

In collaboration with Tristan L. Smith (Swarthmore), Tanvi Karwal (UPenn), Marc Kamionkowski (JHU), and many others

CosmoVerse@Lisbon Lisbon, Portugal May, 31st 2023

How can we explain the H_0 and S_8 tension?

V. Poulin - LUPM (CNRS / Montpellier)

Can Early Dark Energy explain the H_0 and S_8 tension?

V. Poulin - LUPM (CNRS / Montpellier)

The BAO: a standard ruler in the sky

- The same pattern is seen within CMB anisotropies and galaxy surveys at different epoch. 0
- It can be used to measure distances and infer H_0 given a model.

 $z \sim 1100$

V. Poulin - LUPM (CNRS / Montpellier)

How does CMB data measure H_0 ?

- *Planck* measures θ_s at 0.04% precision! $r_s \& d_A$ are model dependent.
- H_0 appears only in the angular diameter distance d_A .

How does CMB data measure H_0 ?

- *Planck* measures θ_s at 0.04% precision! $r_s \& d_A$ are model dependent.
- H_0 appears only in the angular diameter distance d_A .

New physics in the Universe?

$$\theta_s \equiv \frac{r_s(z_*)}{d_A(z_*)} = \frac{H_0 r_s(z_*)}{\int_0^{z_*} 1/E(z')dz'}$$
$$E(z) \equiv \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda + \cdots}$$

New physics in the Universe?

$$\theta_s \equiv \frac{r_s(z_*)}{d_A(z_*)} = \frac{H_0 r_s(z_*)}{\int_0^{z_*} 1/E(z')dz'}$$
$$E(z) \equiv \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda + \cdots}$$

Late-universe models

V. Poulin - LUPM (CNRS / Montpellier)

CosmoVerse@Lisbon - 31/05/23

history

New physics in the Universe?

Early universe models

$$\theta_s \equiv \frac{r_s(z_*)}{d_A(z_*)} = \frac{H_0 r_s(z_*)}{\int_0^{z_*} 1/E(z') dz'}$$
$$E(z) \equiv \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda + \cdots}$$

Late-universe models

Geometrical degeneracy in the late-universe!

-> talk by Olga Mena

• 'phantom dark energy' w < -1, DE phase transition, DE-DM interaction, decaying/annihilating DM, and many more...

$$\theta_s \equiv \frac{H_0 r_s(z_*)}{\int_0^{z_*} 1/E(z') dz'} \quad E(z) \equiv \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda(z) + \cdots}$$

[http://arxiv/insert_your_favorite_model_here.com]

Geometrical degeneracy in the late-universe!

-> talk by Olga Mena

• 'phantom dark energy' w < -1, DE phase transition, DE-DM interaction, decaying/annihilating DM, and many more...

$$\theta_s \equiv \frac{H_0 r_s(z_*)}{\int_0^{z_*} 1/E(z') dz'} \quad E(z) \equiv \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda(z) + \cdots}$$

[http://arxiv/insert_your_favorite_model_here.com]

• Planck can easily accommodate a higher H_0 : problem with BAO and Pantheon

7

V. Poulin - LUPM (CNRS / Montpellier)

The tension is truly between calibrators!

Beenakker++2101.01372, Efstathiou 2103.08723

In GR: $D_A = D_L/(1 + z)^2$; it is impossible to resolve the tension without changing calibration!

BAO:
$$\theta_d(z) = \frac{r_s(z_{\text{drag}})}{D_A(z)}$$

• $r_s(z_{drag})$ from *Planck*

SN1a: $\mu(z) = 5 \text{Log}_{10} D_L(z) + M_b$

• Calibration M_b from cepheids, TRGB...

The tension is truly between calibrators!

Beenakker++2101.01372, Efstathiou 2103.08723

In GR: $D_A = D_L/(1 + z)^2$; it is impossible to resolve the tension without changing calibration!

BAO:
$$\theta_d(z) = \frac{r_s(z_{\text{drag}})}{D_A(z)}$$

• $r_s(z_{drag})$ from *Planck*

SN1a: $\mu(z) = 5 \text{Log}_{10} D_L(z) + M_b$

• Calibration M_b from cepheids, TRGB...

• Without changing calibration, $D_A(z)$ and $D_L(z)$ are incompatible!

The tension is truly between calibrators!

Beenakker++2101.01372, Efstathiou 2103.08723

In GR: $D_A = D_L/(1 + z)^2$; it is impossible to resolve the tension without changing calibration!

BAO:
$$\theta_d(z) = \frac{r_s(z_{\text{drag}})}{D_A(z)}$$

0

 $r_s(z_{drag})$ from *Planck*

SN1a:
$$\mu(z) = 5 \text{Log}_{10} D_L(z) + M_b$$

• Calibration M_b from cepheids, TRGB...

- Without changing calibration, $D_A(z)$ and $D_L(z)$ are incompatible!
- inverse distance ladder calibration: BAO+ $r_s(\Lambda CDM)$ predict M_B incompatible with SH0ES

V. Poulin - LUPM (CNRS / Montpellier)

• One can deduce the co-moving sound horizon r_s from H_0 and BAO: CMB estimate must decrease by ~ 10 Mpc

$$r_s = \int_{\infty}^{z_*} dz \frac{c_s(z)}{8\pi G/3\sqrt{\rho_{\text{tot}}(z)}}$$

9

Knox & Millea 1908.03663

• One can deduce the co-moving sound horizon r_s from H_0 and BAO: CMB estimate must decrease by ~ 10 Mpc

affect cs: DM-photon scattering? DM-b scattering?

$$r_{s} = \int_{\infty}^{z_{*}} dz \frac{c_{s}(z)}{8\pi G/3\sqrt{\rho_{\text{tot}}(z)}}$$

Knox & Millea 1908.03663

• One can deduce the co-moving sound horizon r_s from H_0 and BAO: CMB estimate must decrease by ~ 10 Mpc

9

Knox & Millea 1908.03663

• One can deduce the co-moving sound horizon r_s from H_0 and BAO: CMB estimate must decrease by ~ 10 Mpc

9

• One can deduce the co-moving sound horizon r_s from H_0 and BAO: CMB estimate must decrease by ~ 10 Mpc

• One can deduce the co-moving sound horizon r_s from H_0 and BAO: CMB estimate must decrease by ~ 10 Mpc

9

Adding BBN: a higher dimensional tension?

- Pantheon+ $\Omega_m = (\omega_{cdm} + \omega_b)/h^2 \simeq 0.34$ -> talk by Dillon Brout
- BBN fixes ω_b : ω_{cdm} must increase

Adding BBN: a higher dimensional tension?

V. Poulin - LUPM (CNRS / Montpellier)

Adding BBN: a higher dimensional tension?

10

Early Dark Energy(s)

11

Review: VP, Smith, Karwal, 2302.09032 Kamionkowski&Riess 2211.04492

Early dark energy, the Hubble-parameter tension, and the string axiverse

Tanvi Karwal and Marc Kamionkowski Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (Dated: November 8, 2016)

Rock 'n' Roll Solutions to the Hubble Tension

 $\label{eq:product} \mbox{Prateek Agrawal}^1 \mbox{, Francis-Yan Cyr-Racine}^{1,2} \mbox{, David Pinner}^{1,3} \mbox{, and Lisa Randall}^1$

¹Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA
 ²Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Blvd NE, Albuquerque, NM 87131, USA
 ³Department of Physics, Brown University, 182 Hope St., Providence, RI 02912, USA

Early dark energy from massive neutrinos — a natural resolution of the Hubble tension

Jeremy Sakstein^{*} and Mark Trodden[†] Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania 209 S. 33rd St., Philadelphia, PA 19104, USA

Chain Early Dark Energy: Solving the Hubble Tension and Explaining Today's Dark Energy

Ka
therine $\mathrm{Freese}^{*1,2,3}$ and Martin Wolfgang Winkler
 $^{\dagger 1,2}$

Early dark energy from massive neutrinos — a natural resolution of the Hubble tension

Jeremy Sakstein^{*} and Mark Trodden[†] Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania 209 S. 33rd St., Philadelphia, PA 19104, USA

Scalar-tensor theories of gravity, neutrino physics, and the H_0 tension

Mario Ballardini,^{*a,b,c,d,1*} Matteo Braglia,^{*a,b,c*} Fabio Finelli,^{*b,c*} Daniela Paoletti,^{*b,c*} Alexei A. Starobinsky,^{*e,f*} Caterina Umiltà^{*g*}

Early Dark Energy Can Resolve The Hubble Tension

Vivian Poulin¹, Tristan L. Smith², Tanvi Karwal¹, and Marc Kamionkowski¹ ¹Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States and ²Department of Physics and Astronomy, Swarthmore College, 500 College Ave., Swarthmore, PA 19081, United States

Acoustic Dark Energy: Potential Conversion of the Hubble Tension

 Meng-Xiang Lin,¹ Giampaolo Benevento,^{2, 3, 1} Wayne Hu,¹ and Marco Raveri¹
 ¹Kavli Institute for Cosmological Physics, Department of Astronomy & Astrophysics, Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA
 ²Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova, via Marzolo 8, I-35131, Padova, Italy
 ³INFN, Sezione di Padova, via Marzolo 8, I-35131, Padova, Italy

Is the Hubble tension a hint of AdS around recombination?

Gen Ye^{1*} and Yun-Song Piao^{1,2†} ¹ School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China and nstitute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China

Thermal Friction as a Solution to the Hubble Tension

Kim V. Berghaus¹ and Tanvi Karwal^{1,2} ¹Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States and ²Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104, United States (Dated: November 15, 2019)

New Early Dark Energy

Florian Niedermann^{1, *} and Martin S. Sloth^{1, †} CP^3 -Origins, Center for Cosmology and Particle Physics Phenomenology

Gravity in the Era of Equality: Towards solutions to the Hubble problem without fine-tuned initial conditions

Miguel Zumalacárregui^{1, 2, 3, *}

¹Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany ²Berkeley Center for Cosmological Physics, LBNL and University of California at Berkeley, Berkeley, California 94720, USA ³Institut de Physique Théorique, Université Paris Saclay CEA, CNRS, 91191 Gif-sur-Yvette, France (Dated: June 11, 2020)

What is Early Dark Energy?

• Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV_n(\phi)}{d\phi} = 0 \qquad \qquad \rho_\phi = \frac{1}{2}\dot{\phi}^2 + V_n(\phi), \ P_\phi = \frac{1}{2}\dot{\phi}^2 - V_n(\phi)$$

What is Early Dark Energy?

• Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV_n(\phi)}{d\phi} = 0$$

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V_n(\phi), \ P_{\phi} = \frac{1}{2}\dot{\phi}^2 - V_n(\phi)$$

• Oscillating potential: $V(\phi) = m^2 f^2 \left(1 - \cos\frac{\phi}{f}\right)^n$

Karwal& Kamionkowski 1608.01309, VP, Smith,Karwal++ 1806.10608 & 1811.04083; Smith, VP++ 1908.06995

- α -attractors: $V(\phi) = f^2 [\tanh(\phi/\sqrt{6\alpha}M_{\rm pl})]$ Linder 1505.00815, Braglia++ 2005.14053
- Early MG: $(M_{pl}^2 + \xi \phi^2)R + \lambda \phi^4$ leads to a similar phenomenology if $\xi > 0$ *Braglia++* 2011.12934
- First-order phase transition (NEDE model)

Niedermann&Sloth 1910.10739, 2006.06686, 2009.00006, 2112.00770; Freese&Winkler 2102.13655

What is Early Dark Energy?

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV_n(\phi)}{d\phi} = 0$$

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V_n(\phi), \ P_{\phi} = \frac{1}{2}\dot{\phi}^2 - V_n(\phi)$$

• Oscillating potential: $V(\phi) = m^2 f^2 \left(1 - \cos\frac{\phi}{f}\right)^n$

Karwal& Kamionkowski 1608.01309, VP, Smith,Karwal++ 1806.10608 & 1811.04083; Smith, VP++ 1908.06995

- α -attractors: $V(\phi) = f^2 [\tanh(\phi/\sqrt{6\alpha}M_{\text{pl}})]$ Linder 1505.00815, Braglia++ 2005.14053
- Early MG: $(M_{pl}^2 + \xi \phi^2)R + \lambda \phi^4$ leads to a similar phenomenology if $\xi > 0$ *Braglia*++ 2011.12934
- First-order phase transition (NEDE model)
 Niedermann&Sloth 1910.10739, 2006.06686, 2009.00006, 2112.00770; Freese&Winkler 2102.13655
- Specified by $f_{\text{EDE}}(z_c)$, z_c , w(n), $c_s^2(k, \tau)$

 $\begin{cases} z > z_c \Rightarrow w_n = -1 \\ z < z_c \Rightarrow w_n = (n-1)/(n+1) \end{cases}$

n = 1: matter, n = 2: radiation, etc.

Status of EDE solutions

• Planck + BAO + Pantheon + SH0ES : a good fit with strong preference over ΛCDM

• Similar background properties although not all models yield the same overall improvement

V. Poulin - LUPM (CNRS / Montpellier)

EDE "microphysics" is constrained

• CMB data can constrain more than f_{EDE} and z_c : tight relation between w and c_s^2

EDE "microphysics" is constrained

• CMB data can constrain more than f_{EDE} and z_c : tight relation between w and c_s^2

• In the "axion-like" model, this translates into tight constrain on the initial field value

Barefoot analyses: evidence for prior-volume effects

-> Adrià Gómez-Valent's talk, 2203.16285

• Without information from SH0ES: only upper limits.

 $f(z_c) < 0.082 (0.087), \quad H_0 < 70.5 (70.6) \text{ km/s/Mpc}$

$$\Delta \chi^2 = \chi^2_{\Lambda \rm CDM} - \chi^2_{\rm EDE} \simeq -5$$

Barefoot analyses: evidence for prior-volume effects

-> Adrià Gómez-Valent's talk, 2203.16285

Barefoot analyses: evidence for prior-volume effects

-> Adrià Gómez-Valent's talk, 2203.16285

0.73

+SH0ES

The confidence intervals from a profile likelihood do not match the bayesian credible intervals Herold ++ 2112.12140, 2210.16296

V. Poulin - LUPM (CNRS / Montpellier)

Future CMB data will confirm/exclude EDE

• Mock *Planck* data with $f_{\text{EDE}}(z_{\text{eq}}) \sim 10\% \& H_0 = 72 \text{ km/s/Mpc}$: *Planck* <u>cannot</u> detect EDE

• Future experiments (Simons Observatory, CMB-S4) could unambiguously detect EDE.

New CMB data at small scales

• ACT and SPT adds information at $\ell \sim 500 - 4000$ in TT,TE,EE. (SPT3G only TE,EE).

Consistency test: Planck vs WMAP+ACT+SPT

• $Planck650TT \simeq WMAP$

See also Hill et al. 2109.04451; VP, Smith & Bartlett 2109.06229; Moss et al. 2109.14848

Planck TT650TEEE Planck TT650TEEE +SPT-3G Planck TT650TEEE +ACT DR4 Planck TT650TEEE ACT DR4+SPT-3G 0.28 $(200)_{z_c}^{0.20}$ 0.04 67 79 0.05 0.15 0.25 70 76 73 H_0 $f_{\rm EDE}(z_c)$

Model	ΛCDM	EDE
$f_{ m EDE}(z_c)$	-	$0.163(0.179)^{+0.047}_{-0.04}$
$\log_{10}(z_c)$	-	$3.526(3.528)^{+0.028}_{-0.024}$
$ heta_i$	-	$2.784(2.806)^{+0.098}_{-0.093}$
m (eV)	-	$(4.38\pm0.49)\times10^{-28}$
f (Mpl)	-	0.213 ± 0.035
$H_0 \; [{ m km/s/Mpc}]$	$68.02(67.81)^{+0.64}_{-0.6}$	$74.2(74.83)^{+1.9}_{-2.1}$
$100 \omega_b$	$2.253(2.249)^{+0.014}_{-0.013}$	$2.279(2.278)^{+0.018}_{-0.02}$
$\omega_{ m cdm}$	$0.1186(0.1191)^{+0.0014}_{-0.0015}$	$0.1356(0.1372)^{+0.0053}_{-0.0059}$
$10^{9}A_{s}$	$2.088(2.092)^{+0.035}_{-0.033}$	$2.145(2.146)^{+0.041}_{-0.04}$
n_s	$0.9764(0.9747)^{+0.0046}_{-0.0047}$	$1.001(1.003)^{+0.0091}_{-0.0096}$
$ au_{ m reio}$	$0.0510(0.0510)^{+0.0087}_{-0.0078}$	$0.0527(0.052)^{+0.0086}_{-0.0084}$
S_8	$0.817 (0.821) \pm 0.017$	$0.829(0.829)^{+0.017}_{-0.019}$
Ω_m	$0.307(0.309)^{+0.008}_{-0.009}$	$0.289(0.287)\pm0.009$
Age [Gyrs]	$13.77(13.78)\pm0.023$	$12.84(12.75)\pm0.27$
$\Delta \chi^2_{ m min}$ (EDE $-\Lambda$ CDM)	_	-16.2
Preference over ΛCDM	_	$99.9\%~(3.3\sigma)$

Smith, Lucca, VP++ 2202.09379

- There is a 3.3σ preference for EDE with no residual tension with SH0ES ($H_0 = 74 \pm 2 \text{ km/s/Mpc}$)
- The preference is driven by *Planck* polarization and ACT data

A new tension between CMB data?

• Planck TT > 1300 disfavor such large $f_{EDE}(z_c)$: tension between *Planck*/ACT?

New SPT TT data seem to agree with Planck

• No preference for axion-like EDE in PTT650+SPT3G: disfavor ACT hint of EDE?

V. Poulin - LUPM (CNRS / Montpellier)

TT vs TEEE: "Curiosities" in Planck & SPT?

• TTTEEE stronger constraints than expected

Challenges to EDE

• The field becomes dynamical around z_{eq} : A new 'why-then' problem?

Sakstein++1911.11760, Lin++2212.08098

Challenges to EDE

• The field becomes dynamical around z_{eq} : A new 'why-then' problem?

Sakstein++1911.11760, Lin++2212.08098

EDE cosmology has a higher \$\omega_{cdm}\$ and \$n_s\$: in tension with GC and WL surveys? Implications for inflation?
 Hill et al. 2003.07355, Ivanov++ 2006.11235, d'Amico++ 2006.12420 Niedermann++ 2009.00006, Smith++ 2009.10740, Murgia++ 2009.10733

Challenges to EDE

• The field becomes dynamical around z_{eq} : A new 'why-then' problem?

Sakstein++1911.11760, Lin++2212.08098

Bernal++ 2102.05066, Boylan-Kolchin 2103.15824

- EDE cosmology has a higher ω_{cdm} and n_s: in tension with GC and WL surveys? Implications for inflation?
 Hill et al. 2003.07355, Ivanov++ 2006.11235, d'Amico++ 2006.12420 Niedermann++ 2009.00006, Smith++ 2009.10740, Murgia++ 2009.10733
- Age of the universe tension? $t_U \simeq 13.2 \pm 0.15$ Gyr while GC measures 13.5 ± 0.27 Gyr

V. Poulin - LUPM (CNRS / Montpellier)

EFTofLSS analyses of EDE

• EDE cosmology predicts 5-15% increase in power at small scales in the linear matter power spectrum Hill et al. 2003.07355, Ivanov++ 2006.11235, D'Amico++ 2006.12420, Niedermann++ 2009.00006, Smith++ 2009.10740, Murgia++ 2009.10733

EFT analyses of BOSS do not exclude Early Dark Energy

V. Poulin - LUPM (CNRS / Montpellier)

The S_8 tension

-> Marika Asgari's talk

Early Dark Energy cannot resolve the S₈ tension

V. Poulin - LUPM (CNRS / Montpellier)

The S_8 tension updated

• New Hybrid "KiDS+DES" analysis results in 1.7σ tension with *Planck*

Role of baryon feedback / non-linearities / intrinsic alignements may be important

Amon& Efstathiou 2206.11794, Aricò++ 2303.05537

V. Poulin - LUPM (CNRS / Montpellier)

How to resolve the S_8 tension

• σ_8 is a derived parameter measuring scales $k \sim 0.1$ h/Mpc. Fit the CMB at $z \sim 1100$ and predict $\sigma_8(z = 0)$.

Abdalla++ 2203.06142

How to resolve the S_8 tension

• σ_8 is a derived parameter measuring scales $k \sim 0.1$ h/Mpc. Fit the CMB at $z \sim 1100$ and predict $\sigma_8(z = 0)$.

26

- To resolve the tension: Either suppress scales $k \ge 0.2$ h/Mpc or change late-time evolution at z < 0.5
- Dark Sector physics: Ultra-light axions, Decaying DM, Interacting DM-DR, Interacting DM-DE... Abdalla++ 2203.06142

Resolving H_0 and S_8 with the same mechanism

• All modes controlling σ_8 are within the horizon around / before the sound horizon starts growing.

"New" EDE + fraction of axion dark matter

Cruz++ 2305.08895

- New EDE: the EDE field experiences a 1st order PT due to another "trigger field" rolling down its potential.
- The trigger field can be an ultra-light axion representing a small fraction of CDM.

- Non-trivial coincidence: The trigger field has the right mass to trigger the PT around z_{eq} and reduce σ_8
- This requires $m_{\rm ula} \simeq 10^{-27}$ with $f_{\rm ula} \equiv \rho_{\rm ula} / \rho_{\rm cdm} \simeq 2.5 \%$

See also Allali++ 2104.12798

V. Poulin - LUPM (CNRS / Montpellier)

- The Hubble tension is <u>multidimensional</u>: it requires (at least) a *decrease* in r_s and an *increase* in ω_{cdm}
- Resolving the Hubble Tension with EDE requires $f_{\text{EDE}}(z_c) \sim 10\%$ at $z_c \simeq 3500 4500$
- Perturbations / microphysics also constrained: tight relation between $c_s^2 w$, constrain on the initial field value.

- The Hubble tension is <u>multidimensional</u>: it requires (at least) a *decrease* in r_s and an *increase* in ω_{cdm}
- Resolving the Hubble Tension with EDE requires $f_{\text{EDE}}(z_c) \sim 10\%$ at $z_c \simeq 3500 4500$
- Perturbations / microphysics also constrained: tight relation between $c_s^2 w$, constrain on the initial field value.
- *Planck* alone results show prior-volume effect: frequentist confidence intervals do not follow posteriors.
- ACT / SPT TEEE / *Planck* TEEE favors EDE at $2 3\sigma$: there is no residual H_0 -tension.
- Combination of TTTEEE leads to stronger constraints than naively expected. Curiosities? Statistical fluke?

- The Hubble tension is <u>multidimensional</u>: it requires (at least) a *decrease* in r_s and an *increase* in ω_{cdm}
- Resolving the Hubble Tension with EDE requires $f_{\text{EDE}}(z_c) \sim 10\%$ at $z_c \simeq 3500 4500$
- Perturbations / microphysics also constrained: tight relation between $c_s^2 w$, constrain on the initial field value.
- *Planck* alone results show prior-volume effect: frequentist confidence intervals do not follow posteriors.
- ACT / SPT TEEE / *Planck* TEEE favors EDE at $2 3\sigma$: there is no residual H_0 -tension.
- Combination of TTTEEE leads to stronger constraints than naively expected. Curiosities? Statistical fluke?
- EDE cannot resolve the S_8 tension (but no strong constraints from EFTBOSS)
- One can extend this model to reduce the growth of DM perturbations and resolve both tensions simultaneously
- Alternatively, (if not fluke) S_8 could be resolved by some independent mechanism... including baryons!

- The Hubble tension is <u>multidimensional</u>: it requires (at least) a *decrease* in r_s and an *increase* in ω_{cdm}
- Resolving the Hubble Tension with EDE requires $f_{\text{EDE}}(z_c) \sim 10\%$ at $z_c \simeq 3500 4500$
- Perturbations / microphysics also constrained: tight relation between $c_s^2 w$, constrain on the initial field value.
- *Planck* alone results show prior-volume effect: frequentist confidence intervals do not follow posteriors.
- ACT / SPT TEEE / *Planck* TEEE favors EDE at $2 3\sigma$: there is no residual H_0 -tension.
- Combination of TTTEEE leads to stronger constraints than naively expected. Curiosities? Statistical fluke?
- EDE cannot resolve the S_8 tension (but no strong constraints from EFTBOSS)
- One can extend this model to reduce the growth of DM perturbations and resolve both tensions simultaneously
- Alternatively, (if not fluke) S_8 could be resolved by some independent mechanism... including baryons!

Future CMB data will detect/exclude EDE!

V. Poulin - LUPM (CNRS / Montpellier)

Could ν 's explain the S_8 tension?

Power suppression:

$$k_{\rm nr} \equiv 0.01 \left(\frac{m_{\nu}}{1 \,{\rm eV}}\right)^{1/2} \left(\frac{\Omega_m}{0.3}\right)^{1/2} h \,{\rm Mpc}^{-1}$$
 with amplitude $\frac{\Delta P}{P} \simeq -8 \frac{\omega_{\nu}}{\omega_{\rm m}}$

Need $\sum m_{\nu} \sim 0.2 \text{ eV}$ to explain S_8

 $k \ge 1$

• Including EDE does not change massive neutrinos constraints / cannot resolve S_8

Reeves++ 2207.01501

Could ν 's explain the S_8 tension?

Power suppression:

$$k_{\rm nr} \equiv 0.01 \left(\frac{m_{\nu}}{1 \,{\rm eV}}\right)^{1/2} \left(\frac{\Omega_m}{0.3}\right)^{1/2} h \,{\rm Mpc}^{-1}$$
 with amplitude $\frac{\Delta P}{P} \simeq -8 \frac{\omega_{\nu}}{\omega_{\rm m}}$

 $k \ge l$

Planck 2018 + BAO < 0.12eV Planck 1807.06205

• Including EDE does not change massive neutrinos constraints / cannot resolve S_8

Reeves++ 2207.01501

Could ν 's explain the S_8 tension?

Power suppression:

$$k_{\rm nr} \equiv 0.01 \left(\frac{m_{\nu}}{1 \,{\rm eV}}\right)^{1/2} \left(\frac{\Omega_m}{0.3}\right)^{1/2} h \,{\rm Mpc}^{-1}$$
 with amplitude $\frac{\Delta P}{P} \simeq -8 \frac{\omega_{\nu}}{\omega_{\rm nr}}$

 $k \geq$

Planck 2018 + BAO < 0.12eV Planck 1807.06205

Planck 2018 + BAO + Ly- α < 0.089eV Palanque-Delabrouille++ 1911.09073

Planck 2018 + BOSS + eBOSS < 0.082eV Brieden++ 2204.11868, Simon++ 2210.14931

• Including EDE does not change massive neutrinos constraints / cannot resolve S_8 Rect

V. Poulin - LUPM (CNRS / Montpellier)

How to generate a late-time suppression

• Generate $\sim 20\%$ of WDM at late-time via decay of CDM into a dark sector

32

• DM with $\Gamma^{-1} \simeq 55(\epsilon/0.007)^{1.4}$ Gyrs can explain low S_8 (1.3 σ agreement)

• Similar results if there exists a fraction of ultra-light axion in the universe

Abellan++ 2008.09615 & 2104.03329

Rogers++ 2023

DM "drag" suppresses power at small-scales

See also Di Valentino++ 1908.04281

Non-Abelian dark matter model, Cannibal dark matter, also with sub-component of strongly interacting DM Buen-Abad++1505.03542, Lesgourgues++1507.04351, Heimersheim++ 2008.08486, Chacko++1609.03569, Buen-Abad++ 1708.09406, Raveri++ 1709.04877

V. Poulin - LUPM (CNRS / Montpellier)

Could the σ_8 -tension be non-linear astrophysics?

• Reanalysis of DES data with improved non-linear / baryons / intrinsic alignements modeling at small scales

• The σ_8 tension may be astrophysics! Strong feedback + improved non-linear physics could explain the tension. See also Amon& Efstathiou 2206.11794

• New analysis is in 0.9σ agreement with Planck/LCDM. Implications for EDE have yet to be investigated.

V. Poulin - LUPM (CNRS / Montpellier)

Curiosities in *Planck*?

• Preference for EDE is coming from the TEEE data

- Disagreements in $\omega_b \& n_s$ drive the constraints in the combined analysis
- Uncertainty in modeling the Planck TE polarization efficiency calibration: preference can be altered.

k_{eq} -based estimate of H_0

• The (too short) story: matter power spectrum turnover measures $k_{eq}d_A \sim \Omega_m h$

Philcox++ 2204.02984

• Combining with a measurement of Ω_m get a 'sound-horizon independent' measurement! Smith, Simon, VP 2208.12992

 $h(\text{EDE}) = 0.696^{+0.036}_{-0.041}$ D/EDE(marg) $D/\Lambda CDM(marg)$ $h(\Lambda \text{CDM}) = 0.648^{+0.021}_{-0.024}$ 0.17 \mathfrak{G}^{cqm} 0.1 In reality A_s and n_s priors matter! $n_{10} A_s^{3.5}$ 1.00 £ 0.95 0.90 $\underbrace{f_{EDE}(z_c)}_{0.4} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\$ $(3.8)^{3.8}$ $(3.6)^{3.6}$ $(3.2)^{3.6}$ $(3.2)^{3.6}$ $(3.2)^{3.6}$ 3.0 3.2 3.4 0.4 3.2 3.5 3.8 0.6 0.7 0.8 0.12 0.16 0.92 1.00 0.2 $ln10^{10}A_{s}$ h $f_{\rm EDE}(z_c)$ $\log_{10}(z_c)$ ω_{cdm} ns