τ -decorrelation timescale, σ +!-+xxSF: A0-!-xxxSF: A0-!-xxx

evidence for anti-correlation of variability amplitude with λ_E and L_{bol}

no rel.

0

weak

Black-Hole Mass Dependence: Correlation...

...Or Not?

June 27, 2023

Demetra De Cicco

Accretion Rate Dependence

Luminosity Dependence

Luminosity Dependence

Smith+18: Kepler light curves for 21 Type 1 AGN, selected via IR and spectroscopic properties

Each LC is re-binned into 2 d bins, to reduce the effect of noise and gaps

 ΔF = flux difference between two subsequent measurements

Redshift Dependence

De Cicco+22: the observed correlation with z is actually related to the fraction of obscured AGN

≥ 33% spec. Type I AGN, ≥ 18% spec. Type II AGN

≥ 60% spec. Type I AGN,≥ 11% spec. Type II AGN

100% spec. Type I AGN by construction

Optical Variability Timescales

 $\tau \sim 10^2$ days for quasars (*MacLeod+10*, *Suberlak+21*); no clear physical origin; dependence on M_{BH} and/or L_{bol}? difficult to assess due to limited timescales and M_{BH} ranges, low S/N (*Kozłowski17*, *Burke+21*)

important for, e.g., LSST-related studies!

A Model for Multiple Timescales

Modeling of AGN variability for different types of objects and timescales, based on the λ_E distribution of the AGN population and its evolution with time. Simulations use the variability observed in iPTF light curves to build longer ones.

Define a "general" AGN behavior, constrain intrinsic variability, merge data sets from different surveys

...and 60 Years Ago

1960-1961: first detection of optical variability in the "stellar object" 3C 48

"Optical photometry of 3C 48 continued sporadically during 1961, with the results given in Table 1. The most striking feature of these data is that the optical radiation varies!"

"Photometric observations of the 3C 48 optical object confirm its peculiar nature."

"colors which are similar to, but not identical with, old novae (Walker 1957) and to some white dwarfs (Greenstein 1958), but are quite different from ordinary stars and galaxies."

		TAB	LE 1		
	PHOTOMETRIC	C DATA FOR	THE THRE	e Radio Sta	RS
Object	Date	V	B-V	U-B	Remarks
3C 48 3C 196 . 3C 286 .	Oct. 23/24, 1960 Nov. 19/20, 1960 Jan 12/13, 1961 Jan. 13/14, 1961 Jan. 14/15, 1961 Jan. 16/17, 1961 Aug. 17/18, 1961 Oct 11/12, 1961 Oct. 11/12, 1961 Oct. 11/12, 1961 Dec. 4/5, 1961 Dec. 5/6, 1961 Mar. 31/1, 1962 June 2/3, 1962	$\begin{array}{c} 16 & 06 \\ 16 & 02 \\ 16 & 11 \\ 16 & 13 \\ 16 & 02 \\ 16 & 13 \\ 16 & 31 \\ 16 & 333 \\ 16 & 289 \\ 16 & 44 \\ 16 & 40 \\ 17 & 79 \\ 17 & 25 \end{array}$	0 38 48 .42 .39 49 40 40 340 393 35 42 57 0 26	$ \begin{array}{r} -0 \ 61 \\ - \ 61 \\ - \ 61 \\ - \ 61 \\ - \ 61 \\ - \ 57 \\ - \ 579 \\ - \ 579 \\ - \ 575 \\ - \ 57 \\ - \ .64 \\ - \ 43 \\ - 0 \ 91 \\ \end{array} $	60-inch Taken 15 minutes apart Obs. by Baum Obs. by Baum

Matthews&Sandage63

FIG. 2.—Finding chart for 3C 48 taken from a 10-minute exposure with the 200-inch. Local photometric standard stars B and D are marked. The data are V = 13.53, B - V = 0.50, U - B = 0.00 for star B; V = 14.54, B - V = 0.66, and U - B = 0.05 for star D. The plate used was a 103a-O + GG 13.

24