Cosmological implications of Weyl
geometric gravity

Tiberiu Harko

Department of Theoretical Physics, National Institute of Physics
and Nuclear Engineering (IFIN-HH), Bucharest, 077125 Romania

Department of Physics, Babes-Bolyai University, 1
Kogalniceanu Street, Cluj-Napoca 400084, Romania



O 00O d O Ul &5 WIN =

Content

. Basics of Weyl geometry

. Conformal coupling of matter and geometry
. The gravitational field equations

. The Newtonian limit

. The generalized Poisson equation

. Solar System tests of Weyl gravity

. Generalized Friedmann equations

. Accelerated expansion of the Universe

. Conclusions




Basics of Weyl geometry

In 1918 Hermann Weyl introduced an extension of
Riemann geometry with the main physical goal of
unifying geometrically gravity and
electromagnetism

Einstein strongly criticized
Weyl geometry as a physical

theory
Hermann Weyl (1885-1955 In 1929 Weyl showed that
riow =g o electrodynamics is invariant under
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the gauge transformations of the
gauge field and the wave function
of the charged field

Gauge theory, fundamental for
particle physics, was born from
Weyl geometry




Basics of Weyl geometry

Weyl geometry: classes of equivalence (9up, w,) of the metric g,z and of the
vector gauge field w , related by the gauge transformations,
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Basics of Weyl geometry
* Strength of the Weyl vector
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Conformal coupling of matter and geometry

 Conformal transformations: stretching all lengths (due to

change of units) by factors that depend only on the spacetime
location.
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Conformal invariance: initially discussed by Weyl

Highly attractive idea, similar to the gauge principle that enriched so much
contemporary physics
Global units transformations are analogous to global gauge transformations or global
internal-symmetry transformations



Conformal coupling of matter and geometry

The extension of units transformations to the local level, and the requirement
of conformal invariance of physical laws is similar to the promotion of gauge
and internal invariances to the local level by the introduction of gauge fields

- Maxwell's equations, the massless Dirac equation, the massless scalar
field equations, the electromagnetic, weak, and strong interactions
between elementary particle fields are all conformally invariant

Microscopic physics is conformally
Invariant in its entirety

But Einstein gravity is not!



Conformal coupling of matter in Weyl geometry

Conformally invariant Einstein gravity: (D. M. Ghilencea, JHEP 03

049 (2019); D. M. Ghilencea, Phys. Rev. D 101, 045010 (2020) D. M. Ghilencea,

Eur. Phys. J. C 80, 1147 (2020); Eur. Phys. J. C 81, 510 (2021); arXiv:2104.15118
(2021).)
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The Weyl action has spontaneous symmetry breaking in
a Stueckelberg mechanism

The Weyl gauge field acquires mass

One recovers the Einstein-Hilbert action of standard general
relativity with a positive cosmological constant,



Conformal coupling of matter in Weyl geometry

* Conformally invariant coupling of matter to curvature

in Weyl geometry: conformal f(R, Lm) theory (Harko

and Shahidi, EPJC 82, 219 (2022); Harko and Shahidi, arxiv:2210.03631
(2022))
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Conformal coupling of matter in Weyl geometry

* Linear/scalar representation of quadratic Weyl gravity

* (D. M. Ghilencea, Eur. Phys. ]. C80, 1147 (2020); Eur. Phys.]. C81, 510
(2021); arXiv:2104.15118 (2021))
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Conformal coupling of matter in Weyl geometry

Action of conformally invariant f(R,Lm) gravity

theory (T. Harko and S. Shahidi, EPJC 82, 219 (2022); T. Harko
and S. Shahidi EPJC 82, 1003, 2022))
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The conformally invariant Weyl geometric
gravitational action is defined in the Riemann space



Gravitational field equations
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Gravitational field equations

* The trace equation

(ﬁmR + 3V.V*L,, — )
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Alternative form of the field equations
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Evolution of the Weyl vector
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Gravitational field equations
Divergence of the matter energy-momentum tensor
2
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Gravitational field equations

* Equations of the Weyl vector
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The Newtonian approximation
 The generalized Poisson equation

R = —Ei (SENV AV — VAV Lo

QQ

1 . 2 2 2
2£mT (R e Mf’)

3a” 2
ww, +

2 M2L,,
) =p w=uy=1,andu®=0,a=1,23  gyp=1+2¢

T(w);u

_|_

(1 + —2,0) Ap = 352 (—w —+ 52ﬂ12>

£2
2

2
+6 (5211/[3 -5 —~Ap+3 (7w + £2M2)

(73)

29 12 o’ 2 a’ 2 27 12
A(sz(f Mp—Ew)cp—l—Z%(?w +¢& Mp> (74)



The Newtonian approximation

e Corrections to the vacuum Newtonian potential

The modifications of the Newtonian potential could lead to some observational or
experimental tests for the confirmation of the presence of Weyl geometry in the
Universe.



The Newtonian approximation
Solar System test of quadratic Weyl gravity

-Weyl gravity can also be tested by investigating the orbital parameters of the
motion of the planets around a central massive object (the Sun).




The Newtonian approximation
Solar System test of quadratic Weyl gravity

We model the gravitational field in the Solar System by a potential term consisting of
two components:
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The Newtonian approximation

e Solar System tests of quadratic Weyl gravity
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The Newtonian approximation

Solar System tests of quadratic Weyl gravity
(Acﬁ)obs =43.1140.21 arcsec/century

(Agﬁ)GR =42.962 arcsec/century

(89),, = (49) .. — (Ad) . =0.17

arcsec/century

Can be attributed to other
physical effects

ap < 1.28 x 1072 cm/s?

This value does not rule out the possibility of the presence of Weyl geometric
gravitational effects in the Solar System



The Newtonian approximation
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* Constraints on non-metricity

Delhom, larley P. Lobo, Olmo, Romero, Eur. Phys. J. C 80:415,
(2020)

 Delhom-Latorre, Olmo, Ronco, Phys. Lett. B 780, 294 (2018)



Generalized Friedmann equations

IS Cosmological Friedmann-

------------------- - Lemaitre-Robertson-Walker
/////////// metric
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Generalized Friedmann equations

Cosmological Weyl field equations
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Generalized Friedmann equations
Cosmological WeyI field equations
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The effects of the Weyl geometry can be modelled in terms
of an effective fluid satisfying a radiation type equation of
state



Generalized Friedmann equations

Field equations in the cosmologlcal vacuum
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Generalized Friedmann equations
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Generalized Friedmann equations

The dimensionless Hubble function h(z) in ACDM (red curve) and in
Weyl cosmology as a function of the redshift for initial conditions:
h(0) =1, ¢'(z = 0) = 0.06 and with different ¢(z = 0) = 2.67 (dotted

curve), ¢(z = 0) = 2.75 (short dashed curve), ¢(z=0) = 2.81 (dashed

curve) and ¢(z=0) = 2.89 (long-dashed curve).
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Generalized Friedmann equations

q =)

The deceleration parameter g(z) in ACDM (red curve) and in Weyl
cosmology as a function of the redshift for initial conditions: h(0) =1, ¢ '(z
= 0) = 0.06 and with different ¢p(z = 0) = 2.67 (dotted curve), ¢p(z=0) =
2.75 (short dashed curve), ¢(z=0) = 2.81 (dashed curve) and ¢(z=0) =
2.89 (long-dashed curve).



Generalized Friedmann equations

Cosmological constraints on the Weyl and
gravitational couplings

diga12
0 M 0RE, € [ﬁo LUK

HO=HO(a, ¢, w)



Conclusions

 Weyl geometry may represent the bridge between
elementary particle physics, based on the gauge principle, and
Einstein gravity
* It allows a natural embedding of the Standard Model without
any additional degrees of freedom

Weyl conformal geometry alone provides a natural
explanation of the present-day cosmological dynamics

Observational consequences could be detected at the level of
the Solar System
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