

Metaboliti fungini: non solo antibiotici...

Francesco Vinale

8 Novembre 2023

Indice

- Breve biografia
- Il metabolismo secondario dei funghi
- Il ruolo dei metaboliti secondari fungini nelle interazioni pianta/patogeno/microrganismi benefici
- Formulazioni per l'agricoltura a base di metaboliti secondari fungini
- Prospettive future

BREVE BIOGRAFIA

AA 1995-96	Laurea	
AA 1997-98	Specializzazione in Biotecnologie Agroali	mentari
2003	PhD in Patologia Vegetale	
2003–2005 2006-2008	Assegno di ricerca (UNINA)	
2009	Endeavour Research Fellowship Award (U	JWA)
2010	Ricercatore CNR - IPSP	
2019	RTD B in Patologia Vegetale AGR/12 DM	IVPA UNINA
2022	PA in Patologia Vegetale AGR/12 DMVPA	AUNINA

1998–1999	Visiting scientist presso l'Università di Monaco di Baviera
2005	Visiting scientist presso la UWA
2008	Short Mobility UNINA presso la UWA
2013	Visiting scientist presso University of Stellenbosch (SA)

Il metabolismo secondario dei funghi

non solo antibiotici...

Penicillina G Antibiotico prodotto da Penicillium notatum

La sua scoperta nel 1932, che segna l'inizio dell'era degli antibiotici, spetta a ?????????

Da: Ricomincio da tre 1981

́СО₂Н

 $C_6H_5H_2C$ H_{C}

Il metabolismo secondario dei funghi

I funghi sono una miniera ancora in parte inesplorata di sostanze naturali attive (compresi gli antibiotici)

Tetrahedron, Vol. 53, No. 9, pp. 3135-3144, 1997 © 1997 Elsevier Science Ltd All rights reserved. Printed in Great Britain 0040-4020/97 \$17.00 + 0.00

PII: S0040-4020(97)00024-0

A New Fungal Growth Inhibitor from Trichoderma viride

Luisa Mannina*, Anna Laura Segre

Istituto di Strutturistica Chimica and NMR Service, C.P. 10, 00016 Monterotondo Scalo, Roma, Italy.

Alberto Ritieni, Vincenzo Fogliano, Francesco Vinale, Giacomino Randazzo

Dipartimento di Scienza degli Alimenti, Università di Napoli "Federico II".

Lucia Maddau, Antonio Bottalico

Istituto di Patologia Vegetale, Università di Sassari.

Fig.7. Sketch of structure of isoharzandione. Notation was kept according to the biosynthetic rule.

Secondary metabolites

- Substances produced mainly by microorganisms and plants.
- Characteristic of a limited range of species.
- Heterogeneous group of chemically different natural products,

- Exhibit a wide range of biological activities,

i.e.: i) competitive weapons used against bacteria, fungi, plants, insects and animals; ii) metal transporting agents; iii) agents of symbiosis between microbes and plants, nematodes, insects; iv) sexual hormones.

Include antibiotics = natural products capable of inhibiting or killing microbial competitors

 β - Lactame structure of Penicillin G

Primary vs Secondary metabolism

Primary metabolism = biochemical reactions that lead to metabolites which are required for the growth and maintenance of cellular functions.

Nucleic acids, proteins, carbohydrates and lipids.

Vital primary metabolism is related with the phase of rapid microbial growth (logarithmic, log or **exponential phase**).

Stationary phase: the metabolites derived from primary metabolism may be further transformed to other products including **secondary metabolites (SMs)**

Primay vs Secondary metabolism

Fungal Secondary Metabolism = is not essential for vegetative growth but is <u>often related to differentiation and sporulation</u>.

Batch rather than continuous culture usually favors SM production.

These natural compounds show an enormous variety of biosynthetic origins (genes are often clustered), and there have been many examples of novel SMs (previously unreported).

Primay vs Secondary metabolism

-- Secondary metabolism is a rich and important source of chemical compounds with potential applications in several fields

-- With beneficial or not-beneficial effects = from antibiotics to mycotoxins or phyto toxins(virulence factors).

Secondary metabolites (SMs)

SM are involved in several biological interaction important in agriculture:

- Plant/pathogen
- Biocontrol agent (BCA)/pathogen
- Beneficial microbe /plant
- Microbe / soil

A three-way interaction

Biocontrol Agents

Beneficial microbes: interaction with the pathogen mediated by secondary metabolites

Antibiosis

Ac-Aib-Ala-Ala-Aib-Aib-Gln-Aib-Aib-Aib-Ser-Leu-Aib-Pro-Leu-Aib-Ile-Gln-Gln-Leuol

18

Antibiotics of fungi used in agriculture for disease control: *Trichoderma* spp.

> 1: T22azaphilone; 2: T39butenolide; 3: harzianolide; 4: dehydro harzianolide; 5: harzianopyridone; 6: 6-pentyl-α-pyrone (6PP); 7: 1-hydroxy-3-methylanthraquinone; 8: 1,8-dihydroxy-3-methylanthraquinone; 9: harziandione; 10: koninginin A; 11: heptelidic acid; 12: trichoviridin; 13: harzianic acid; 14: gliotoxin; 15: gliovirin; 16: viridin; 17: viridiol; 18: trichorzianines.

Antibiosis

P. ultimum (1): with 6PP; (2): without 6PP

Antibiosis

pubs.acs.org/jnp

Note

Cerinolactone, a Hydroxy-Lactone Derivative from *Trichoderma* cerinum

Francesco Vinale,^{*,†,‡} Isabel Arjona Girona,[§] Marco Nigro,^{†,‡} Pierluigi Mazzei,[⊥] Alessandro Piccolo,[⊥] Michelina Ruocco,[†] Sheridan Woo,^{†,‡} David Ruano Rosa,[§] Carlos López Herrera,[§] and Matteo Lorito^{†,‡} A novel metabolite named cerinolactone, has been isolated from culture filtrates of *T. cerinum*. Active against *Pythium ultimum*, *Rhizoctonia solani*, and *Botrytis cinerea*.

Beneficial microbes: interaction with the plant mediated by secondary metabolites??

Effects of SM on plant?? -Promotion of plant growth -Increased nutrient availability -Improved crop production -Enhanced disease resistance

Potential sites of production of *Trichoderma* metabolites that can affect plant host metabolism.
Metabolites produced within live cortical cells.
Metabolites produced in the root surface and within dead cortical cells.
Metabolites produced in the rhizosphere.

Hetabolites produced in soil organic matter

Beneficial microbes: interaction with the plant mediated by secondary metabolites??

Promotion of plant growth Increased nutrient availability

Harzianic acid = a plant growth promoting metabolite fully characterized by x-ray studies

2032

J. Nat. Prod. 2009, 72, 2032-2035

Harzianic Acid, an Antifungal and Plant Growth Promoting Metabolite from *Trichoderma* harzianum

Francesco Vinale,*,†⊥ Gavin Flematti,‡ Krishnapillai Sivasithamparam,†^{JI} Matteo Lorito,§ Roberta Marra,§ Brian W. Skelton,‡ and Emilio L. Ghisalberti[‡]

RESEARCH LETTER

Harzianic acid: a novel siderophore from Trichoderma harzianum

Francesco Vinale¹, Marco Nigro^{1,2}, Krishnapillai Sivasithamparam³, Gavin Flematti⁴, Emilio L. Ghisalberti⁴, Michelina Ruocco¹, Rosaria Varlese², Roberta Marra², Stefania Lanzuise², Ahmed Eid², Sheridan L. Woo^{1,2} & Matteo Lorito^{1,2}

HA 10-3 M

CAS Agar media

Harzianic acid = Fe^{3+} binding

T. harzianum M

Tomato plants treated with water (H_2O) (1) and *Trichoderma* metabolite Harzianic acid (HA) [10⁻⁶ M](2)

molecules

Bivalent Metal-Chelating Properties of Harzianic Acid Produced by *Trichoderma pleuroticola* Associated to the Gastropod *Melarhaphe neritoides*

Gaetano De Tommaso¹, Maria Michela Salvatore¹⁽⁶⁾, Rosario Nicoletti ^{2,3}⁽⁶⁾, Marina DellaGreca¹⁽⁶⁾, Francesco Vinale^{4,5}⁽⁶⁾, Assunta Bottiglier¹, Alessia Staroll^{1,5,5}, Francesco Salvatore¹, Matte Lo Lorito^{3,5}, Mauro Iuliano^{1,4} and Anna Andolfi ^{1,4,6}⁽⁶⁾

Letter

Total Synthesis and Biological Evaluation of the Tetramic Acid Based Natural Product Harzianic Acid and Its Stereoisomers

Alan R. Healy,[†] Francesco Vinale,[‡] Matteo Lorito,^{‡,§} and Nicholas J. Westwood^{*,†}

MDPI

SMs and plant growth promotion

Some beneficial strains are able to produce indole-3-acetic acid (IAA), auxin analogues or other SM that act as plant growth regulators

IAA

ΟH

Harzianolide (HAR)

SMs and induction of plant defence responses

RT-PCR analysis of *B. napus* defence genes of treated with *Trichoderma* metabolites using primers specific for a gene encoding a PR-1 protein (370 bp). Lanes = 1: harzianolide 1 mg L⁻¹; 2: anthraquinone 1 mg L⁻¹; 3: harzianopyridone 1 mg L⁻¹; 4: T22azaphilone 1 mg L⁻¹; 5: T39butenolide 1 mg L⁻¹; 6PP 1 mg L⁻¹; 1: water control; 8: solvent control.

Peptaibols and other small peptides = plant defence elicitors.

Co-culture of plant beneficial microbes as source of bioactive metabolites

- Re-isolation of known compounds is frequent
- Only some biosynthetic genes are transcribed in lab conditions
- Gene clusters coding for secondary metabolites can be activated

To overcome these limitations is possible to cultivate microorganisms by simulating naturally occurring conditions, where microbes co-exist within complex communities, generally referred as the "microbiome"

M. Lorito¹

Netzker et al., 2015 (Front. Microbiol.)

secondary metabolites during the interaction with different plant pathogens F. Vinale¹, E.L. Ghisalberti², K. Sivasithamparam³, R. Marra¹, A. Ritieni⁴, R. Ferracane⁴, S. Woo¹ and

20

Co-culture of plant beneficial microbes as source of bioactive metabolites

Co-culture = *T. harzianum* + endophyte *Talaromyces pinophilus*

Metabolomic analysis

<u>New metabolite = harziaphilic</u> <u>acid</u>

OPEN Co-Culture of Plant Beneficial Microbes as Source of Bioactive Metabolites

Received: 20 April 2017 Accepted: 12 October 2017 Published online: 30 October 2017 F. Vinale^{1,4}, R. Nicoletti^{2,4}, F. Borrelli³, A. Mangoni³, O. A. Parisi³, R. Marra⁴, N. Lombardi¹, F. Lacatena⁴, L. Grauso⁵, S. Finizio³, M. Lorito^{1,4} & S. L. Woo^{1,3}

Co-culture of plant beneficial microbes as source of bioactive metabolites

OSMAC (One Strain MAny Compounds) strategy based on application of a variety of growing environments on a selected fungal (or other microbial) strain to induce biosynthesis of SMs

Future perspective

2027

Natural

27.4

Synthetic

Natural Derived, 6.1

<u>Certain beneficial properties are related with</u> <u>"effector metabolite"</u> that beneficial microbes provide during the interaction with the plant and the other microbes.

Future perspective

New SMs - based products

- Produced cheaply in fermentor in selected inexpensive media
- Good shelf-life
- Antifungal, plant growth promotion and induced resistance
- Combined easily with chemicals, additives, other BCA, etc.

Referenze

- Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Woo, S.L., Lorito, M. (2008). *Trichoderma*-plant-pathogen interactions. *Soil Biology and Biochemistry* 40 (1), 1-10

- Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Barbetti, M.J., Li, H., Woo, S.L., Lorito, M. (2008) A novel role for *Trichoderma* secondary metabolites in the interactions with plants. *Physiological and molecular plant pathology* 72 (1-3), 80-86

- Vinale, F., Sivasithamparam, K. (2022) Beneficial effects of *Trichoderma* secondary metabolites on crops. *Phytotherapy Research* 34 (11), 2835-2842

- Bode, H. B., Bethe, B., Höfs, R., & Zeeck, A. (2002). Big effects from small changes: possible ways to explore nature's chemical diversity. *ChemBioChem*, 3(7), 619-627.

- Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational research on Trichoderma: from'omics to the field. *Annual review of phytopathology*, 48, 395-417.

- Woo, S. L., Hermosa, R., Lorito, M., & Monte, E. (2023). Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. *Nature Reviews Microbiology*, 21(5), 312-326.

Prossimo incontro:

22 Novembre 2023

Francesco Serrapica

Qual è il futuro dei foraggi fuori suolo in alimentazione animale

Thank you for your attention

