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Quick Status Update

Rubin has come a long way since the 2013 Naples meeting.

Was top-ranked large ground-based project in 2010 Decadal.
Project construction began in 2014 August.

Has survived many great challenges; e.g., COVID delays.

System first light forecasted for 2024 October.
Survey operations to begin in early 2025.

Need to get ready for the data flood and enormous work!



Talk Outline

Brief review of the LSST surveys (from an
AGN variability perspective).

LSST AGN selection; e.g., using variability.
AGN variability investigations.

The LSST AGN Science Collaboration.
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Main Survey Summary

A public optical/NIR survey of ~ half the sky in
the ugrizy bands to r ~ 27 based on ~ 820 visits
over a 10-year period.

Wide (W)

The observable (mostly) southern sky. Each
exposure covers 40-50 full Moons.

M2 3.4m f/1.00

Fast (F)

Rapidly scans the sky with pairs of 15 sec
exposures, providing a color movie of
objects that change or move.

Deep (D)
10-100 times deeper than other very
wide-field surveys after co-adding.

M3 5.0m £/0.83

M1 8.4m £/1.18 _— See Ivezic et al. (2019) and Bianco
et al. (2022) for many more details.
8.4 m, 6.4 m effective - 9.6 deg? - 3.2 Gpix camera



aln Survey Simulation

THE LSST BASELINE DESIGN AND SURVEY PARAMETERS

Example Operations Simulation of Baseline
Survey Strategy (Details Subject to Change)

Baseline v3 footprint

0 100 200 300 400 500 600 700 800 900 1000
Nvisits

Quantity

Baseline Design Specification

Optical Config.

Mount Config.

Final f-ratio, aperture
Field of view, étendue
Plate Scale

Pixel count

Wavelength Coverage
Single visit depths, design @
Single visit depths, min.?
Mean number of visits®
Final (coadded) depths?

3-mirror modified Paul-Baker
Alt-azimuth

£/1.234, 8.4 m

9.6 deg?, 319 m?deg?

50.9 pm/arcsec (0.2” pix)

3.2 Gigapix

320 — 1050 nm, ugrizy
239,250, 24.7, 240, 23.3,22.1
234, 24.6, 24.3, 23.6, 22.9, 21.7
56, 80, 184, 184, 160, 160

26.1, 27.4, 27.5, 26.8, 26.1, 24.9

W-E-D survey
optimized for
homogeneity
of depth and
number of
Visits.

18000 deg?

Uses ~ 90% of
the LSST time.
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Table 2
Expected Properties of the Rubin System and LSST Survey

System Constraints

Readout time

Time needed for filter exchange

Minimum slew+-settle time between fields

Expected fraction of time lost to weather

Expected fraction of time lost to maintenance

Maximum number of filter loads on filter carousel

Maximum number of filter changes over the lifetime of the carousel
Maximum number of filter changes per filter

Filter effective wavelength for u, g, r, i, z, y filters in angstroms

2s

2 minutes®
3s°
~30%°
~10%
3,000
100,000
30,000

3887.9, 4746.4, 6201.5, 7535.7, 8701.8, 10103.6°

Survey characteristics from the Science Requirements Document®

Standard visit exposures (expected)

Expected number of visits in u, g, r, i, z, ¥

Single image 5o depths in u, g, r, i, 2, y

10 yr coadded image stack 50 depths in u, g, r, i, 2, y

2 x 15

56, 80, 184, 184, 160, 160

23.9, 25.0, 24.7, 24.0, 23.3, 22.18
26.1, 27.4, 27.5, 26.8, 26.1, 24.9"

Photometric precision (at the bright end) 5 mmag
Photometric accuracy 10 mmag
Astrometric precision (at the bright end) 10 mas
Astrometric accuracy 50 mas
Survey characteristics from the baseline simulated survey'

Median slew time between visits 494 s .
Median (mean) visit time (including shutter, readout and slew time) 39 s (42.2 sy

Median seeing in u, g, r, i, Z, y in arcseconds
Single image median 5o depths in u, g, 7, i, 2z, ¥
10 yr coadded image stack 50 depths in u, g, r, i, z, ¥

1.10, 1.03, 0.99, 0.95, 0.93, 0.92
23.50, 24.44, 23.98, 23.41, 22.77, 22.01
25.73, 26.86, 26.88, 26.34, 25.63, 24.87

Notes.

? This is the time required if the filter is already mounted on the filter wheel. The filter wheel houses five of the six filters at once.

® See https://github.com/Isst-pst/survey_strategy /blob/main/wp-call/WPcall2018.pdf page 22.

© A conservative estimate based on weather statistics for the Gemini Observatory South telescope; https: //www.gemini.edu/.

4 Filter throughputs available at https://github.com/Isst/throughputs.

© More detailed information, including minimum requirements and stretch goals for the WFD are included in the SRD (https://ls.st/srd).

f30s single exposures are explored in several OpSim simulations, especially in OpSim release 1.5.

€ Single-visit depths are referenced to zenith and dark sky.

" Based on expected single-visit depths, expected number of visits, and expected 0.2 mag loss due to various observational effects.

% More details and additional metrics based on this baseline simulation are available at http: / /astro-lsst-01.astro.washington.edu:8082 /allMetricResults ?runld=5.

J This time includes exposure, readout, and slew—no filter change.
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Rubin’s LSST Deep-Drilling Fields

Baseline v3 footprint
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0 100 200 300 400 500 600 700 800 900 1000

Nvisits
Wide Chandra | Euclid Deep Field- COSMOS Part Of = 10% on mini-surveys.
Deep Field- South
South
RA 2000 0037 48 022218 033155 0404 58 10 00 26
The DDFs have superb and
DEC 2000 -4401 30 -04 49 00 -28 07 00 -48 25 12 +02 1401 rapidly growing de 9‘2
Galactic | 311.28 171.10 224.07 256.06 236.78 multiwavelength coverage.
Galactic b =72.88 -58.91 -54.60 -47.17 42.13 o _
Critical for AGN science!
LSST Solid Angle (deg?) 10 10 10 20 10
Prime Multiwavelength 3.2 5.3 4.6 TBD 2
Solid Angle (deg?) (XMM-SERVS)  (XMM-SERVS) (XMM-SERVS) (cosmos) Extensive ACGN selection

Relevant Reference Ni et al. (2021) Chenetal.(2018) Nietal.(2021) Laureijs etal. (2019) Civano et al. (2016) WOI'k done-



Example: Wide Chandra Deep Field-South
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XMM-Newton image of W-CDF-S (4.6 deg?)
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Survey Strategy Optimization Process

VERA C.RUBIN
OBSERVATORY

Vera C. Rubin Observatory
Project Science Team

Survey Cadence Optimization
Committee’s Phase 2 Recommendations

The Rubin Observatory Survey Cadence Optimization Committee
PSTN-055

Latest Revision:

Active Galaxy Science in the LSST Deep-Drilling
Fields: Footprints, Cadence Requirements, and
Total-Depth Requirements

1 White Paper Information

The contact author for this white paper is W.N. Brandt (wnbrandt@gmail.com).

This white paper add e
LSST Deep-I black
hole (SMBH) . . Changing
Sky” main LS

Goal: Determine how to observe main
survey and spend 10-20% of time on
“mini-surveys”.

Wide-Fast-Deep survey will have half-
sky “rolling cadence” to improve
sampling density in 3-5 day range.

5-71% of the time should be spent on the
Deep-Drilling Fields — should allow
excellent deep and densely sampled
coverage for AGN variability studies.

Quantity of Interest u g r i z Y

Visits Every 2 Nights 4 1 1 3 5 4
Depth Every 2 Nights | 24.6 | 25.0 | 24.7 | 24.6 | 24.2 | 22.9

Total Visits in 10 yr | 3600 | 900 | 900 | 2700 | 4500 | 3600
Total Depth in 10 yr | 28.3 | 28.7 | 28.4 | 28.3 | 27.9 | 26.5




Role of Alert Brokers

Alert Brokers will ingest, process, and serve alerts about variable
Rubin sources (e.g., AGNs) to the astronomical community.

Seven brokers will have access to the full Rubin alert stream.

d_’_7 =
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x»x»«epﬂé A Bitt -Google l—_ﬂ s ﬂ:@ % %\g 6{)
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Brokers will be essential for enabling time-critical studies of
AGN variability events — worth learning about them.



Selection of Tens of
Millions of AGNs



LSST AGN Selection

Multicolor selection in ugrizy from z = 0-1.5
* Ultraviolet excess below z ~ 2.5
* Lyman-a forest at high redshifts
 Works best when Loy > Lyt

Variability
* 55-185 visits per band over 10 yr
* Highly effective complement to color selection
* Helps find AGNs when Ligy ~ Ly ost

Astrometry - Lack of proper motion and differential

chromatic refraction
« Willreach~ 1 masyr!atr~24
e Minimizes confusion with stars



Optical Variability Selection
of X-ray AGNs in COSMOS

Long Baselines and Many Epochs Greatly Aid AGN Selection (r band)

0.5 [T T T T T T [T : D5 [ [T [ e [ ]
- A X-ray selected AGNs 3_Yoear analysis a
g : '| 59% completeness ]
o4 E O+t B4 visits t
- | 5-month analysis : s s
N 15% completeness ] 5 [ DeCiccoetal. (2019, 2021, 2022)
< C 1a7 ] < - N b
g 0.3 r 27 visits ] g 0.3 [ With random-forest classifier, , s, al
: : - reach 344 deg?, corresponding 4 ]
o C ] & " to 6.2 million over 18000 deg-2 fofat g
0.2 1 & g,k

18 19 20 21 22 2 18 19 20 21 22 28
average mag average mag

LSST will do even better with 10 yr baseline, more visits, deeper visits, and more bands.



Power of LSST and Multiwavelength Data

Ly, 924, 0., morphology Infrared-optical colors Ly, Ly/Lo,and 'y

Aim to detect 20-50+ million AGNs with LSST + multiwavelength data reaching to z ~ 9-10.



AGN Variability
Investigations



Massive AGN Variability Studies

Millions of 10-year, well-sampled, high-SNR, multicolor AGN light curves,
(billions of photometric measurements).

Even better sampling and SNR for ~ 60,000 AGNs in the DDF's.
Combine with DES, VST, ZTF, HSC, Pan-STARRS, SDSS for longer baselines.

Improving statistical Improving physical
models for variability <=—————— disk/AGN models e
(with parameters) (with parameters) Lo3| *optical (this work)  Quasars
? [ ] X—ray (29) Seyferts ." '
CARMA (DRW, DHO) Mass 10%¢ et
CARIMA Accretion rate —~ 10! i
CARFIMA Spin 2 ;
Multi-process Magnetic field 3 100 -
Critical radii & i
€101
Corona % i
ey e P > 1072 3

s —Magnetic field—

— f / e.g., Burke et al. (2021) |

] . = . S
S Ll dISkp/* —] . — [ 10-3L o>
/ LC/%] (CS) —~ - RS :
i ol J g : o
e — 10~ / .

A

<

Optical, UV © X-ray UV, Optical 104 10° 10° 107 108 10° 10%°

Mgn (Mo)
e.g., CHAR (Sun et al. 2020)



Reverberation



Continuum Reverberation of “Disks”

Continuum Reverberation Lags from Swift
Mrk 509 NGC 5548 NGC 4151 NGC 4593

o
- ~ ©
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2000 3500 5000 2000 3500 5000 2000 3500 5000 2000 3500 5000
Wavelength (A) Wavelength (A) Wavelength (A) Wavelength (A)
Significant contribution from diffuse BLR emission?
Rubin Forecasting BH Masses from Continuum RM?
3000 — e
fiducial cadence 1day ¢ Bl e e Sbte ,
2500 - r ool o e Local sample Od’
gl — 84
& 2000 — 2 L6t Y
% s ¢ .0,/%;6 L L
S 1500 A . & 8.0 AR S s ”
:_O Kovacevic et al. (2022) z% o@D, ol Also long lagS from
2 - u - .o o -r}uj - — . . .
5 1000 g7 o 3. inward-moving accretion
500 - L S 4 (e.g.,Yao et al. 2022)
6.5 ., T
0 T 3 3 p : . 7 8 Wang et al. (20?3)

redshift S es 7075 80 85 90 95
log Mgy, Hgrmyse/ Mo

LSST can perform quality continuum RM for ~ 1100 AGNs per DDF.



LSST Reverberation of BLR

Time delays of emission lines vs. continuum can be measured, in some
cases, from LSST photometric data alone.

The approach is best applied on average for large statistical samples,
and numerical simulations can correct for systematic offsets.

Simulated Spectrum Adopted vs. Recovered
(z = 2.7) with LSST Filters Time Delays
0.6 = 0bs_spec 1600
u band
0.5 — 45.7 -1
== 1 band L3ggo = 10 ergs
== | band 12001
0.4 = 7 band _
y band % 1000
C 0.3 % 800 -
©
0O 600 A
0.2
400 +
0.1 \ 200 |
0.0 Jl T . T ™ T T 0 T T T T T T
3000 4000 5000 6000 7000 8000 9000 10000 11000 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Aobserved Redshift

e.g., Czerny et al. (2023)



LSST + Spectroscopic Reverberation of BLR

SDSS-V Black Hole Mapper is Reverberation 4MOST TiDES Component
Mapping AGN BLRs in 3 LSST DDFs: 2020-20271 in LSST DDFs: 2025-2030

NGC 5548 SDSS J0936+5331. AC8.3 vears Location Area (square degrees) Average t.,, (hours)
0E v 3 Bulge and Inner Galaxy 500 4-6

¢ Zw» (J’M\ 3 Magellanic Clouds 200-300 2-10
E | uv ] ol WAVES-Wide 1300 3-4
Eo o i _-f 0E ‘.JJL \ 3 WAVES-Deep 50 7
Z 0 Pt W \ _ |LSST Deep Drilling Fields 4x42 4 x60 (or more)
;:' Tk J,ﬂ g South Ecliptic Pole area 300 4
s ‘e = I0E =

HP Line e O%W"NJ‘ ‘ ‘ 3

6090 6700 6710 6720 6730 6740 eROSITA Follow-up 475 4800 4850 4900 4950 5000
HJD - 2450000 [days] Probing hot X-ray coronae Rest Wavelength [A]

Reverberation Mapping Multi-epoch Spectroscopy

Measuring BLR sizes and BH masses . ' ’ Probing dynamical changes in the BLR
2 < Oo
; *
Broad-line region (BLR) Broad emission lines .
clouds ‘ y

X-rays
Equatorial

Accretion Disk UV-Optical Continuum i | S
" I ]
1 2 5 10 20
Exposure time (h)

Hot corona

Guiglion et al. (2019)

100 10 1 0.11 10 100 1000 10000
Light-crossing time (days) Dynamical time (days)

LSST will provide ~ 900 epochs of outstanding grizy
photometry (also u) to aid BLR reverberation mapping.



300 M,y from SDSS-RM

10105'"'I'"'I'"'I""I"'II""I""E

I 'I' . . HB I

107:_+.}’ T + 85% of cosmic time! - Mg“ B

= All mass measurements are .

G g, Somrerehertonmapping |, CIV &

o0 05 10 15 20 2.5 3.0 3.5
Redshift

Shen et al. (2016, 2023); Grier et al. (2017, 2019); Homayouni et al. (2020)
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LSST + Infrared Reverberation of Torus

Torus Size vs. Luminosity
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- Kishimoto07
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This work
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Yang et al. (2020)
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Lyu et al. (2019, 2021)

Tens of thousands of AGNs will have sufficient optical and infrared data for
torus RM from LSST, SPHEREx, NEO Surveyor, Roman, and earlier facilities.

Can look for additional Ry, dependences — e.g., Eddington ratio.

In high-SNR cases, can look for multiple lags (e.g., graphite vs. silicate
sublimation), receding torus effects, and secular torus evolution.




LSST + X-ray/UV from STAR-X

* MIDEX: Curi‘ently undergoing
Phase A mi.'ssion concept study

. Would launch in 2028

X-ray Telescope °

(XRT; 1 deg?) \

2.5” PSF on-axis
< 6” PSF FOV-averaged

UV Telescope — = .
(UVT; 0.8 degz) » ® Two wide-field telescopes
< 5”PSF . . ' Agile spacecraft, like, Swift

. Unique combination of large FOJ, large effective

St ar-X. XI‘aYde ep b Org' * area, exc;ellent imaging, and low background

STAR-X would add daily X-ray/UV monitoring of the prime areas of
the Deep-Drilling Fields for 2+ years - see talk by Roberto Gilli.




Remarkable Variability Modes
with
Good Source Statistics
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Tidal Disruption Events

Rossi et al. (2021) |

Now being found in wide-field optical/UV and
X-ray surveys.

LSST forecasted to discover 10-20 per night,
though will need to avoid SNe confusion.

Will provide sufficient source statistics to fill
the (apparently large) TDE parameter space.

Rates as functions of galaxy type and redshift.

Understand diversity of these events (Lg, kT,
jet power).

Find remarkable events - e.g., white-dwarf
disruptions by IMBH, giant-planet disruptions,
gas-cloud captures.



Microlensing of Accretion Disks

Expected Macro-Lensed AGNs

Gravitational Microlensing Geometry

108

Magnification. | Anguita et al. (2019) L
Pt Neira et al. (2020) & 108 |-
Lensing )\) ' S 105
galaxy = g
s 10 F
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. Lot E Oguri & Marshall (2010)
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fraction
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Rubin will monitor ~ 3000 AGNs macro-lensed into ~ 7500 images.

About one high-magnification (Amag > 1) microlensing event expected daily — effective
nas resolution imaging of accretion disk for size and emission profile constraints.

Typical event durations of 10-100 days.

For good light curve coverage, will often need additional monitoring observations.



Changing Obscuration and State

Rubin anomaly monitoring can trigger rapid spectroscopic

and multiwavelength follow-up studies.

| State Change? Reddening Change?
NGC7603
Goodrich (1995)
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Blazar Variability Monitoring

LSST will monitor ~ 60,000 blazars in the
main survey and ~ 150 in the DDFs.

Will allow follow-up of strong nonthermal

flares, jet QPOs from kink instabilities, etc.

BZCATS5 Blazars and Other Blazar Candidates
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Small-Separation Binary SMBH

To move from pc to 102 pc separations,
likely need accretion to remove L=mvr.

Accretion rate onto both SMBHs varies on
timescales of the binary period, and also
have Doppler boosting.

Month-to-year timescales at ~ 102 pc,
well-suited to LSST monitoring.

About 250 candidates put forward already
(includes many false positives).

LSST forecasts span few hundred to tens of
thousands, including valuable short-period
systems (e.g., Witt et al. 2022).

Magnitude (ZTF — r)

e.g., Cuadra et al. (2009)
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Also 0J287, PG 1302-102, PKS 2131-021, “Tick Tock”, etc.
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More Science Examples

About 20 Hours of Science Talks on YouTube
from 2020, 2021, and 2022 Summer Meetings

The Sample of VST-COSMOS AGN _ Supermassive Black Hole Studies with the Legacy Survey of Space and Time: 2021 -

Part3 of 6

111 views * 11 months ago

‘ Niel Brandt

This is a recording of a meeting titled "Supermassive Black Hole Studies with the Legacy Survey of Space and Time: 2021" held .

e VST-00SVOS aea (1 50,

I &'] Predictions | Sample of Nonverbal Sources | Structure of the Agn | Accretion Disk 4 moments Vv

Supermassive Black Hole Studies with the Legacy Survey of Space and Time: 2021 -
Part4 of 6

174 views + 11 months ago

‘ Niel Brandt

This is a recording of a meeting titled "Supermassive Black Hole Studies with the Legacy Survey of Space and Time: 2021" held

SDSS (1898-2007) |3 »* DES(2013-2019)

ikl 2:23:19
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The AGN Science Collaboration (SC)

Presently 181 members - largest national memberships:

Country Number of Members

Brazil 17

UK 14

Serbia 9

Germany

Poland 4

New members are welcome!

But note that AGN SC membership does not give data rights.



Overall SC Organization

Organization Chart with Leader/Coordinator Names Listed

Co-Chairs

Panel Members

“
SN0l
Roadmapping Funding Review Panel
(ad hoc) (ad hoc)

Shemmer
Subgroups Leads/Co-Leads
Sclence Platform Support Team
[\ dIC S YU
=n

Schindler et al. Assef Hoenig & Shemmer Bauer & Fan

Also:

* In-kind coordinators — Hoenig & Coppi
« SCOC liaison for AGN SC - Bauer

e Users committee — Ni & Villar
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2023 July Meeting — In-Person

New Era of AGN Smence \xnth

the VeraC Rubin LSST 2k .' § Your attendance
e : 1s welcomed!

July 24,2023 - July 26‘, zqz3 ) *
O Viéwing in Eastern Time

Charlottesuville, Virginig, USA

Updates

"Program" page updated with the scheduled talks and abstracts

Hotel reservation instruction (download)

Qverview

The Legacy Survey of Space and Time (LSST), to be conducted by the Vera C. Rubin
Observatory beginning in 2025, will enable studies of the growing supermassive black
holes (SMBHSs) in active galactic nuclei (AGNSs) on a truly massive scale. This workshop will
enable the LSST AGN Science Collaboration (AGN SC) to (1) continue building up the effort
of the AGN SC to prepare for the LSST operations in 2025 and (2) broaden the participants
and interests from early career scientists by introducing the LSST AGN SC and having an
interactive discussion on various aspects of AGN science in the LSST era. Although this
meeting will be an in-person meeting to encourage productive discussion and foster
collaborative projects, the presentation will be recorded (with agreement) and posted
later.



LSST AGN Cadence Notes

LSST AGN SC Cadence Note: Type-1 Quasar Colors in the Context of Photometric Redshifts

ROBERTO J. AsSEF, MATTHEW TEMPLE (UDP), GORDON RICHARDS, WEIXIANG YU (DREXEL), AND
FrANzZ BAUER (PUC) — ON BEHALF OF THE AGN SC

1. EXECUTIVE SUMMARY

‘We have developed two metrics to evaluate the 10yr co-added depths expected for each band in the context of
photometric redshifts for type-1 quasars as function of OpSim runs from FBS 1.5, 1.6 and 1.7. Each metric focuses
on a different aspect. The first one focuses exclusively on the depth expected for u-band with the aim of detecting
the SED break short of Lya. The second one compares the depths of contiguous bands in wavelength to the expected
colors of type-1 quasars. In both cases, while we find that some OpSim runs perform better than others, we do not
find any of them to be critically detrimental for type-1 quasar photometric redshifts in the context of these metrics,
although we remark on the usefulness of having as deep u-band coverage as possible.

Active Galaxy Science in the LSST Deep-Drilling Fields: Additional Points
on Footprints, Cadence Requirements, and Total-Depth Requirements

W.N. Brandt (Penn State), Y. Homayouni (STScl), Q. Ni (Penn State), G. Yang (Texas A&M), F. Zou (Penn
State), S.F. Anderson (Univ Washington), R. Assef (Univ Diego Portales), F.E. Bauer (Pont Univ Catolica),
A. Bongiorno (Oss Ast Roma), F. D’Ammando (INAF — Inst Rad), G. Fonseca Alvarez (Univ Conn), C.J. Grier
(Univ Arizona), P.B. Hall (York Univ), S. Hoenig (Univ Southampton), K.D. Horne (St Andrews), D. llic (Univ
Belgrade), A.M. Koekemoer (STScl), A. Kovacevic (Univ Belgrade), M. Lacy (NRAO), J. Li (Univ lllinois), M.
Paolillo (Univ Naples Fed Il), L. Popovic (Ast Obs Belgrade), C.M. Raiteri (Oss Ast Torino), G.T. Richards
(Drexel Univ), D.P. Schneider (Penn State), Y. Shen (Univ lllinois), M. Sun (Xiamen Univ), B. Trakhtenbrot
(Tel Aviv Univ), J.R. Trump (Univ Conn), C. Wolf (ANU), Y.Q. Xue (USTC), W. Yu (Drexel Univ), Z. Yu (Ohio
State), on Behalf of the Rubin LSST Active Galactic Nuclei Science Collaboration

LSST AGN SC Cadence Note: Two metrics on AGN variability observables

ANDJELKA KOVAGEVIG, DRAGANA ILIG, ISIDORA JANKOV, LUKA C. POPOVIE, ILSANG YOON, AND
VIKTOR RADOVIC, NEVEN CAPLAR , IVA CVOROVIG-HAJIDINJAK — ON BEHALF OF THE AGN SC

1. EXECUTIVE SUMMARY

‘We have developed two metrics related to AGN variability observables (time-lags, periodicity, and Structure Func-
tion (SF)) to evaluate LSST OpSim FBS 1.5, 1.6, 1.7 performance in AGN time-domain analysis. For this pur-
pose, we generate an ensemble of AGN light curves based on AGN empirical relations and LSST OpSim ca-
dences. Although our metrics show that denser LSST cadences produce more reliable time-lag, periodicity, and
SF measurements, the discrepancies in the performance between different LSST OpSim cadences are not drastic
based on Kullback-Leibler divergence. This is complementary to Yu and Richards results on DCR, and SF metrics
(see Yu’s talk https://docs.google.com/presentation/d/12Q1zKiWtoQAXsh7GS6J9TYhEKsWIkN5sVDufEyCKKEE/
edit#slide=id.gc6954dd1ce_0-3), extending them to include the point of view of AGN variability.

LSST CADENCE NOTE: BLAZAR VARIABILITY

C. M. Raiteri?, M. I. Carnerero’, B. Balmaverde! (INAF-OATo, Italy),
F. D’Ammando? (INAF-IRA, Italy), M. Paolillo™? (Napoli Univ., Italy),
I. Yoon? (NRAO, USA), E. Bellm! (Washington Univ., USA),

W. Clarkson® (UM-Dearborn, USA)

April 15, 2021

ITVS, 2AGN, and ® SMWLV Science Collaborations

LSST AGN SC Cadence Note: Non-Parametric Structure Function Metric

WEIXIANG YU AND GORDON RICHARDS — ON BEHALF OF THE AGN SC

1. EXECUTIVE SUMMARY

We have developed a model-independent metric (“SFErrorMetric”) to assess the level to which we can derive the
“structure function” of variable sources (e.g., AGNs) in LSST as a function of OpSims from versions FBS 1.5, 1.6
and 1.7. No presumptions about the actual underlying process that is responsible for the observed variability are
used in this metric; this metric depends solely on the survey parameters (e.g., number of visits). Most of the survey
simulations being considered for LSST operations performed equally well, with one exception being the u-long family,
which significantly enhance this metric in the u-band without inducing observable drawbacks in other filters. Thus,
we would favor longer u-band exposure time if the total number visits in the u-band can stay relatively unchanged.

LSST AGN SC Cadence Note: Differential Chromatic Refraction

WEIXIANG YU AND GORDON RICHARDS — ON BEHALF OF THE AGN SC

1. EXECUTIVE SUMMARY

We have developed a metric to evaluate both the relative and absolute signal that can be expected from differential
chromatic refraction (DCR) in LSST (Yu et al. 2020a) as a function of OpSims from versions FBS 1.5, 1.6 and
1.7. While there are LSST survey simulations that would significantly enhance this metric to the benefit of AGN
classification and photo-z (and the study of objects exhibiting strong emission lines), such OpSims were meant as
tests and not for operations. Among the feasible choices for LSST operations, we identify no simulations that are
particularly bad or particularly good when it comes to DCR. Thus the choice of cadence can largely be made without
consideration of this work. Nevertheless the tools are in place to double check that this remains true for the finalist(s).

Available at https://www.lsst.org/content/survey-cadence-notes-2021
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A Spitzer survey of Deep Drilling Fields to be targeted by the Vera C.
Rubin Observatory Legacy Survey of Space and Time
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ABSTRACT

The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will observe several Deep Drilling Fields (DDFs) to
a greater depth and with a more rapid cadence than the main survey. In this paper, we describe the ‘DeepDrill’ survey, which
used the Spitzer Space Telescope Infrared Array Camera (IRAC) to observe three of the four currently defined DDFs in two
bands, centred on 3.6 and 4.5 pm. These observations expand the area that was covered by an earlier set of observations in these
three fields by the Spitzer Extragalactic Representative Volume Survey (SERVS). The combined DeepDrill and SERVS data
cover the footprints of the LSST DDFs in the Extended Chandra Deep Field—South (ECDFS) field, the ELAIS-S1 field (ES1),
and the XMM-Large-Scale Structure Survey field (XMM-LSS). The observations reach an approximate 5o point-source depth of
2 wly (corresponding to an AB magnitude of 23.1; sufficient to detect a 10'! M, galaxy out to z & 5) in each of the two bands
over a total area of &~ 29 deg?. The dual-band catalogues contain a total of 2.35 million sources. In this paper, we describe the
observations and data products from the survey, and an overview of the properties of galaxies in the survey. We compare the
source counts to predictions from the SHARK semi-analytic model of galaxy formation. We also identify a population of sources
with extremely red ([3.6]—[4.5] >1.2) colours which we show mostly consists of highly obscured active galactic nuclei.

Key words: catalogues — surveys —infrared:galaxies — infrared: general.
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XMM-SERVS: XMM-Newton Coverage of LSST DDFs

XMM-SERVS vs. XMM-COSMOS
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XMM-Newton image of ELAIS-S1 (3.2 deg?)
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At 50 ks XMM-Newton depth, detect 10,200 AGNs and many X-ray groups/clusters.
Ground-truth AGN sample for calibrating LSST AGN selection in DDFs and main survey.



SED and Radio AGN Selection

2.8 Million X-ray-to-FIR
SED Fits with CIGALE
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Other Key Activities of the AGN SC

Data challenge events with monetary prizes.
AGN SC members are involved in Data Previews.

Assessing operations simulations to ensure
excellent AGN science.

Coordinate with other AGN projects; e.qg.,
reverberation-mapping experiments and
spectroscopic surveys.



Other Key Activities of the AGN SC

Advocate for AGN science to the broader
photometric-redshift working group.

Support the Contributions Evaluation Committee,
which assesses which international partners earn

data rights.

AGN SC has several members on the Rubin-
Euclid Derived Data Products Working Group.

Outreach activities at multiple levels.



AGN SC Web Site

PUBLIC & SCIENTISTS PROJECT TEAM LSST CORPORATION

AGN Science Collaboration agn.SCience.].SSt.Org

Home Meetings Projects Documents Talks Members Apply Contact

Home » LSST AGN Science Collaboration Membership Application

USER LOGIN
LSST AGN Science Collaboration Membership Application
Username *
Membership in the LSST AGN Science Collaboration implies a commitment to work toward the
common scientific goals of the collaboration, and affords one the opportunity to be involved Password *

directly in the core projects undertaken by the Science Collaboration. The Science
Collaboration also provides a natural route for giving feedback to the LSST Project about

. . e Request new password
issues related to AGN science.

Login

Proposals are currently invited from individuals in the following categories:

e All scientists employed or studying at institutions in countries with LSST data rights (e.g., USA,
Chile).

e Any individuals specifically listed in signed Memoranda of Agreement with the LSST
Corporation.

e Scientists employed by the LSST Project.

e Members of institutions that have explicit data-rights agreements with the LSST, such as IN2P3.

¢ |ndividuals hoping to obtain data rights through in-kind contributions, recognizing that their
membership level will be limited to Associate (until data rights are obtained) and may have to be
dropped as members should negotiation for data rights not be successful
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Power of LSST and Multiwavelength Data
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Optical Variability Selection
of X-ray AGNs in COSMOS

Long Baselines and Many Epochs Greatly Aid AGN Selection (r band)
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LSST will do even better with 10 yr baseline, more visits, deeper visits, and more bands.



Plausible AGN Yields

Chandra Deep Field-South Number Counts
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