

The spin conundrum Not clear if SMBH should have a 'lot' of spin:

Angular speed of BH is $\sim [10^5/M_{BH}/M_{sun}]{a/(1+sqrt(1-a))}$ radians/sec

If a=0.9, mass=1e06Msun ~ 0.01 revolutions/sec

Gravitational waves from supermassive black hole binaries might be 'right around the corner'

eesa

mic microwave

around polarisation

NEWS

Ob

8 0

Astronomy images of the day year decade

MUSE image of NGC 6240: A triple nucleus system in the advanced or final state of merging

Binary SMBH parameters hyperspace and imaging

IMAGE RECONSTRUCTION MODEL

Fredholm integral of the first kind

Response function Image to reconstruct

discernible spectral binary SMBH signatures

P~M_{tot} [<2 days, few years]

ELECTROMAGNETIC EMISSION AND INFORMATION LOSS

CAVITY:MacFadyen&Milosavljević<u>08</u>,D'Orazio+<u>13</u>,Farr s+<u>14</u>,D'Orazio+<u>16</u>,Miranda+<u>17</u>,Muñoz+<u>19</u>,+2<u>0</u>,Tiede+<u>2</u> <u>0</u>,Derdzinski+<u>21</u>,Newtonian3D-MHD Shi+<u>1</u>2, 3D-GRMHD Noble+<u>12</u>, +<u>21</u>, Bowen+<u>18</u>, +<u>19</u> Farris +<u>13</u> Paschalidis +<u>21</u>, Cattorini +<u>21</u> thin ballistic stream Shi & Krolik <u>15</u>

 $\Omega_{\rm best} \coloneqq \Omega_{\rm g} - \langle \Omega_{\rm immp} \rangle \sim 0.72 \ \Omega_{\rm g}$

 $\langle \Omega_{\rm http}
angle = \Im \mathbb{Z} \overline{s} \Omega_{\beta}$ Lopez Armengol+<u>21</u>; Noble+<u>21</u>

minidisc masses modulation freq $\sim \Omega_{beat}$ minidisc masses+ lump ang.vel. Ω_{lump} modulation freq $\sim (0.2 - 0.4)\Omega_{binary}$ and $2\Omega_{bea}$

binary torques do not completely halt mass accretion (MacFadyen & Milosavljević <u>08</u>; Shi +<u>12</u>; Farris +<u>14</u>; Shi & Krolik <u>15</u>).

Hydro variab < Doppler, q<~0.05 Farris+14, D'Orazio+15,+16

Doppler < hydro variab. In q=1, orbital Mach v_kep/cs<~20 Tang+18

ordered spikey/noisy
$$L_{\text{tot}}^{\text{obs}}(t) = \langle L_{\text{tot}} \rangle \left(1 + \delta_{\text{Doppler}}(t) + \delta_{\text{hydro}}(t)\right),$$

Parity of Doppler and hydro when: $v/c \simeq \frac{1.5}{3.44 b} \left(\frac{1+f}{1-f}\right) \max\{b\bar{A}_{\mathrm{MD}}, (1-b)\bar{A}_{\mathrm{CBD}}\}$

very high orbital velocities,
 v/c ~ 0.12 − 0.16

Gutiérrez+22

Red Noise: Mimicking ordered information

NEW TECHNIQUES FOR FURTHER VETTING OF BINARY CANDIDATES

Escaping to the Time Domain- radial velocity and astrometry of binary

, OMFTRY NFSS **GRAVITY+** Dexter+20 astrometric offset (µas) 30 R_{sub} 20 $\tilde{\mathcal{A}} = \left[\frac{P(K_1 + K_2)\sqrt{1 - e^2}}{2\pi \sin(i)}\right] \times D^{-1}$ 10 \mathcal{A} 0 x offset Ν barycenter M_2 M₁ -10 L 0 2 6 8 4 \mathcal{A}^{ph} time (yr) photocenter R **Circular SMBBH** $\mathcal{A}^{\rm ph} = \frac{F_{\rm NIR}}{F_{\rm c}} \frac{h}{D} \sim F_{\rm NIR}^{1-\alpha} \frac{h}{D},$ M₂ Fc $\mathcal{O}(t) \sim A s$ $A \in \left\{ \frac{1}{1} \right\}$ F_{NIR} $tech \sim \Delta t_P = \frac{1}{T_{obse_base_line}}$ Kovacevic+20 Radial velocity **Dynamical Astrometry**

Fainter mJy level 80 GHz (3.7 mm)

Wrobel & Lazio+22

Astrometry with ngEHT, ng VLA

Brighter Jy levels 230 GHz (1.3 mm)

Safarzadeh+19

$a = \frac{q}{1+q} \times a_0.$ $a_t = r(1+q^{1/3}).$

M87 EHT Collaboration

ng VLA

2D REVERBERATION MAPPING ⊥ INTERFEROMETRY OF BINARY SMBH

radial velocity [~few x103 km/s]

Reverberation mapping-taking into account motion of binary SMBH

PCA of 1D RM data Nguyen+20

Circular SMBBH Songsheng +20

First Atlases of kinematic signatures

MBH barycentric orbi

OPTICAL STATISTICS OF SMBBH

Interferometry

 $\mathbf{E} = \left(\exp\left(i \cdot rac{2\pi S}{\lambda}
ight), \exp\left(i \cdot rac{2\pi (S - a \sin(i))}{\lambda}
ight)$

 $T \propto \langle {f F}, {f E}
angle$

SA+RM

BINARY

 $\mathbf{F}=(F1,F2)$ and

Event Horizon and Environs (ETHER): A Curated Database for EHT and ngEHT Targets and Science

The Vera C. Rubin Observatory will enable extensive studies of periodic flux variability, and is thus expected to significantly enlarge the sample of binary black hole candidates

Move forward instead of looking back.

Feedback for statistical premises of cadences, observational priorities

PILLARS OF MULTIMESSINGER ASTRONOMY

WICKY TRANSIENT FACILITY

