

Cosmological Tensions in a Coupled Dark Sector

CosmoVerse@Lisbon 2023, 30th May - 1st June Faculdade de Ciências da Universidade de Lisboa

Elsa M. Teixeira - emcteixeira1@sheffield.ac.uk Based on arXiv:2007.15414 + soon to appear Cosmology and Gravitation Research Group SoMaS, University of Sheffield Illustrations: Inês Viegas Oliveira (ivoliveira.com)

COST ACTION • CA21136 • ADDRESSING OBSERVATIONAL TENSIONS IN COSMOLOGY WITH SYSTEMATICS AND FUNDAMENTAL PHYSICS

The Lambda Cold Dark Matter Model

Cosmological Tensions

[Aghanim et al.: Astron.Astrophys. 641 (2020) A6]

Cosmological Tensions

Missing Ingredients or New Physics?

School of University of **Mathematics** Sheffield & Statistics Gravitation & Cosmology Research Group

[Luke Hart (2020)]

- 1000 - 750 - 500 $\cdot 250$ - 800 - 600 400 - 200

-1500

- 1000

- 500

Extensions to ΛCDM

- "Quintessence" (ϕ) dynamical scalar field that evolves in $oldsymbol{O}$ space and time, as opposed to Λ
- New forces between DE and "normal matter" are heavily $oldsymbol{O}$ constrained by observations No fundamental principle which forbids interactions between the dark species
- Modified predictions for the evolution could naturally address $oldsymbol{O}$ the cosmic tensions

Non-trivial Interaction between Dark Energy and Dark Matter

The observational tensions hint at missing ingredients or need for completely new physics

$$S = \int d^4 x \sqrt{-g} \left[\frac{R\left(g_{\mu\nu}\right)}{2\kappa^2} + \mathscr{L}_{\phi} \right]$$

$$\delta S = \delta S_{\phi} + \delta S_{\mathscr{C}} = \int \mathrm{d}^4 x \sqrt{-g} - \frac{\delta}{2} d^4 x \sqrt{-g} d^4 x \sqrt{$$

Two related geometries: $g_{\mu\nu}$ is the gravitational metric and $\bar{g}_{\mu\nu}(g_{\mu\nu},\phi)$ defines the physical geometry according to which matter is propagating

Conformal Transformation

- Simplest way to relate two geometries
- Rescaling of the metric that preserves angles
- Functional dependence on scalar field already present in the theory
- Map non-standard theories of gravity into GR plus a scalar field ϕ minimally coupled to the geometry
- Preserve the structure of Scalar-Tensor theories of the Jordan-Brans-Dicke form, such as f(R)

$$\bar{g}_{\mu\nu} = C(\phi)g_{\mu\nu}$$

[Jordan: Z. Phys. 157 (1959), 112; Brans and Dicke: Phys. Rev. 124 (1961), 925]

Disformal Transformation

- Distortion of both angles and lengths related with the gradient of ϕ
- The most general covariant effective metric that can be constructed from the metric and a scalar field and leads to 2nd order equations
- The form of the Horndeski Lagrangian is preserved under disformal transformations
- Many cosmological applications

 $\bar{g}_{\mu
u}$ $= C(\phi)g_{\mu\nu} + D(\phi)\partial^{\mu}\phi\partial_{\mu}\phi$

[Bettoni and Liberati: Phys. Rev. D88 (2013) 084020}]

The Dark D-Brane Model

(mem)branes with gravity propagating in the bulk [Koivisto, Wills, and Zavala: JCAP 06 (2014) 036]

Visible Brane

where the SM particles and their interactions "live"

and dynamics of the Dark D-brane $(h(\phi)) \implies$ inevitable non-universal coupling

The total Universe is a higher-dimensional spacetime composed of a bulk and stacked

Dark sector: distinctive components with a joint higher-dimensional origin related to the geometry

The Dark D-Brane Model

The total Universe is a higher-dimensional spacetime composed of a bulk and stacked (mem)branes with gravity propagating in the bulk [Koivisto, Wills, and Zavala: JCAP 06 (2014) 036]

$$S = \int d^4x \sqrt{-g} \frac{R}{2\kappa^2} + \int d^4x \sqrt{-g} \left[h^{-1}(\phi) \left(1 - \sqrt{1 + h(\phi)\partial^{\mu}\phi\partial_{\mu}\phi} \right) - V(\phi) \right] \\ + \sum_i \int d^4x \sqrt{-g} \mathscr{L}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) + \sum_j \int d^4x \sqrt{-\bar{g}} \bar{\mathscr{L}}_{DDM} \left(\bar{g}_{\mu\nu}, \chi_j, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_i \int d^4x \sqrt{-g} \mathscr{L}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \mathcal{L}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \mathcal{L}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_j \int d^4x \sqrt{-g} \bar{\mathscr{L}}_S \left(g_{\mu\nu}, \psi_i, \partial_{\mu}\psi_i \right) \\ + \sum_$$

- $h(\phi)$ is the warp factor of the brane
- Dark matter is coupled to ϕ through a disformal transformation

• Dirac-Born-Infeld scalar field (ϕ) with non-trivial kinetic terms imposed by ST scenario and

Background Cosmology

In FLRW the modified Klein Gordon equation becomes

$$\phi'' - \mathcal{H}\left(1 - 3\gamma^{-2}\right)\phi' + \frac{h_{,\phi}}{2h^2}a^2\left(1 - 3\gamma^{-2} + 2\gamma^{-3}\right) + \gamma^{-3}a^2\left(V_{,\phi} - \kappa\rho_c\beta\right) = 0$$

With the coupling function

$$\beta = \frac{1}{\kappa\rho_c} \left[\frac{h\left(V_{,\phi} + 3a^{-2}\mathcal{H}\gamma\phi'\right) + \frac{h_{,\phi}}{h}\left(1 - \frac{3}{4}\gamma\right)}{\gamma + h\rho_c} \right]$$

• No well-defined Λ CDM or uncoupled limit

• Define a single key parameter $\Gamma_0 = h_0 V_0$

CosmoVerse@Lisbon 2023

30_{th} May - 1_{st} June, FCUL

- coupling could be negligible at the present but significant in the past
- Coupling is only activated at later times for higher (lower) values of Γ_0

University of School of Mathematics & Statistics Gravitation & Cosmology Research Group

• Higher (lower) values ϕ_i lead to DM \rightarrow DE (DE \rightarrow DM) flux and both in intermediate cases \Rightarrow the

Linear Perturbations

Scalar perturbations in the conformal Newtonian gauge

$$\mathrm{d}s^2 = a^2(\tau) \left[-\left(1 + 2\Psi\right) d\tau^2 + \left(1 - 2\Phi\right) \delta_{ij} dx^i dx^j \right]$$

Perturbed continuity and Euler equations for DDM ($\delta_c = \delta \rho_c / \rho_c$ and $\theta_c = \partial_i \partial^i v_c$)

$$\begin{cases} \delta_c' = -\left(\theta_c - 3\Phi'\right) - \frac{Q}{\rho_c}\phi'\delta_c + \frac{Q}{\rho_c}\delta\phi' + \frac{\delta Q}{\rho_c}\phi'\\ \theta_c' + \mathcal{H}\theta_c = k^2\Psi - \frac{Q\phi'}{\rho_c}\theta_c + k^2\frac{Q}{\rho_c}\delta\phi \end{cases}$$

Where the perturbation of the coupling is given by

$$\delta Q = \frac{a^{-2}\rho_c}{\gamma^{-2} + h\rho_c\gamma^{-3}} \left(\mathcal{Q}_1 \delta_c + \mathcal{Q}_2 \Phi' + \mathcal{Q}_3 \Psi + \mathcal{Q}_4 \delta \phi' + \mathcal{Q}_5 \delta \phi \right)$$

The coefficient Q_5 is scale-dependent - well-known feature of disformal models!

CosmoVerse@Lisbon 2023

30_{th} May - 1_{st} June, FCUL

- \bigcirc
- Also observe narrowing (broadening) and shift of the accoustic peaks to the left (right)
- Consistent evidence that larger values of Γ_0 also lead to a sort of ΛCDM limit in the perturbations \bigcirc

Scale dependence: general enhancement (suppression) for low multipoles and suppression (enhancement) for medium multipoles when DM \rightarrow DE (DE \rightarrow DM) \Rightarrow ISW effect (degeneracy between H_0 and Γ_0)

Bayesian Parameter Inference

Given a data set d, we want to sample posteriors on the model parameters θ that maximise the likelihood

$$p(\theta \mid d) = \frac{p(d \mid \theta) p(\theta)}{p(d)} \Leftrightarrow \text{Posterior} = \frac{\text{likel}}{p(d)}$$

lihood \times prior evidence Modified version of Einstein-Boltzmann code CLASS interfaced with the MontePython sampler [Blas, Lesgourgues, Tram: JCAP 1107 (2011) 034; Audren et al.: JCAP 1302 (2013) 001; Brinckmann, Lesgourgues: Phys. Dark Univ. 24 (2019) 100260] Employ an MCMC sampling method and analyse results in GetDist

[Lewis: arXiv:2008.11284]

Sampled Cosmological Parameters

The \land CDM model is based on 6 free parameters:

- the baryon and dark matter densities $\Omega_b h^2$ and $\Omega_c h^2$
- the angular size of the sound horizon at decoupling θ_{s}
- the reionisation redshift z_{reio}
- the spectral index n_s and the amplitude A_s of inflationary scalar perturbations

In the Dark D-Brane Model scenario we also allow sampling of:

the effective coupling parameter through $1/h_0$ (compactness) and the initial condition $\phi_i \implies$ 2 additional parameters

The remaining cosmological parameters are either fixed to standard Planck 2018 values or derived from the main ones

Parameter	Prior	
$\Omega_{ m b}$ h²	[0.005, 0.1]	
$\Omega_{ m c}$ h²	[0.001, 0.99]	
100* θ_s	[0.5, 10]	
Z _{reio}	[0., 20.]	
n _s	[0.7, 1.3]	
log(10 ¹⁰ A _s)	[1.7, 5.0]	

Parameter	Prior	
1/h _o	[0.005, 0.1]	
Φi	[0.001, 0.99]	

Cosmological Bounds

- The parameters Γ_0 and ϕ_i are consistently constrained even with no ΛCDM limit \bigcirc
- Inclusion of BAO and SN data narrower constraints on Ω_m

• Lower mean value of H_0 and larger Ω_m and S_8 for all data sets \implies does not address S_8 and H_0 tensions

Cosmological Bounds

- The parameters Γ_0 and ϕ_i are consistently constrained even with no ΛCDM limit \bigcirc
- Inclusion of BAO and SN data narrower constraints on Ω_m

• Lower mean value of H_0 and larger Ω_m and S_8 for all data sets \implies does not address S_8 and H_0 tensions

• Clear saturation point between H_0 and Γ_0 when cosmologies stop differing from each other for different Γ_0

Model Selection Analysis

	Plk18	Plk18 + BAO + SN	Plk18 + BAO + SN + len
$\Delta \chi_2$	-5.04	-2.70	-1.86
В	-5.7	-8.0	-7.4

- $\Delta \chi^2_{\rm eff}$ to assess the goodness of fit and $B_{\rm DBIA}$ to quantify the preference
- Considerable evidence for the Dark D-Brane model for the Planck data \bigcirc
- Slight preference remains for the other data combinations $oldsymbol{O}$
- BAO and SN data change the fit to the TT likelihood and the CMB lensing data shows an excess of power - \bigcirc enhancement for large multipoles for lower values of Γ_0 (as preferred by Planck)
- However, the Bayesian evidence shows a clear preference for ΛCDM for all the data sets

Conclusions

- The ΛCDM makes impressive predictions but the cosmological tensions hint at the need for new physics
- Framework with joint geometrical origin for the dark sector from string theory compactifications
- Cosmological constraints on the parameters of the theory using CMB, CMB lensing, BAO and SN data
- The parameters Γ_0 and ϕ_i are consistently constrained
- Apparent ΛCDM limit for high Γ_0 leads to saturation point in correlations
- The S_8 tension is exacerbated, while the H_0 tension is still present consider different geometries or scalar field potentials?

Thank you! Do you have any questions?

Illustration Credits: Inês Viegas Oliveira (ivoliveira.com)

The Hubble Tension

Unreconcilable values for H_0 from the CMB and from direct local distance ladder measurements

• 4.4 σ tension between Planck 2018 and SH0ES:

- CMB (Planck): $H0 = 67.4 \pm 0.5 \text{ km/s/Mpc}$
- ► SNe (SH0ES): H0 = 74.0 ± 1.4 km/s/Mpc
- The Planck 2018 results are a grand confirmation of the ΛCDM model but they are model dependent
- Unlikely that the discrepancies could be explained by a single systematic error
- The magnitude and persistence hints at standard model flaws [Di Valentino et al.: arXiv:2008.11284]

[Verde, Treu, Riess: Nature Astron. 3 891 (2019)]

The S₈ Tension

Discrepancy between CMB data and weak lensing and redshift surveys on the combined value of Ω_m and σ_8 expressed as $S_8 = \sigma_8 \sqrt{\Omega_m}/0.3$

- $\bullet \sim 3\sigma$ tension between Planck 2018 CMB data and KiDS-1000 combination of Cosmic Shear and Galaxy Clustering:
 - CMB (Planck): $S_8 = 0.834 \pm 0.016$
 - CS+GC (KiDS-1000): $S_8 = 0.766^{+0.020}_{-0.014}$
- Could be related to the excess of lensing measured by Planck, mimicking a larger S_8
- Correlation between the H_0 and S_8 tensions conjoined analysis
- Solution Formulate extensions to the standard cosmological framework and test against the relevant constraints

[Di Valentino et al.: arXiv:2008.11285]

$ MAP + PJ-HPD CI \cdots + M-H$	PD CI		nomin
$3 \times 2pt$			-
KiDS-1000 cosmic shear		•••••	4
BOSS galaxy clustering		••••	
Cosmic shear + GGL			
Cosmic shear + galaxy clustering			-
Planck TTTEEE+lowE			
BOSS+KV450 (Tröster et al. 2020)			
DES Y1 3 \times 2pt (DES Collaboration 2018)			
KV450 (Hildebrandt et al. 2020)			
DES Y1 cosmic shear (Troxel et al. 2018)			•
HSC pseudo- C_{ℓ} (Hikage et al. 2019)			•
HSC ξ_{\pm} (Hamana et al. 2020)			
	0.70	0.75	0.80
$S_8 \equiv \sigma_8 \sqrt{\Omega_{\rm m}}$	/0.3		

[C. Heymans et al.: \textbf{Astron.Astrophys. 646 (2021)]

CosmoVerse@Lisbon 2023

30_{th} May - 1_{st} June, FCUL

- $oldsymbol{O}$
- Enhanced (suppressed) values of \mathscr{H} connected to amplification (repression) of ρ_c

School of University of **Mathematics** Sheffield & Statistics Gravitation & Cosmology Research Group

Emergence of a late-time scaling regime and a future attractor solution with an "excess of DE"

CosmoVerse@Lisbon 2023

30_{th} May - 1_{st} June, FCUL

- Clear scale dependence from the addition of Q and δQ + shift of the peak
- In general deviations more pronounced for lower (higher) Γ_0 but not trivial for sign change

• Suppression/enhancement of the growth of structures \implies change in the background affected by sign of β

Data Sets

- Baseline data set is "Plk18": CMB Planck 2018 data for large angular scales $\ell = [2, 29]$ and a joint of TT, TE and EE likelihoods for the small angular scales [Aghanim et al.: Astron.Astrophys. 641 (2020) A5]
- "Plk18+BAO+SN": "Plk18" plus compilation of baryon acoustic oscillations (BAO) distance and expansion rate measurements and distance moduli measurements of type la Supernova (SN) data from Pantheon. [Ross et. al: Mon. Not. Roy. Astron. Soc. 449 (2015) 835; Beutler et al.: Mon. Not. Roy. Astron. Soc. 464 (2017) 3409; Beutler et al.: Mon. Not. Roy. Astron. Soc. 416 (2011) 3017; Scolnic et. al: Astrophys. J. 859 (2018) 101]
- "Plk18+BAO+SN+len": "Plk18+BAO+SN" plus CMB lensing potential data from Planck 2018 [Aghanim et al.: Astron.Astrophys. 641 (2020) A8]

