A new constraint on the expansion history of the Universe with cosmic chronometers in VANDELS

arXiv:2305.16387

ELENA TOMASETTI

PhD student Department of Physics and Astronomy University of Bologna

Supervisors: Michele Moresco Carmela Lardo Andrea Cimatti

Scientific framework and aim of the project

Modern Cosmology is based on the **ACDM model**, successfully constrained by a combination of **independent probes** that have become standard in cosmological analyses

Elena Tomasetti

Scientific framework and aim of the project

Modern Cosmology is based on the **ACDM model**, successfully constrained by a combination of **independent probes** that have become standard in cosmological analyses

However, the increasing precision of these measurements has highlighted **tensions** between early- and late-Universe probes (Verde et al. 2019)

 \rightarrow it's important to find and explore new and non-standard methods! (Moresco et al. 2022)

Scientific framework and aim of the project

Modern Cosmology is based on the **ACDM model**, successfully constrained by a combination of **independent probes** that have become standard in cosmological analyses

However, the increasing precision of these measurements has highlighted **tensions** between early- and late-Universe probes (Verde et al. 2019)

 \rightarrow it's important to find and explore new and non-standard methods! (Moresco et al. 2022)

Aim: obtain new constraints on the expansion history of the Universe using **time** as tracer instead of luminosity (SNIa) or length (BAO).

Elena Tomasetti

By using cosmic chronometers it's possible to measure H(z) with **no cosmological assumptions**, other than the cosmological principle and the FLRW metric.

Elena Tomasetti

By using cosmic chronometers it's possible to measure H(z) with **no cosmological assumptions**, other than the cosmological principle and the FLRW metric.

Elena Tomasetti

By using cosmic chronometers it's possible to measure H(z) with **no cosmological assumptions**, other than the cosmological principle and the FLRW metric.

Elena Tomasetti

$$H(z) = -\frac{1}{1+z}\frac{dz}{dt}$$

What are cosmic chronometers?

Elena Tomasetti

$$H(z) = -\frac{1}{1+z}\frac{dz}{dt}$$

What are cosmic chronometers?

 best tracers are massive and passively evolving galaxies, which started "ticking" very soon and in-sync

$$H(z) = -\frac{1}{1+z}\frac{dz}{dt}$$

What are cosmic chronometers?

- best tracers are massive and passively evolving galaxies, which started "ticking" very soon and in-sync
- optimal selection is fundamental to minimize contamination that can bias the cosmological analysis

$$H(z) = -\frac{1}{1+z}\frac{dz}{dt}$$

What are cosmic chronometers?

- best tracers are massive and passively evolving galaxies, which started "ticking" very soon and in-sync
- optimal selection is fundamental to minimize contamination that can bias the cosmological analysis

Redshift 0.0 0.2 0.5 1 2 3 5 2.5 Formation phase Rejuvenation self-regulated mass and environment dM./dt/M. (Gyr⁻¹) $\log M_{\rm dyn}/M_{\odot} \sim 12.0$ 2 driven 1.5 11.6 11.0 0.5 10.5 -2 0 2 8 10 12 4 6 Lookback Time (Gyr) Thomas et al. (2010)

How to measure ages?

$$H(z) = -\frac{1}{1+z}\frac{dz}{dt}$$

What are cosmic chronometers?

- best tracers are massive and passively evolving galaxies, which started "ticking" very soon and in-sync
- optimal selection is fundamental to minimize contamination that can bias the cosmological analysis

Redshift 0.0 0.2 0.5 1 2 3 5 2.5 Formation phase Rejuvenation self-regulated mass and environment dM./dt/M. (Gyr⁻¹) $\log M_{\rm dyn}/M_{\odot} \sim 12.0$ 2 driven 1.5 11.6 11.0 0.5 10.5 -2 0 2 8 10 12 4 6 Lookback Time (Gyr) Thomas et al. (2010)

How to measure ages?

we want to measure dt, <u>not t</u>

$$H(z) = -\frac{1}{1+z}\frac{dz}{dt}$$

What are cosmic chronometers?

- best tracers are massive and passively evolving galaxies, which started "ticking" very soon and in-sync
- optimal selection is fundamental to minimize contamination that can bias the cosmological analysis

Redshift 0.0 0.2 0.5 2 3 5 2.5 Formation phase Rejuvenation self-regulated mass and environment dM./dt/M. (Gyr⁻¹) $\log M_{\rm dyn}/M_{\odot} \sim 12.0$ 2 driven 1.5 11.6 11.0 0.5 10.5 -20 2 8 10 12 4 6 Lookback Time (Gyr) Thomas et al. (2010)

How to measure ages?

- we want to measure *dt*, <u>not *t*</u>
- different methods available:
 - □ SED-fitting
 - □ spectral features
 - ☑ full-spectral fitting

Elena Tomasetti

$$H(z) = -\frac{1}{1+z}\frac{dz}{dt}$$

What are cosmic chronometers?

- best tracers are massive and passively evolving galaxies, which started "ticking" very soon and in-sync
- optimal selection is fundamental to minimize contamination that can bias the cosmological analysis

How to measure ages?

- we want to measure dt, <u>not t</u>
- different methods available:
 - □ SED-fitting
 - □ spectral features
 - ☑ full-spectral fitting

Main steps:

- 1. selection of a reliable sample of CC
- 2. robust measurements of differential ages accounting for systematics
- 3. computation of H(z) and its error

Elena Tomasetti

The VANDELS survey – data release 4

VANDELS is a deep optical spectroscopic survey in the CANDELS UDS and CDFS fields covering an area of 0.2 deg²

INSTRUMENT	VIMOS spectrograph on VLT (480 – 1000 nm)
TARGET	different pop. of high-z galaxies
SPECTRAL RESOLUTION	R ~ 580
SIGNAL-TO-NOISE	S/N ~ 10
ANCILLARY DATA	photometry from near-UV to mid-IR

The VANDELS survey – data release 4

VANDELS is a deep optical spectroscopic survey in the CANDELS UDS and CDFS fields covering an area of 0.2 deg^2

INSTRUMENT	VIMOS spectrograph on VLT (480 – 1000 nm)		
TARGET	different pop. of high-z galaxies		
SPECTRAL RESOLUTION	R ~ 580		
SIGNAL-TO-NOISE	S/N ~ 10		
ANCILLARY DATA	photometry from near-UV to mid-IR		

FIELD	SFG	PASSIVE	LBG	AGN	SECONDARY	тот
CDFS	201	123	604	47	44	1019
UDS	216	155	655	10	32	1068
тот	417	278	1259	57	76	2087

Elena Tomasetti

The VANDELS survey – data release 4

VANDELS is a deep optical spectroscopic survey in the CANDELS UDS and CDFS fields covering an area of 0.2 deg²

INSTRUMENT	VIMOS spectrograph on VLT (480 – 1000 nm)
TARGET	different pop. of high-z galaxies
SPECTRAL RESOLUTION	R ~ 580
SIGNAL-TO-NOISE	S/N ~ 10
ANCILLARY DATA	photometry from near-UV to mid-IR

FIELD	SFG	PASSIVE	LBG	AGN	SECONDARY	тот
CDFS	201	123	604	47	44	1019
UDS	216	155	655	10	32	1068
тот	417	278	1259	57	76	2087

Elena Tomasetti

Elena Tomasetti

Elena Tomasetti

Elena Tomasetti

Elena Tomasetti

 galaxies already classified as passive in VANDELS data release 4 1<z<sub>spec<1.5 and accurate z determination</z<sub> 	parent
+ UVJ selection from McLure+2018	sample standard
+ EW([OII]) < 5 Å or SNR([OII]) < 3 Å	passive
 + Call H/K ratio < 1.3 (Moresco+2018, Borghi+2022a) + Redshift cut (z>1.07) to homogenize the sample 	
+ Visual inspection	bona fide passive

Elena Tomasetti

Elena Tomasetti

Elena Tomasetti

Adopting a Bayesian full-spectral-fitting method (BAGPIPES, Carnall et al. 2018) we are able to fit **spectra and/or photometry** with a multi-component model and different SFHs. The main are:

Adopting a Bayesian full-spectral-fitting method (BAGPIPES, Carnall et al. 2018) we are able to fit **spectra and/or photometry** with a multi-component model and different SFHs. The main are:

Elena Tomasetti

CosmoVerse@Lisbon 2023

Adopting a Bayesian full-spectral-fitting method (BAGPIPES, Carnall et al. 2018) we are able to fit **spectra and/or photometry** with a multi-component model and different SFHs. The main are:

DELAYED EXPONENTIALLY DECLINING (DED)

SFR(t)
$$\propto \begin{cases} (t - T_0)e^{-\frac{t - T_0}{\tau}}, & t > T_0\\ 0, & t \le T_0 \end{cases}$$

DOUBLE-POWER-LAW (DPL)

SFR(t)
$$\propto \left[\left(\frac{t}{\tau} \right)^{\alpha} + \left(\frac{t}{\tau} \right)^{-\beta} \right]^{-1}$$

The fit reconstructs galaxy age, metallicity, mass, dust reddening and velocity dispersion.

Adopting a Bayesian full-spectral-fitting method (BAGPIPES, Carnall et al. 2018) we are able to fit **spectra and/or photometry** with a multi-component model and different SFHs. The main are:

DELAYED EXPONENTIALLY DECLINING (DED)

$$SFR(t) \propto \begin{cases} (t - T_0)e^{-\frac{t - T_0}{\tau}}, & t > T_0\\ 0, & t \le T_0 \end{cases}$$

1

SFR(t)
$$\propto \left[\left(\frac{t}{\tau} \right)^{\alpha} + \left(\frac{t}{\tau} \right)^{-\beta} \right]^{-1}$$

The fit reconstructs galaxy age, metallicity, mass, dust reddening and velocity dispersion. In view of cosmic chronometers, the dependence on **cosmological models** should be **removed** in the parameter estimation process:

Adopting a Bayesian full-spectral-fitting method (BAGPIPES, Carnall et al. 2018) we are able to fit **spectra and/or photometry** with a multi-component model and different SFHs. The main are:

DELAYED EXPONENTIALLY DECLINING (DED)

$$SFR(t) \propto \begin{cases} (t - T_0)e^{-\frac{t - T_0}{\tau}}, & t > T_0\\ 0, & t \le T_0 \end{cases}$$

SFR(t)
$$\propto \left[\left(\frac{t}{\tau} \right)^{\alpha} + \left(\frac{t}{\tau} \right)^{-\beta} \right]^{-1}$$

The fit reconstructs galaxy age, metallicity, mass, dust reddening and velocity dispersion.

In view of cosmic chronometers, the dependence on **cosmological models** should be **removed** in the parameter estimation process:

Elena Tomasetti

Fit configuration

Results are visually checked to flag whether the fit is not properly converging (double peaked posterior, high χ^2 etc.)

Physical parameters of CC in VANDELS

For 44 galaxies the fit is successful and indicates:

- 95% of ages lower than age of the Universe in fACDM
- evidence of mass-downsizing

Physical parameters of CC in VANDELS

For 44 galaxies the fit is successful and indicates:

- 95% of ages lower than age of the Universe in $f\Lambda CDM$ ٠
- evidence of mass-downsizing •

bad fit

- short SFH $\langle \tau \rangle = 0.28 \pm 0.02 \text{ Gyr}$ ٠
- $(\log(M/M_{\odot})) = 11.21 \pm 0.05$ massive galaxies .
- homogeneous population $\langle Z/Z_{\odot} \rangle = 0.44 \pm 0.01$ •

Elena Tomasetti

1.2

1.3

Ζ

1.4

1.1

1.0

0.8

0.6

0.2

0.0

נ] 1 [Gyr] ד 1.4

Elena Tomasetti

Elena Tomasetti

Elena Tomasetti

Elena Tomasetti

Cosmological analysis

Elena Tomasetti

Cosmological analysis: fitting the age-redshift relation

We fit the median age-z with a **fACDM**:

$$t(z) = \int_0^z \frac{dz'}{H_0\sqrt{1 - \Omega_{m,0}(1 + z')^3}(1 + z')} - t_0$$

which has 3 free parameters: H_0 , $\Omega_{m,0}$, t_0 . Assumed gaussian prior on $\Omega_{m,0} = 0.3 \pm 0.02$ independent of CMB (Jimenez et al. 2019)

Cosmological analysis: fitting the age-redshift relation

We fit the median age-z with a **fACDM**:

$$t(z) = \int_0^z \frac{dz'}{H_0\sqrt{1 - \Omega_{m,0}(1 + z')^3}(1 + z')} - t_0$$

which has 3 free parameters: H_0 , $\Omega_{m,0}$, t_0 . Assumed gaussian prior on $\Omega_{m,0} = 0.3 \pm 0.02$ independent of CMB (Jimenez et al. 2019)

$$H_0 = 67^{+14}_{-15} \text{ km s}^{-1} \text{Mpc}^{-1}$$

Elena Tomasetti

Cosmological analysis: fitting the age-redshift relation

We fit the median age-z with a **fACDM**:

$$t(z) = \int_0^z \frac{dz'}{H_0 \sqrt{1 - \Omega_{m,0}(1 + z')^3}(1 + z')} - t_0$$

which has 3 free parameters: H_0 , $\Omega_{m,0}$, t_0 . Assumed gaussian prior on $\Omega_{m,0} = 0.3 \pm 0.02$ independent of CMB (Jimenez et al. 2019)

$$H_0 = 67^{+14}_{-15} \text{ km s}^{-1} \text{Mpc}^{-1}$$

Current errors are dominated by the low number of galaxies

higher precision requires more statistics!

Elena Tomasetti

Cosmological analysis: the cosmic chronometers approach

With the cosmic chronometers method no cosmological model is assumed and H(z) is computed as:

$$H(z) = -\frac{1}{1+z}\frac{dz}{dt}$$

Cosmological analysis: the cosmic chronometers approach

With the cosmic chronometers method no cosmological model is assumed and H(z) is computed as:

$$H(z) = -\frac{1}{1+z}\frac{dz}{dt}$$

Each couple of points gives a value for H(z), their weighted mean is the final measurement.

Cosmological analysis: the cosmic chronometers approach

With the cosmic chronometers method no cosmological model is assumed and H(z) is computed as:

$$H(z) = -\frac{1}{1+z}\frac{dz}{dt}$$

Each couple of points gives a value for H(z), their weighted mean is the final measurement.

Assessing the systematics

Two main sources of systematic effects are considered:

- binning variation of H(z) between (111) and (011)
- SFH choice variation of H(z) among **DED** and **DPL** results in equivalent binnings

Assessing the systematics

Two main sources of systematic effects are considered:

- binning variation of H(z) between (111) and (011)
- SFH choice variation of H(z) among **DED** and **DPL** results in equivalent binnings

Elena Tomasetti

Assessing the systematics

Two main sources of systematic effects are considered:

- binning variation of H(z) between (111) and (011)
- SFH choice variation of H(z) among **DED** and **DPL** results in equivalent binnings

Elena Tomasetti

Final result

Finally, with a sample of **39 cosmic chronometers** we obtain:

Elena Tomasetti

Conclusions

- ✓ Without assuming any cosmological model we obtain:
 - 95% of ages lower than age of the Universe in fΛCDM, consistent with theoretical ageing
 - evidence of mass-downsizing

What's next?

- homogeneous population in redshift
- ✓ Fitting the median age-redshift relation we obtain:

 $H_0 = 67^{+14}_{-15}$ km s⁻¹Mpc⁻¹

✓ With cosmic chronometers we are able to obtain a **new measurement** of the Hubble parameter: $H(z \simeq 1.26) = 135 \pm 65$ km s⁻¹Mpc⁻¹ exploiting for the first time the full-spectral-fitting CC method at z>1

Constraining the age of the Universe and the **Hubble constant** with the oldest objects in the local Universe

Elena Tomasetti

Cimatti & Moresco (2023) <u>arXiv:2302.07899</u> Tomasetti et al. (in prep)

$$H_0 = \frac{A}{t} \int_0^{z_f} \frac{1}{1+z} \left[\Omega_M (1+z)^3 + (1-\Omega_M)\right]^{1/2} dz$$

Cimatti & Moresco (2023) <u>arXiv:2302.07899</u> Tomasetti et al. (in prep)

$$H_0 = \frac{A}{t} \int_0^{z_f} \frac{1}{1+z} (\Omega_M (1+z)^3 + (1-\Omega_M))^{1/2} dz$$

Elena Tomasetti

Cimatti & Moresco (2023) <u>arXiv:2302.07899</u> Tomasetti et al. (in prep)

$$H_0 = \frac{A}{t} \int_0^{z_f} \frac{1}{1+z} (\Omega_M (1+z)^3 + (1-\Omega_M))^{1/2} dz$$

Elena Tomasetti

Cimatti & Moresco (2023) <u>arXiv:2302.07899</u> Tomasetti et al. (in prep)

$$H_0 = \frac{A}{t} \int_0^{z_f} \frac{1}{1+z} (\Omega_M (1+z)^3 + (1-\Omega_M))^{1/2} dz$$

Elena Tomasetti

Elena Tomasetti

Conclusions

- ✓ Without assuming any cosmological model we obtain:
 - 95% of ages lower than age of the Universe in fΛCDM, consistent with theoretical ageing
 - evidence of mass-downsizing
 - homogeneous population in redshift
- ✓ Fitting the median age-redshift relation we obtain:

 $H_0 = 67^{+14}_{-15}$ km s⁻¹Mpc⁻¹

✓ With cosmic chronometers we are able to obtain a **new measurement** of the Hubble parameter: $H(z \approx 1.26) = 135 \pm 65$ km s⁻¹Mpc⁻¹ exploiting for the first time the full-spectral-fitting CC method at z>1

Elena Tomasetti