### Reverberation Mapping of Emission Lines Last Decade and Future Prospects

Pu Du

Institute of High Energy Physics, Chinese Academy of Sciences

Naples, Italy 2023.6.27

### Reverberation Mapping (RM)







- Investigate the BLR properties in AGNs
- Measure the masses of SMBHs

$$M_{\bullet} = f \frac{c\tau \times V^2}{G}$$

### Geometry and kinematics of the BLRs



#### RM 2013-2023

RM programs targeting specific types of AGNs or specific scientific objectives

- AGN Space Telescope and Optical Reverberation Mapping (AGN STORM) Projects 1 & 2: e.g., De Rosa et al. (2015), Kara et al. (2023)
- Lick AGN Monitoring Project (LAMP): e.g., Barth et al. (2015), U et al. (2022), Villafana et al. (2022)
- Super-Eddington Accreting Massive Black Holes (SEAMBH) project: e.g., Du et al. (2014, 2015, 2016, 2018a)
- Monitoring AGNs with Hβ Asymmetry (MAHA) project: e.g., Du et al. (2018b), Brotherton et al. (2020), Bao et al. (2022)
- Seoul National University AGN Monitoring Project (SAMP): e.g., Woo et al. (2019), Rakshit et al. (2020)
- HET long-term RM program: Kaspi et al. (2021)
- Luminous quasars RM program: Lira et al. (2018)
- SALT Mg II RM program: e.g., Czerny et al. (2019), Zajacek et al. (2020, 2021)

#### "Industrial"-scale RM programs

. . . . . .

- Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project: e.g., Shen et al. (2015, 2023), Grier et al. (2017)
- Australian Dark Energy Survey (OzDES) RM project: e.g., Yu et al. (2021, 2023), Malik et al. (2023)













# New applications

### R-L relations

### Velocityresolved RM & BLR kinematics

New phenomena









### **R-L** relations

### Velocityresolved RM & BLR kinematics

### New phenomena

## New applications

### Wider Parameter Space



Questions:

- Accretion rates?
- Luminous quasars?
- Intermediate-mass BH?

### Super-Eddington AGNs & Shortened time lags



### Super-Eddington AGNs & Shortened time lags



Du et al. (2014; 2015; 2016a; 2018), Wang et al. (2014), Hu et al. (2015), Li et al. (2021)

### Overestimate BH mass by factors 3-8

### Super-Eddington AGNs & Shortened time lags

#### SDSS-RM in Hβ R-L relation



• Monte Carlo simulations: R–L offsets are not due to observational bias

Fonseca Alvarez et al. (2020)

### New scaling relation



### New scaling relation



### Possible explanations



the self-shadowing effect (Wang et al. 2014): Clouds (Region II) are closer to BH

$$\frac{R_{\rm BLR,I}}{R_{\rm BLR,II}} = \left(\frac{L_{\rm ion,I}}{L_{\rm ion,II}}\right)^{1/2} = \left(\frac{F_{\rm ion,I}}{F_{\rm ion,II}}\right)^{1/2},$$

$$rac{R_{_{
m BLR,I}}}{R_{_{
m BLR,II}}}pprox 2.0 \dot{\mathcal{M}}_{50}^{0.3},$$

### **Possible explanations**





Retrograde accretion in lowaccretion-rate AGNs (a = -1):

### Shortened time lags

(Wang et al. 2014, Czerny et al. 2019)

### Super-Eddington AGNs & Shortened time lags in MgII?



Martinez-Aldama et al. (2020)

### Super-Eddington AGNs & Shortened time lags in MgII?



### **RM of intermediate-mass AGNs**



SDSSJ113913  $M_{\rm BH} \approx 3.8 \times 10^6 M_{\odot}$ 



UGC06728  $M_{\rm BH} \approx 7.1 \times 10^5 M_{\odot}$ 



### **RM of intermediate-mass AGNs**



### UV lines in high-redshift, high-luminosity quasars

![](_page_19_Figure_1.jpeg)

De Rosa et al. (2015)

Homayouni et al. (2023)

### UV lines in high-redshift, high-luminosity quasars

![](_page_20_Figure_1.jpeg)

Quasars with  $z \approx 2 \sim 3$ 

e.g., Lira et al. (2018), Hoormann et al. (2019), Grier et al. (2019), Kaspi et al. (2021)

### Larger samples 'Industrial'-scale RM based on multi-object & fiber-fed spectrographs

Ηα
 Ηβ
 MgII
 CIV

3.0

1.5

Redshift

2.0

2.5

![](_page_21_Figure_1.jpeg)

#### **R-L** relations from OzDES RM

![](_page_21_Figure_3.jpeg)

Malik et al. (2023), Yu et al. (2023)

### UV/optical Fe II emissions

![](_page_22_Figure_1.jpeg)

Prince et al. (2023)

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_0.jpeg)

 $10^{46}$ 

Vanden Berk et al. (2001) Rest Wavelength,  $\lambda$  (Å)

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_3.jpeg)

# New applications

### R-L relations

### Velocityresolved RM & BLR kinematics

New phenomena

#### AGN STORM Project

![](_page_28_Figure_2.jpeg)

De Rosa et al. (2015)

Pei et al. (2017)

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_1.jpeg)

![](_page_31_Figure_1.jpeg)

#### Dynamical time scale

$$t_{\rm BLR} = \frac{c\tau_{\rm H\beta}}{V_{\rm FWHM}} = 3.36 \ \tau_{20} V_{5000}^{-1} \ {\rm years}$$

![](_page_32_Figure_0.jpeg)

#### Dynamical time scale

$$t_{\rm BLR} = \frac{CT_{\rm H\beta}}{V_{\rm FWHM}} = 3.36 \ \tau_{20} V_{5000}^{-1} \ {\rm years}$$

### Velocity-resolved RM & BLR kinematics Velocity-resolved Lags & Velocity-delay Maps

![](_page_33_Figure_1.jpeg)

#### >50 objects:

e.g., Grier et al. (2013), Du et al. (2016), De Rosa et al. (2018), Bao et al. (2022), U et al. (2022)...

#### >20 objects:

e.g., Grier et al. (2013), Skeilboe et al. (2015), Xiao et al. (2018), Horne et al. (2022)...

### Velocity-resolved RM & BLR kinematics BLR dynamical modeling

![](_page_34_Figure_1.jpeg)

Pancoast et al. (2014), Grier et al. (2017), Williams et al. (2018), Bentz et al. (2021), Villafana et al. (2022)

### Velocity-resolved RM & BLR kinematics BLR dynamical modeling

![](_page_35_Figure_1.jpeg)

![](_page_35_Figure_2.jpeg)

Villafana et al. (2023)

### Velocity-resolved RM & BLR kinematics BLR dynamical modeling

![](_page_36_Figure_1.jpeg)

Accretion-disk based BH mass vs. single-epoch BH mass based R-L relation (Mejia-Restrepo et al. 2018)

M-sigma based BH mass vs. RM BH mass (Yu et al. 2019) Correlation? Anti-correlation?

### Velocity-resolved RM & BLR kinematics BLRs in Super-Eddington AGNs

![](_page_37_Figure_1.jpeg)

![](_page_37_Figure_2.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_38_Figure_2.jpeg)

![](_page_38_Figure_3.jpeg)

## New applications

### R-L relations

### Velocityresolved RM & BLR kinematics

New phenomena

### New phenomena BLR "holiday"

![](_page_39_Figure_1.jpeg)

![](_page_39_Picture_2.jpeg)

![](_page_39_Figure_3.jpeg)

Dehghanian et al. (2019)

### New phenomena PG2130+099: BLR stratification structure reverses

![](_page_40_Figure_1.jpeg)

Hu et al. (2020)

### New phenomena PG0026+129: a small inner BLR

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_2.jpeg)

![](_page_42_Figure_3.jpeg)

# New applications

### R-L relations

### Velocityresolved RM & BLR kinematics

### New phenomena

### New applications of RM

**S**pectro-**A**strometry + **R**everberation **M**apping (SARM): Cosmological Distance and H<sub>0</sub>

March 2018

1 20 .9 00 44 \$ 1. 0.

2017

2,000

2016

1,500

May 2018

e. 8.

2,500

2018

![](_page_43_Figure_2.jpeg)

### New applications of RM Other cosmological distance tools based on RM

![](_page_44_Figure_1.jpeg)

### New applications of RM Supermassive binary black holes

![](_page_45_Figure_1.jpeg)

![](_page_45_Picture_2.jpeg)

### Offsets are due to orbital motion

(Wang et al. 2018; Songsheng et al. 2020; Kovacevic et al. 2020)

### MAHA project

(Du et al. 2018; Brotherton et al. 2020; Bao et al. 2022)

![](_page_46_Figure_0.jpeg)

![](_page_46_Figure_1.jpeg)

![](_page_46_Figure_2.jpeg)

![](_page_46_Figure_3.jpeg)

### **R-L** relations

### Velocityresolved RM & BLR kinematics

### New phenomena

## New applications

## More questions to answer...

### Next decade Advancing the Understanding of Scatter in R-L Relations

![](_page_47_Figure_1.jpeg)

### Next decade Advancing the Understanding of Scatter in R-L Relations

![](_page_48_Figure_1.jpeg)

AGNs with low equivalent widths of H $\beta$ : longer time lags?

Du et al. (2023)

### Next decade

BLR stratification structure reverses, and fluctuation?

![](_page_49_Figure_2.jpeg)

### Next decade What is the physical reason for "long-term trend"?

![](_page_50_Figure_1.jpeg)

e.g., Denney et al. (2010), Zhang et al. (2019)...

### Next decade More abnormal behavior?

![](_page_51_Figure_1.jpeg)

CT320, CT803, J224743 in Lira et al. (2018)

Du et al. (2023)

### Barber-Pole pattern in NGC 5548

- residuals of the PREPSPEC
- a helical "Barber-Pole" pattern
- stripes moving from red to blue across the C IV and Lya  $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
- suggests azimuthal structures

13348×171 150 4 spectrum number 10<sup>-14</sup> 9.1 100 0 50 13 10-1 66E 1200 1400 1600 rest wavelength (Å) Horne et al. (2021)

Data - Model AC<sub>4</sub>B<sub>4</sub>

### Next decade Substructures in BLRs & high-fidelity RM

![](_page_53_Figure_1.jpeg)

e.g., Horne et al. (2004), Du et al. (2023), Wang et al. (2022)

### Next decade Substructures in BLRs & high-fidelity RM

![](_page_54_Figure_1.jpeg)

Mangham et al. (2017)

### Summary

Thanks!

### • R-L relations

- Shortened lags in super-Eddington AGNs
- Lag measurements in luminous AGNs & intermediate-mass AGNs
- R-L relations of multiple emission lines

### Velocity-resolved RM & BLR kinematics

- Detailed study of NGC5548 from AGN STORM
- > Evolution of BLR kinematics driven by radiation variability
- Sample size has been significantly expanded
- ➤ What controls *f* factor?
- Two BLR zones in super-Eddington AGN

### • New phenomena

- BLR "holiday"
- Reverse of BLR stratification structure
- A small inner BLR

### New applications

- Spectro-Astrometry (Interferometry) + RM
- Cosmological distance tools
- Search of supermassive binary black holes
- More questions to answer...