# **Cosmological Parameters via HII galaxies**

Ricardo Chávez Murillo, IRyA, UNAM

CosmoVerse, Lisbon, May 2023



#### **Giant Extragalactic Hll Regions**



#### NGC 5455 @ M101

30 Dor @ LMC

#### The L-σ Relation of GEHR



From Chávez et al. 2012

#### HII Galaxies

| 1<br>J000657.01+005125.8  | 13<br>J022037.66-092907.2                           | 14<br>J024052.18-082827.3 | 17<br>J030321.4-075923          | 18<br>J031023.94-083432.8     |
|---------------------------|-----------------------------------------------------|---------------------------|---------------------------------|-------------------------------|
| - 2" N -                  | - 2" N -                                            | - 2" N -                  | - 2" N -                        | - 2" N -                      |
| - <del>E</del>            | - <del>E</del>                                      | - <del>E</del> - W -      | - <del>E</del> ₩ -              | - <del>E</del> ₩ -            |
| <br>                      | <br>                                                | <br>- 8 -                 | - s -                           | - s -                         |
|                           |                                                     |                           |                                 |                               |
| J040937.61-051805.7       | J074946.99+154013.2                                 | J083946.02+140033.1       | J084000.36+180530.9             | 40<br>J084414.21+022621.1     |
| - 2" N -                  | - 2" N -                                            | – 2" N –                  | – 2" N –                        | – 2" N –                      |
| - H                       |                                                     | _ <del></del>             | _ H _                           | _ H-I _                       |
| - <del>E</del> ₩          | – <del>E</del> ———————————————————————————————————— | - <del>E</del> ₩          | – <del>E</del> ₩ –              | – <del>E</del> ——₩- –         |
|                           |                                                     | -                         |                                 |                               |
| - 9 -                     | - 9 -                                               | - 9 -                     | - 9 -                           | - 9 -                         |
| 45<br>J090506.85+223833.7 | 54<br>J093424.07+222522.5                           | 61<br>J095023.31+004229.1 | 71<br>J101157.07+130822         | 72<br>J101430.97+004754.9     |
| - <u>2"</u> N -           | - 2" N -                                            | - 2" N -                  | - 2" N -                        | - 2" N -                      |
| –                         |                                                     | – <del>–</del> ₩ –        | – • • –<br>– <del>E</del> — ₩ – | - <del>-</del> - <del>-</del> |
| -<br>s                    |                                                     | - s                       |                                 | - s -                         |
|                           |                                                     |                           |                                 |                               |

From Chávez et al. 2014

#### HII Galaxies: Optical Spectra



#### HII Galaxies Properties: BPP Diagram of L



#### The L-σ Relation: Local HIIG



From Chávez et al. 2014

#### The Hubble Constant Tension



#### **The Hubble Constant Tension**



From Di Valentino et al. 2021

#### HIIG as Cosmological Probes: The Hubble Constant



#### HIIG as Cosmological Probes: The Hubble Constant



#### **HIIG as Cosmological Probes: Systematics**

- Size of the starburst: 0.03 mag —> 0.97 km/s/Mpc
- Age of the starburst: 0.025 mag —> 0.8 km/s/Mpc
- Spectrophotometry: 0.015 mag —> 0.48 km/s/Mpc
- Chemical abundances: 0.02 mag —> 0.6 km/s/Mpc
- Internal extinction: 0.025 mag —> 0.8 km/s/Mpc
- Total: 0.053 mag —> 1.68 km/s/Mpc

#### A Picture of our Universe



### **Observations: High-z Sample**

#### VLT Telescope:

2 half nights in the period 95A with KMOS

16 hours in the period 97A with KMOS.Priority A, first Q

39 hours in the period 98A with KMOS.Priority A, first Q

**KECK Telescope:** 

1 night with MOSFIRE in January 27th, 2016.

 Visitor mode. Lost due to rain!!!!.

Service mode.

Observing period from 3/2016 to 9/2017(extended)

Service mode.

Observing period from 10/2016 to 3/2017

Visitor mode.





#### Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS 505, 1441–1457 (2021) Advance Access publication 2021 May 17 https://doi.org/10.1093/mnras/stab1385

## Independent cosmological constraints from high-z H II galaxies: new results from VLT-KMOS data

Ana Luisa González-Morán,<sup>1</sup>\* Ricardo Chávez<sup>®</sup>,<sup>2</sup>\* Elena Terlevich,<sup>1</sup> Roberto Terlevich,<sup>1,3</sup> David Fernández-Arenas<sup>®</sup>,<sup>4</sup> Fabio Bresolin<sup>®</sup>,<sup>5</sup> Manolis Plionis,<sup>6,7</sup> Jorge Melnick,<sup>8,9</sup> Spyros Basilakos<sup>10</sup> and Eduardo Telles<sup>9</sup>

<sup>1</sup>Instituto Nacional de Astrofísica, Óptica y Electrónica, AP 51 y 216, 72000, Puebla, México

<sup>2</sup>CONACYT-Instituto de Radioastronomía y Astrofísica, UNAM, Campus Morelia, C.P. 58089, Morelia, México

<sup>3</sup>Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK

<sup>4</sup>Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China

<sup>5</sup>Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

<sup>6</sup>National Observatory of Athens, P. Pendeli, 15236 Athens, Greece

<sup>7</sup>Physics Department, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

<sup>8</sup>European Southern Observatory, Av. Alonso de Cordova 3107, Santiago de Chile, Chile

<sup>9</sup>Observatorio Nacional, Rua José Cristino 77, 20921-400 Rio de Janeiro, Brasil

<sup>10</sup>Academy of Athens Research Center for Astronomy & Applied Mathematics, Soranou Efessiou 4, 11-527 Athens, Greece

Accepted 2021 May 7. Received 2021 April 7; in original form 2020 November 24

## The VLT-KMOS sample

| UDS10                      | UDS11              | UDS15     | UDS20     | UD\$23    | BM133                       | BM181     | BX182     | BX236       | BX336       |
|----------------------------|--------------------|-----------|-----------|-----------|-----------------------------|-----------|-----------|-------------|-------------|
| 1000                       | 1000               | 1.1       | 1.1.1     | RINGS     |                             | 1000      | 100       | 100         | 1000        |
| <u>1"</u>                  | 1"                 | <u>1"</u> | 1"        | 1"        | 1"                          | <u>1</u>  | 1"        | <u>1"</u>   | <u>1"</u>   |
| UD\$24                     | UDS25              | UDS26     | UDS35     | UDS36     | BX341                       | BX389     | BX390     | BX391       | BX418       |
| 0.000                      | 1.000              | 1000      | 1003.14   | 6.825     |                             | 1000      | 1.000     | 1.00        | 1.000       |
| 1"                         | 1"                 | 1"        | 1         | 1         | <u>1"</u>                   | 1"        | <u>1'</u> | <u>1"</u>   | 1"          |
| UDS38                      | UDS40              | UDS3646   | UDS3760   | UDS4501   | BX429                       | BX435     | BX436     | BX442       | BX461       |
| 5. au                      | 10000              | 1.000     | 1.000     | 2.00      | 1000                        | Sec. 1    | 1.00      | 1.000       | 1000        |
| <u>1"</u>                  | 1"                 | 1"        | <u>1"</u> | 1"        | <u>1'</u>                   | 1"        | <u>1'</u> | <u>1"</u>   | <u>1"</u>   |
| UD\$7444                   | UDS11484           | UDS14655  | GSD2      | GSD3      | BX480                       | BX493     | BX513     | BX529       | BX537       |
| 1000                       |                    |           | 1000      | 10000     | 1.1                         | 1000      | 10000     | 1.000       | 0000        |
| 1"                         | 1"                 | 1"        | 1"        | <u>1"</u> | <u>1"</u>                   | <u>1"</u> | 1.        | <u>1"</u>   | <u>1"</u>   |
| GSD5                       | GSD6               | GSD9      | GSD14     | GSD23     | BX599                       | BX601     | BX660     | COS-8991    | COS-11212   |
| 140.00                     | 1000               | 1000      | 1966      | 00000     | 1200                        | 1000      | 100       | Sec. S.     | 1000        |
| 1"                         | <u>1"</u>          | .1"       | 1         | 1         | 1"                          | 1"        | 1"        | <u>1"</u>   | <u>1</u>    |
| PEARS103                   | GM-2113W           | GM-2438A  | GM-2438B  | GM-2438C  | COS-12102                   | COS-16566 | COS-18358 | zCOS-410041 | zCOS-411737 |
| Case of Co                 | 1.000              | 1000      | 1000      | 1000      | 3963                        | 100       | CORA LA   | 100         | 1000        |
| 1"                         | 1"                 | 1"        | 1"        | <u> </u>  | <u>Ľ</u>                    | <u>1</u>  | 1         | 1"          | <u>1"</u>   |
| GM-2550                    | GS-17892           | GS-26816  |           |           |                             |           |           |             |             |
| STATES -                   | Contraction of the | 1000 CC   |           |           |                             |           |           |             |             |
| 1"                         | 1"                 | 1         |           |           |                             |           |           |             |             |
| (a) UDS and GOODS-S fields |                    |           |           |           | (b) Q2343 and COSMOS fields |           |           |             |             |

#### The data





#### The L-σ Relation



#### The Hubble diagram



















#### **Cosmography with HII Galaxies**



28

#### J084220 with Megara



From Fernández-Arenas et al. 2022, submitted

## **Future Work**



# **Concluding Remarks**

- GEHR and HIIG are ideal laboratories to understand the feedback of star formation (SF) on the dynamics and energetics of the interstellar medium (ISM).
- We present constraints to H0 form a local sample of HII Galaxies.
- We present constraints to the parameter of the DE EoS from a sample of HII galaxies from the local Universe and up to redshift 2.5. Our constraints agree well with the results form other well developed methodologies.

## References

- González-Morán A.L., et al., 2019, MNRAS, 487, 4669
- Fernández-Arenas D., et al., 2018, MNRAS, 474, 1250
- Chávez R., et al., 2016, MNRAS, 462, 2431
- Terlevich R., et al., 2015, MNRAS, 451, 3001
- Chávez R., et al., 2014, MNRAS, 442, 3565
- Chávez R., et al., 2012, MNRAS, 425, L56
- Plionis M., et al., 2011, MNRAS, 416, 298