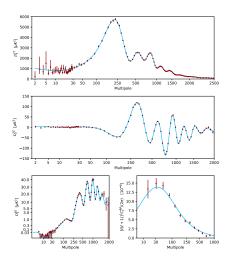
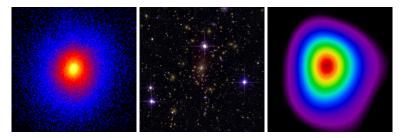
The halo mass function in clustering dark energy models as a tool versus the σ_8 tension


Francesco Pace with D. Bertacca, Uni Padova

Università di Torino, Italy

1st Jun 2023, CosmoVerse, Anomalies & Tensions in Cosmology, Lisbon, Portugal

- Two different sets of observables: late and early times
- Early times: CMB (linear physics, very well understood, precise measurements)
- Late times: clusters and galaxy clusters (non-linear physics, baryonic effects, many uncertainties)


Cosmological parameters Uery accurate theoretical model and predictions Parameter constraints

Courtesy of https://www.cosmos.esa.int, Planck2018 results

Cosmology from clusters

- Largest gravitationally bound objects in the Universe
- Highly sensitive to cosmology
- Strong dependence on $\Omega_{\rm m}$ and $\sigma_{\rm 8}$
- Look for them with SZ effect, X-ray emission, Optical
- Two key ingredients: mass and mass function (based on *N*-body simulations)
- Mass is tricky (scaling relations, bias, halo shape, ...)
- Relatively high uncertainties with the mass function

Anomalies & Tensions

- H₀ with local measurements
- $S_8(\sigma_8)$ with cosmic shear data \leftarrow
- A_{lens}
- $\Omega_K \neq 0$

Heymans et al., 2021

 $S_8=\sqrt{\Omega_m/0.3}$

- 3σ discrepancy between Planck and SZ number counts
- Confirmed by many other SZ experiments
- It amounts to a factor of two in the number counts of very massive objects
- $S_8 = 0.789 \pm 0.012$ vs $S_8 = 0.834 \pm 0.016$ (Clusters vs Planck)

Proposed solutions to the σ_8 tension

- Correlation between S_8 and $H_0 \rightarrow$ need to solve them both
- Early-time solutions
 - Axion monodromy
 - (New) Early dark energy
 - Vary N_{eff}
 - Modified Recombination history
 - ...
- Late-time solutions
 - Bulk viscosity
 - Various dark energy models
 - Modified gravity models
 - Clustering dark energy ←

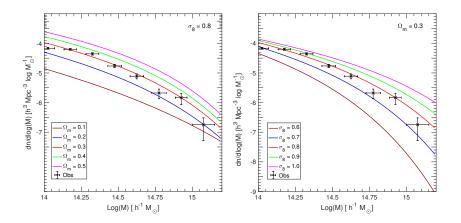
- Number of halos per unit mass and volume at a given time
- Very sensitive to cosmology in the high-mass tail
- But there are strong uncertainties in its theoretical formulation
- Baryons usually neglected, but they are very important
- $\bullet~$ Its determination from observations is model dependent $\rightarrow~$ we need local measurements
- Accurate mass determination is very important

ST HMF


$$\frac{dn}{dM} = -\sqrt{\frac{2\tilde{a}}{\pi}} A \left[1 + \left(\tilde{a} v^2 \right)^{-p} \right] \frac{\bar{\rho}_{\rm m}}{M^2} v \frac{d \ln \sigma_M}{d \ln M} \exp\left(-\frac{1}{2} v^2 \right)$$

Mass determination

$M(R < 1.5 \,\mathrm{Mpc}/h) \propto \kappa_{\Delta} T_X/(1+z)$


$$\nu = \frac{\delta_{\rm c}}{D_+\sigma_8}$$
 $\kappa_{\Delta} = \kappa_{\Delta}(\Delta_{\rm Vir})$ $p = 0.3$, $q = 0.707$

Are the ACDM HMF parameters not correct?

Gu et al., 2302.00780

 $\Omega_{\rm m}=$ 0.31, $\sigma_{8}=$ 0.81 for Tinker 08

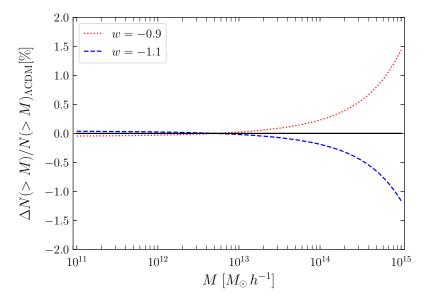
- Dark energy can cluster at all scales
- Clustering dictated by the sound speed
- For fully clustering DE ($c_{\rm s}^2 = 0$) $\delta_{\rm de} = \frac{1+w_{\rm de}}{1-3w_{\rm de}}\delta_{\rm m}$
- $\bullet\,$ In this case, δ_{de} contributes substantially to the gravitational potential

•
$$\delta = \delta_{\rm m} + \frac{\Omega_{\rm de}}{\Omega_{\rm m}} \delta_{\rm de}$$

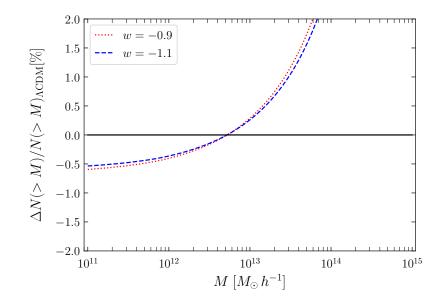
Continuity equation

$$\delta_{\mathrm{de}}^{\prime} - \mathbf{3} \mathbf{w}_{\mathrm{de}} \delta_{\mathrm{de}} + (\mathbf{1} + \mathbf{w}_{\mathrm{de}} + \delta_{\mathrm{de}}) \tilde{\mathbf{ heta}} = \mathbf{0}$$

Euler equation

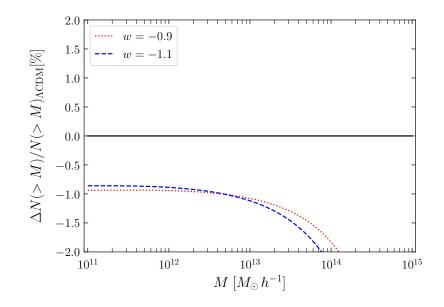

$$\tilde{\theta}' + \left(2 + \frac{H'}{H}\right)\tilde{\theta} + \frac{\tilde{\theta}^2}{3} + \frac{\nabla^2 \Phi}{H^2} = 0$$

Poisson equation

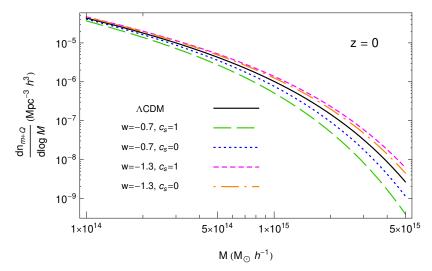

$$\nabla^{2}\Phi=\frac{3}{2}\textit{H}^{2}\left(\Omega_{m}\delta_{m}+\Omega_{de}\delta_{de}\right)$$

HMF for smooth DE models

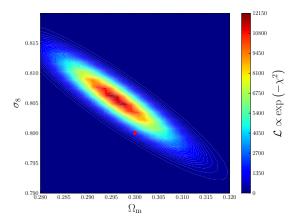
Same $\sigma_{\rm 8}$ of $\Lambda \rm CDM$

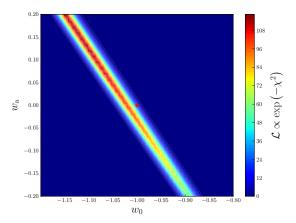


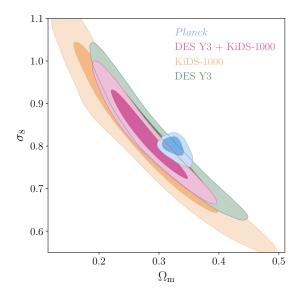
HMF for clustering DE models

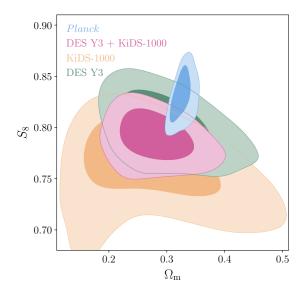


- When dark energy clusters, the halo mass might need to be redefined
- Usually, $M_{
 m tot} =
 ho_{
 m m} + \delta
 ho_{
 m de}$
- *M*_{tot} is not constant in the perturbation formalism
- Defined in analogy to the ACDM model
- If the mass changes, also the mass function needs to be corrected
- A couple of corrections proposed


Corrected mass in the HMF


Corrected HMF


Fitting to a wrong theoretical model induces biases on the cosmological parameters


Fitting to a wrong theoretical model induces biases on the cosmological parameters

But at the end there might no be any tension

But at the end there might no be any tension

- The HMF is a very valuable cosmological tool
- It can shade light on dark energy and on tensions
- Still large error bars and theoretical uncertainties
- Care is required when used for cosmological predictions
- Need to compare and test theoretical predictions with future N-body simulations of clustering dark energy
- Code validation for the spherical collapse model