A Universal Variability Structure Function For Disc Emission?

Christian Wolf (ANU), Ji-Jia Tang (ANU, ASIAA) & John Tonry (IfA Hawai'i) et al.

Abstract:

The 5,000 brightest quasars vary their brightness in a universal pattern when clocks run on disc orbital timescales. But quasars with windy discs vary more slowly - why? Inclination, BH spin and dust extinction don't seem to explain it.

Variability structure function

- · Pick all magnitude pairs in light curve, variability amplitude is $A = \Delta m = m_1 - m_2$
- Random-walk makes power law: $\log A/A_0 \approx \gamma \log \Delta t$
- Shot noise sets floor Anoise
- Long-term saturation?
- What do A_0 and γ depend on?
- ∆t (years) Long history of measurements (Hughes+92, Vanden Berk+04, Kelly+09, MacLeod+10, Mushotzky+11, ..., Caplar+17, Burke+21, Stone+22)

Our data set

- Sample of 5,000+ brightest quasars with 0.5 < z < 3, Gaia Rp < 17.5 mag
- NASA/ATLAS light curves in cyan and orange passbands over 6 years
- Cadence: 4x nightly weather permitting $\mapsto 2+$ billion magnitude pairs

Open question: second parameter

- Scatter among individual quasars ranges over $\frac{1}{2}$ dex in log Ao = 1 dex in log t_{orb} = 2 dex in L₃₀₀₀, but scatter between subsamples from bins in luminosity and rest-frame wavelength is negligible
- $t_{\rm orb}$ is estimated from observed luminosity $L_{\rm 3000},$ which is affected by:
 - Anisotropic emission, inclination 0° to 60° \mapsto 0.4 dex in L₃₀₀₀ = 0.2 dex in log t_{orb}
 - Black hole spin dependence over a \approx -1 to +1 \mapsto 0.2 dex in L₃₀₀₀ \approx 0.1 dex in log t_{orb}
 - Host dust extinction from E(B-V) = 0 to 0.1 \mapsto 1/4 dex in L3000 = 1/8 dex in log torb
 - Flatter temperature profile of disc increases torb (and what effect from 3D slim discs?)
- Try selecting subsamples by inclination, BH spin, T profile how to know these?

Explore VSF trends with CIV blueshift:

- High-CIV blueshift quasars: windy discs (many authors) or pole-on viewing angle (e.g. Yong+20)?
- CIV blueshift < -1,800 km/s: apparently lower VSF amplitude and short-term break shifted longer
- More likely: t_{orb} is under-estimated \mapsto +0.13 dex higher log t_{orb} would shift them in line with bulk
- Wrong sign for pole-on view; SEDs disagree with dust, flatter T profile; spin effects a little weak

Results

- Bootstrap analysis yields $\log A/A_0 = \frac{1}{2} \times \log \Delta t$
- Slope $\gamma = 0.503 \pm 0.002$ most robust when Δt in units of $t_{orbital} \sim t_{thermal}$
- Quasars are standard flicker sources when clock runs in units of t_{orbital} i.e., natural clock for Magneto-Rotational Instabilities (MRI) in discs

Looking forward to LSST! will provide beautiful data for many and diverse quasars

