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Understanding the Lomb—-Scargle Periodogram — VanderPlas, 2018, ApJS, 236, 16
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Stochastic Modeling Handbook for Optical AGN Variability — Moreno et al. 2019, PASP, 131, 1000
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AGN from Kepler
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Figure 2. (a) Uncorrected light curve. Bad data (in red) were eliminated and seasonal jumps were corrected as discussed in the text. (b) Corrected light curve. (c)
Twenty day (960 cadence) snippet from Q11, showing the quality of the Kepler data. This time range is shown with a horizontal blue line in panel (b).

{ A color version of this figure is available in the online journal.)

Edelson et al. 2014, Apl, 795, 2



AGN from Kepler
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AGN from Pan-STARRSI1
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Pan-STARRS1 variability of XMM-COSMOS AGN

Il. Physical correlations and power spectrum analysis

T. Simm!, M. Salvato!, R. Saglia'?, G. Ponti!, G. Lanzuisi** B. Trakhtenbrot>*, K. Nandra', and R. Bender'-?

Results. We observe that the excess variance and the PSD amplitude are strongly anticorrelated with wavelength, bolometric lumi-
nosity, and Eddington ratio. There is no evidence for a dependency of the variability amplitude on black hole mass and redshift. These
results suggest that the accretion rate is the fundamental physical quantity determining the rest-frame UV/optical variability amplitude
of quasars on timescales of months and years. The optical PSD of all of our sources is consistent with a broken power law showing a
characteristic bend at rest-frame timescales ranging between ~100 and ~300 days. The break timescale exhibits no significant corre-
lation with any of the fundamental AGN parameters. The low-frequency slope of the PSD is consistent with a value of —1 for most of
our objects, whereas the high-frequency slope is characterized by a broad distribution of values between ~—2 and ~—4. These findings
unveil significant deviations from the simple damped random walk model that has frequently been used in previous optical variability
studies. We find a weak tendency for AGNs with higher black hole mass to have steeper high-frequency PSD slopes.

90 X-ray selected AGN, observed by Pan-STARRS (optical - griz)

Simm et al. 2016, A&A, 585, A129



AGN from XMM-Newton

0. Gonzilez-Martin and S. Vaughan: X-ray variability of 104 active galactic nuclei

MARK335—-30687 (Single power—law)

100.000 |- ' 100.000 — -
7 " - u
T 10.000F I 10.000
= 8  1.000- —
g  1.000F £ .
£ : |
2] E 0100 --------------------------n A e ~1
£ 0.100— =
5 .
5 £ o.010F -
£ o0.010F i
g
0.001 |- —
0.001 |-
- - =3 1‘00%- 1%
2 1.00f ) 0.10F =
o 010 = = 0.01 ;r '%
001k 107 o 1073

1078 10~* 1073 Frequency (Hz)

Frequency (Hz)

Fig. 1. PSDs fits (continuous line) to Model A (left) and Model B (right) for the Mrk 335 data (ObsID 306870101) using the broad (0.2—-10 keV)
energy band. The dashed lines shows the two components of the model: constant Poisson noise and the source PSD model (power-law, left; bending
power-law, right). The dot-dashed line shows the “global” 90% confidence limit use to flag QPO candidates. Appendix B shows the corresponding
figures for the complete sample.

Majority of PSDs: single power-law with slopes a=-2.01+0.01;
15 AGN: broken power-law with slopes a=-3.08+0.04

Gonzales-Martin & Vaughan 2012, A&A, 544, A80



Damped Random Walk (DRW)
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Figure 2. Light curves simulated from a CAR(1) process for three different
characteristic timescales, assuming typical parameters for quasars (Mpy =
108 Mg, Ry = 100, = 0.01; see Equation (3)—(5)). From top to bottom,
these are the light crossing time, T = 1.1 days, the disk orbital timescale, 7 =
104 days, and the disk thermal timescale, T = 4.6 yr. The stochastic nature of
the CAR(1) process is apparent, and the light curve exhibits more variability on
longer timescales as the characteristic timescale increases.

Figure 3. Power spectra for the simulated CAR(1) light curves shown in
Figure 2. The actual power spectra are shown with a solid line, and the empirical
power spectra estimated directly from the light curves are the noisy curves. The
power spectra are flat on the “white noise” part of the curve, corresponding to
frequencies f < (2mr7)~!, and fall off as 1/f? on the “red noise” part of the
curve, f 2 (2311')'1. As t increases, the break in the power spectra, marked
with a vertical line, shifts toward smaller frequencies. For the CAR(1) process
with T = t,, red noise leak biases the power spectrum estimated directly from
the simulated light curve.

Kelly, Bechtold & Siemiginowska 2009, ApJ, 698, 985



Damped Random Walk (DRW)
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QUANTIFYING QUASAR VARIABILITY AS PART OF A GENERAL APPROACH TO CLASSIFYING
CONTINUOUSLY VARYING SOURCES
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ABSTRACT

Robust fast methods to classify variable light curves in large sky surveys are becoming increasingly important.
While it is relatively straightforward to identify common periodic stars and particular transient events (supernovae,
novae, microlensing events), there is no equivalent for non-periodic continuously varying sources (quasars, ape-
riodic stellar variability). In this paper, we present a fast method for modeling and classifying such sources. We
demonstrate the method using ~86,000 variable sources from the OGLE-II survey of the LMC and ~2700 mid-IR-
selected quasar candidates from the OGLE-III survey of the LMC and SMC. We discuss the location of common

928 KOZEOWSKI ET AL. Vol. 708

of quasars with multi-year light curves. Physically, the model
is a damped random walk, and it has a broken power law
structure function consistent with studies of quasar structure
functions. Unfortunately, there are few large samples of quasars
with extensive monitoring data. To our knowledge, there are the
quasars in the SDSS equatorial strip, with roughly 60 epochs
over ~six years (Sesar et al. 2007; Bramich et al. 2008), the
QUEST survey (Rengstorf et al. 2004b), whose light curves are

et al. 2004a), eclipsing binaries® (ECL; Wyrzykowski et al.
2003), ellipsoidal variable red giants® (ELL; Soszynski et al.
2004b), long secondary period variables (LSPs; Soszynski
2007), and long period variables (Miras, LPVs, and other
semiregular variables; Soszynski et al. 2005) in the LMC. We
separately extracted the OGLE-II light curves of Be stars from
Keller et al. (2002), and ~300 OGLE-II and ~2700 OGLE-
III light curves of the mid-IR-selected quasar candidates from
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Auto-Correlation Function (ACF)
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Structure Function and ACF
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Figure 2. The MAST_DR23 and CW2015 light curves of Zw 229-15.

Kasliwal et al. 2015, MNRAS, 453, 2075
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P. Sanchez-Saez

Abstract

We present our statistical analysis of the connection between active galactic nucleus (AGN) variability and
physical properties of the central supermassive black hole (SMBH). We constructed optical light curves using data
from the QUEST-La Silla AGN variability survey. To model the variability, we used the structure function, among
the excess variance and the amplitude from Damp Random Walk (DRW) modeling. For the measurement of
SMBH physical properties, we used public spectra from the Sloan Digital Sky Survey (SDSS). Our analysis is
based on an original sample of 2345 sources detected in both SDSS and QUEST-La Silla. For 1473 of these
sources we could perform a proper measurement of the spectral and variability properties, and 1348 of these
sources were classified as variable (91.5%). We found that the amplitude of the variability (A) depends solely on
the rest-frame emission wavelength and the Eddington ratio, where A anticorrelates with both Ay and L/Lgyq.
This suggests that AGN variability does not evolve over cosmic time, and its amplitude is inversely related to the
accretion rate. We found that the logarithmic gradient of the variability () does not correlate significantly with any
SMBH physical parameter, since there is no statistically significant linear regression model with an absolute value
of the slope higher than 0.1. Finally, we found that the general distribution of v measured for our sample differs
from the distribution of ~ obtained for light curves simulated from a DRW process. For 20.6% of the variable
sources in our sample, a DRW model is not appropriate to describe the variability, since  differs considerably
from the expected value of 0.5.

Sanchez-Saez et al. 2018, ApJ, 864, 87
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~800 AGN from Catalina (10 yrs) and MEXSAS2 (XMMN)
Laurenti et al. 2020, MNRAS, 499, 6053
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A structure function analysis of VST-COSMOS AGN*-**

D. De Ciccol>?, F. E. Bauer’>4, M. Paolillo®~*°, P. Sanchez-Sdez”->!, W. N. Brandt®>*!°, F. Vagnetti!!-12,
G. Pignata!3-2, M. Radovich'4, and M. Vaccari!>16-17

ABSTRACT

Context. We present our sixth work in a series dedicated to variability studies of active galactic nuclei (AGN), based on the survey
of the COSMOS field by the VLT Survey Telescope (VST). Its 54 r-band visits over 3.3 yr and single-visit depth of 24.6 r-band mag
make this dataset a valuable scaled-down version that can help forecast the performance of the Rubin Observatory Legacy Survey of
Space and Time (LSST).

Aims. This work is centered on the analysis of the structure function (SF) of VST-COSMOS AGN, investigating possible differences
in its shape and slope related to how the AGN were selected, and explores possible connections between the AGN ensemble variability
and the black-hole mass, accretion rate, bolometric luminosity, redshift, and obscuration of the source. Given its features, our dataset
opens up the exploration of samples ~2 mag fainter than most literature to date.

Methods. We identified several samples of AGN — 677 in total — obtained through a variety of selection techniques partly overlapping.
Our analysis compares the results for the various samples. We split each sample in two based on the median of the physical property
of interest, and analyzed the differences in the SF shape and slope, and their possible causes.

Results. While the SF shape does not change with depth, it is highly affected by the type of AGN (unobscured or obscured) included
in the sample. Where a linear region can be identified, we find that the variability amplitude is anticorrelated to the accretion rate and
bolometric luminosity, consistent with previous literature on the topic, while no dependence on black-hole mass emerges from this
study. With its longer baseline and denser and more regular sampling, the LSST will allow for an improved characterization of the SF
and its dependencies on the mentioned physical properties over much larger AGN samples.

De Cicco et al. 2022, A&A, 664, A117
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ABSTRACT

Discrepancies between reported structure function (SF) slopes and their overall flatness as compared to the
expectations from the damped random walk (DRW) model, which generally well describes the variability of active
galactic nuclei (AGNs), have triggered us to study this problem in detail. We review common AGN variability
observables and identify their most common problems. Equipped with this knowledge, we study ~9000 r-band
AGN light curves from Stripe 82 of the Sloan Digital Sky Survey, using SFs described by stochastic processes with
the power exponential covariance matrix of the signal. We model the “subensemble” SFs in the redshift—absolute
magnitude bins with the full SF equation (including the turnover and the noise part) and a single power law (SPL;
in the “red noise regime” after subtracting the noise term). The distribution of full-equation SF (SPL) slopes peaks
at vy = 0.55 = 0.08 (0.52 £ 0.06) and is consistent with the DRW model. There is a hint of a weak correlation of ~y
with the luminosity and a lack of correlation with the black hole mass. The typical decorrelation timescale in the
optical is 7= 0.97 = 046 year. The SF amplitude at one year obtained from the SPL fitting is
SFy = 0.22 4 0.06 mag and is overestimated because the SF is already at the turnover part, so the true value is
SFy = 0.20 4 0.06 mag. The asymptotic variability is SE, = 0.25 £ 0.06 mag. It is strongly anticorrelated with
both the luminosity and the Eddington ratio and is correlated with the black hole mass. The reliability of these
results 1s fortified with Monte Carlo simulations.

Koztowski 2016, ApJ, 826, 118



Correlations

THE ASTROPHYSICAL JOURNAL, 849:110 (17pp), 2017 November 10 https://doi.org/10.3847/1538-4357 /229188
© 2017. The American Astronomical Society. All rights reserved.

CrossMark

Near-infrared Variability of Obscured and Unobscured X-Ray-selected AGNs
in the COSMOS Field

P. Sanchez' , P. Liral, R. Cartier2’3, V. Pérezl N. Miranda4 C Yovaniniz1 P. Aréva105 , B. Milvang-Jensené, J. Fynbo6 ,

J. Dunlop P. Copp1 and S. Marchesi’
Departamento de Astronorma Un1vers1dad de Chile, Casilla 36D, Santiago, Chile
Department of Physics and Astronomy, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
3 Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
Departamento de Ciencias de la Computacidn, Universidad de Chile, Santiago, Chile
Insututo de Fisica y Astronomia, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretana No. 1111, Playa Ancha, Valparaiso, Chile
® Dark Cosmology Centre, Niels Bohr Institute,University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark
7 Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK
8 vale Center for Astronomy and Astrophysics, 260 Whitney Avenue, New Haven, CT 06520, USA

Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA

Received 2017 March 9; revised 2017 September 13; accepted 2017 October 3; published 2017 November 7

Abstract

We present our statistical study of near-infrared (NIR) variability of X-ray-selected active galactic nuclei (AGNs) in
the COSMOS field, using UltraVISTA data. This is the largest sample of AGN light curves in YJHK bands, making
it possible to have a global description of the nature of AGNs for a large range of redshifts and for different levels of
obscuration. To characterize the variability properties of the sources, we computed the structure function. Our results
show that there is an anticorrelation between the structure function A parameter (variability amplitude) and the
wavelength of emission and a weak anticorrelation between A and the bolometric luminosity. We find that broad-line
(BL) AGNs have a considerably larger fraction of variable sources than narrow-line (NL) AGNs and that they have
different distributions of the A parameter. We find evidence that suggests that most of the low-luminosity variable NL
sources correspond to BL. AGNs, where the host galaxy could be damping the variability signal. For high-luminosity
variable NL sources, we propose that they can be examples of “true type II’ AGNs or BL. AGNs with limited spectral
coverage, which results in missing the BL emission. We also find that the fraction of variable sources classified as
unobscured in the X-ray is smaller than the fraction of variable sources unobscured in the optical range. We present
evidence that this is related to the differences in the origin of the obscuration in the optical and X-ray regimes.

Sanchez et al. 2017, ApJ, 849, 110
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ABSTRACT

We characterize the optical variability of quasars in the Palomar Transient Factory and intermediate Palomar
Transient Factory (PTF/iPTF) surveys. We re-calibrate the r-band light curves for ~28,000 luminous, broad-line
active galactic nuclei from the SDSS, producing a total of ~2.4 million photometric data points. We utilize both
the structure function (SF) and power spectrum density (PSD) formalisms to search for links between the optical
variability and the i)hysical parameters of the accreting supermassive black holes that power the quasars. The
excess variance (SF°) of the quasar sample tends to zero at very short time separations, validating our re-calibration
of the time-series data. We find that the the amplitude of variability at a given time-interval, or equivalently the
timescale of variability to reach a certain amplitude, is most strongly correlated with luminosity with weak or no
dependence on black hole mass and redshift. For a variability level of SF(7) = 0.07 mag, the timescale has a
dependency of 7 oc L%4. This is broadly consistent with the expectation from a simple Keplerian accretion disk
model, which provides 7 oc L%, The PSD analysis also reveals that many quasar light curves are steeper than a
damped random walk. We find a correlation between the steepness of the PSD slopes, specifically the fraction of
slopes steeper than 2.5, and black hole mass, although we cannot exclude the possibility that luminosity or
Eddington ratio are the drivers of this effect. This effect is also seen in the SF analysis of the (i)PTF data, and in a
PSD analysis of quasars in the SDSS Stripe 82.

Caplar, Lilly & Trakhtenbrot 2017, ApJ, 834, 111
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ABSTRACT

We study the optical gri photometric variability of a sample of 190 quasars within the SDSS Stripe 82 region that have long-
term photometric coverage during ~1998—2020 with SDSS, PanSTARRS-1, the Dark Energy Survey, and dedicated follow-up
monitoring with Blanco 4m/DECam. With on average ~200 nightly epochs per quasar per filter band, we improve the parameter
constraints from a Damped Random Walk (DRW) model fit to the light curves over previous studies with 10—15 yr baselines and
< 100 epochs. We find that the average damping time-scale tprw continues to rise with increased baseline, reaching a median
value of ~750d (g band) in the rest frame of these quasars using the 20-yr light curves. Some quasars may have gradual, long-term
trends in their light curves, suggesting that either the DRW fit requires very long baselines to converge, or that the underlying
variability is more complex than a single DRW process for these quasars. Using a subset of quasars with better-constrained tprw
(less than 20 per cent of the baseline), we confirm a weak wavelength dependence of TprwocA®! =020, We further quantify
optical variability of these quasars over days to decades time-scales using structure function (SF) and power spectrum density
(PSD) analyses. The SF and PSD measurements qualitatively confirm the measured (hundreds of days) damping time-scales
from the DRW fits. However, the ensemble PSD is steeper than that of a DRW on time-scales less than ~ a month for these
luminous quasars, and this second break point correlates with the longer DRW damping time-scale.

Stone et al. 2022, MNRAS, 514, 164
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Figure 12. The distribution of best-fitting CARMA (p, ¢) parameters when fitting our quasar light curves to a generalized CARMA model (requiring g < p for
stationary processes). The best-fitting order for the CARMA model for a given quasar light curve was chosen as the fit with the minimum value for the AICc.
The AIC (Akaike Information Criterion, Akaike 1973) is a statistic measuring an estimate of information loss due to assuming a particular model generates a
certain set of data, which can be corrected for a finite sample size to give the AICc (Hurvich & Tsai 1989) (discussed further in A3). Darker colours indicate
higher incidence. There is a tendency of clustering of quasars around (p, g) ~ (4, 2).

Stone et al. 2022, MNRAS, 514, 164
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Revisiting Stochastic Variability of AGNs with Structure Functions
Koztowski Szymon, 2016, The Astrophysical Journal, 826, 118

A degeneracy in DRW modelling of AGN light curves
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Limitations on the recovery of the true AGN variability parameters
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Koztowski Szymon, 2017, A&A, 597, 128
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of the AGN Variable Signal from Structure Functions
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CARMA for ~800 OGLE AGN

Akaike Information Criterion (AlIC)
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PSD for ~800 OGLE AGN
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AGN in mid-IR (Spitzer)
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Figure 10. Rest-frame mid-IR AGN structure functions for the 0.5 < z < 2 AGES quasars brighter than [3.6] < 18 mag. We divide the sample of 1000 AGNs in half
after sorting them by their absolute magnitudes and calculate SF for the brighter half (red) and the fainter half (blue). It is clear that fainter AGN show higher amount
of variability then the brighter ones.

Koztowski et al. 2016, ApJ, 817, 119
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Unbiased timescale

Koztowski 2017, ApJ, 835, 250
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