

IL SISTEMA SUOLO-PIANTA IN AMBIENTI TERRESTRI ED EXTRATERRESTRI E LE INTERAZIONI CON L'UOMO

Relatore:

Antonio G. Caporale

RTDB AGR/13 (ag.caporale@unina.it)

Sezione SCA, DiA-UniNA

My education path

The soil: a key and non-renewable resource for humankind

World Soil Day (WSD) is held annually on 5 December (from 2002, promoted by IUSS: International Union of Soil Sciences) to focus attention on the importance of healthy soil and to advocate for the sustainable management of soil resources

The soil: a true cradle of life enables to feed humanity

Soil produces 95% of our food, be it the crops we eat, or forages and other plants to feed animals for meat (FAO, International Year of Soils 2015)

INDICATORS

DESCRIPTORS

Procedure 2023/0232/COD

COM (2023) 416: Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on Soil Monitoring and Resilience (Soil Monitoring Law)

Soil threats

CONSUMO DI SUOLO, DINAMICHE TERRITORIALI E SERVIZI ECOSISTEMICI EDIZIONE 2021

DECRETO LEGISLATIVO 3 aprile 2006, n. 152.

Norme in materia ambientale.

	Decreto legislativo 03.04.2006 , n. 152		
	Allegato 4/14 - Allegato 5 al Titolo V della Parte quarta - Valori di concentrazione limite accettabili nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare	A	В
	Concentrazione soglia di contaminazione nel suolo, nel sottosuolo e nelle acque sotterranee in relazione alla specifica destinazione d'uso dei siti	Siti ad uso Verde pubblico, privato e residenziale	Siti ad uso Commercial e e industriale
	Tabella 1: Concentrazione soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare	(mg kg ⁻ ¹ espressi come ss)	(mg kg ⁻ ¹ espressi come ss)
	Composti inorganici		
1	Antimonio	10	30
2	Arsenico	20	50
3	Berillio	2	10
4	Cadmio	2	15
5	Cobalto	20	250
6	Cromo totale	150	800
7	Cromo VI	2	15
8	Mercurio	1	5
9	Nichel	120	500
10	Piombo	100	1000
11	Rame	120	600
12	Selenio	3	15
13	Stagno	1	350
14	Tallio	1	10
15	Vanadio	90	250
16	Zinco	150	1500
17	Cianuri (liberi)	1	100
18	Fluoruri	100	2000
	Aromatici		
19	Benzene	0.01	2
20	Etilbenzene	0.05	50
21	Stirene	0.05	50
22	Toluene	0.05	50
23	Xilene	0.05	50
24	Sommatoria organici aromatici (da 20 a 23)	1	100

MINISTERO DELL'AMBIENTE E DELLA TUTELA DEL TERRITORIO E DEL MARE

DECRETO 1° marzo 2019, n. 46.

Regolamento relativo agli interventi di bonifica, di ripristino ambientale e di messa in sicurezza, d'emergenza, operativa e permanente, delle aree destinate alla produzione agricola e all'allevamento, ai sensi dell'articolo 241 del decreto legislativo 3 aprile 2006, n. 152.

GAZZETTA U	FFICIALE DEL	la Ref	UBBLICA ITALIANA	Serie generale - n. 13
e in studio, il codice assegnato all'area è ripetuto	e seguito	4	Cadmio	5 *
la un numero sequenziale (A1, A2An) che indic	4	Cabalto	20*	
ii campionamento; cio premesso, si procede come	segue:	5	Counto	30*
o relativo ai prodotti vegetali, a meno dei fruttet	i in base	0	Cromo totale	130+
ll'estensione della zona da investigare, si prelev	ano, hun-	7	Cromo VI	2*
to 1 percorsi definiti, da 5 a 15 punti fino a prof	ondită di	8	Mercuno	1*
nediante uso della vanga: il suolo campionato di	eve esse-	9	Nichel	120*
e setacciato in campo mediante vaglio a maglia	di 2 cm;	10	Piombo	100*
la quantità di suolo campionato per ciasc	un punto	11	Rame	200*
ieve essere, indicativamente, pari a 5-3 kg, una p male è utilizzata per formare il campione global	arte della	12	Selenio	3*
a restante è conservata e sarà eventualmente uti	lizzata in	13	Tallio	1*
eguito per effettuare analisi di controllo sul camp	nione ele-	14	Vanadio	90*
nentare; tale campione elementare potrebbe essere o mediante la Sigla Campione costituita come seg	codifica-	15	Zinco	300*
ettera A(maiuscola) numero sequenziale suol	o (cioè il	16	Cianuri (liberi)	1
nome della matrice stessa) =			Aromatici policiclici	
A1_suolo, A2_suolo, An-suolo		17	Banzo(a)antracana	1
dai singoli punti di campionamento verra	à costitu-	1/	Denzo(a)anuacene	1
e, il campione globale individuato dalla sigla.	e anquo-	18	Benzo(a)pirene	0,1
Atot suolo.		19	Benzo(b)fluorantene	1
Nel campo NOTE della relativa scheda di ca	mpiona-	20	Benzo(k)fluorantene	1
nento dovranno essere specificate tutte le SIGL	E CAM-	21	Benzo(g,h,i)perilene	5
VIONE del campioni elementari, per esempio:		22	Crisene	1
A1 suolo (con eventuale georeferenziazi	one) 23 Dibenzo(a,h)antracene		Dibenzo(a,h)antracene	0,1
A2 suolo	ione)	24 Indenopirene		1
			Fitofarmaci	
An suolo		25	Alaclor	0,01
N.B. All'interno di terreni con presenza d	li colture	26	Aldrin	0.01
rane (alberi da frutta, foraggio, ortaggi, ecc.) s	si indivi-	27	Atrazina	0.01
colture stesse.	ize delle	28	alfa-esacloroesano	0.01
		20	hata accalorocsano	0.01
Procedura di campionamento di soil-gas. Per il campionamento del soil-gas si può :	fare rife-	30	gamma-esacloroesano	0,01
imento alle procedure stabilite dagli enti di c	controllo.	21	(initiality)	0.01
nento ai protocolli approvati per aree SIN.	ac men-	31	Cioidano	0,01
· · · · · · · · · · · · · · · · · · ·		52	עעע	0,01
		33	DDT	0,01
AL	legato 2	34	DDE	0,01
4.12		35	Dieldrin	0,01
AII. 5. Concentrazioni soglia di contaminazione (C	'SC)	36	Endrin	0,01
per i suoli delle aree agricole			Diossine e furani	
CSC (mg line)	come ss)	37	Sommatoria PCDD, PCDF + PCB Dioxin- Like (PCB-DL) **(conversione T.E.)	6 ng/kg SS WHO-TEQ
(mg kg-) espressi o				
Composti inorganici		38	PCB non DL ***	0.02
Composti inorganici 1 Antimonio 10*		38	PCB non DL *** Idrocarburi	0,02

Italian legal benchmark

-	L.D. 152/2006	M.D. 46/2019
	mg k	(g ⁻¹
As	20	30
Cd	2	5
Cu	120	200
Zn	150	300

1. Approfondimento della caratterizzazione dell'area.

Qualora, nella fase di caratterizzazione dell'area, non si riscontrino, nel terreno, superamenti delle Concentrazioni soglia di contaminazione (CSC), non si rende necessario alcun tipo di intervento, ne' alcun approfondimento di caratterizzazione delle matrici ambientali.

Di contro, qualora venga accertato il superamento delle CSC, anche per un solo parametro, devono essere attuate delle misure di prevenzione e di salvaguardia dell'area interessata, secondo quanto segue:

deve essere evitato l'incremento del livello di contaminazione del suolo, verificato mediante opportuni controlli analitici;

si effettuano ulteriori accertamenti analitici sul suolo (es. test di bioaccessibilità e/o biodisponibilità, test di estrazione con chelanti ecc);

Bioavailability of potentially toxic elements (PTEs)

Bioavailable pool of a PTE can be defined as the fraction of its total content in the soil that can interact with a biological target (Geebelen et al., 2003)

Source: Mishra et al., 2017. Front Microbiol 8, 1706

Bioavailability to plants is governed by the dynamic equilibrium between aqueous and solid soil phases, rather than by the total metal content

The influence of rhizosphere activity

In the rhizosphere, many physical, chemical and biochemical processes occur as a consequence of root growth, water and nutrient uptake, respiration, rhizodeposition and enhanced microbial activities

The different bioavailable pools are in a dynamic equilibrium \rightarrow if the most easily bioavailable fraction is taken up from the soil, the less available fraction can rapidly reintegrate the easily available pool

Theorical sequence of PTE mobility in the soil

Comments	Metal sequence	Reference
<u>Theoretical sequence according to</u> Electronegativity Hydroxyl formation constants	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Antoniadis et al., 2017. Earth Sci Rev i > Cd BILITY
	Inner-sphere bidentate complexation	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Assessment of bioavailability

<u>In vitro tests</u> must enable quantification of the metal dissolution under realistic conditions, by extractions with one or more reagents simulating soil solution

<u>In vivo tests</u> are generally considered the best bioavailability tests, as the plant uptake measured in these tests is believed to resemble the natural conditions. However, these assays are time- and resource-consuming

Assessment of PTE bioavailable fractions

<u>Rhizon-sampler</u> \rightarrow to monitor metal dissolved in pore water over time

Single-step extractions

1M NH_4NO_3 (ISO 19730, 2008) or 0.01M $CaCl_2$ (Houba *et al.*, 2000), to address the soluble and non-specifically adsorbed fractions

0.05M EDTA at pH 7 (Rauret *et al.*, 2001) or DTPA (Lindsay and Norvell, 1978), to quantify the potentially bioavailable fraction of metals organically-bound or specifically adsorbed by oxides and secondary clay minerals

<u>Sequential</u> <u>extractions</u> \rightarrow 4-step EU-BRC (Rauret *et al.*, 1999) or Wenzel procedure (Wenzel *et al.*, 2001), to estimate the distribution of metals in presumed geochemical fractions

Fraction	Extracting agent	Extracting conditions		
		Shaking time	Temperature	
Fr I- Exchangeable, water and	0.11 mol·L ⁻¹ CH ₃ COOH	16 h	20 - 25°C	
acid soluble	(pH= 7)			
Fr II- Reducible e.g. bound to	0.5 mol·L ⁻¹ NH ₂ OH-HCl	16 h	20-25°C	
iron and manganese	(pH = 1.5)			
oxyhydroxides				
Fr III- Oxdisable e.g. bound to	$30\% H_2O_2$ (pH=2.0) and	1, 2, 16 h	20-25, 85,	
organic matter and sulfides	then 1.0 mol·L ⁻¹		20-25°C	
	CH3COONH4 (pH=2.0)			
Fr IV- Residual, non-silicate	Aqua regia	2.5 h	60-70°C	
bound metals				

<u>Passive sampler</u> \rightarrow diffusive gradients in thin films (DGT) or semipermeable membrane, to measure the freely dissolved concentration of <u>organic pollutants</u> in equilibrium with the rapidly desorbing fraction

<u>Non-exhaustive</u> techniques \rightarrow mild solvent extraction, solid sorbents (e.g. Tenax) and hydroxypropyl- β -cyclodextrin (HPCD), to extract the rapidly desorbing fraction of <u>organic</u> pollutants from soil

The assessment of PTE chemical species

The bioavailability of the PTEs is closely interlinked with their chemical speciation, i.e. the distribution of elements among their various chemical forms

Isotope dilution mass spectrometry (IDMS)

- ✓ correction of Cr redox interconversions
- ✓ low detection limits
- ✓ Cr extraction phase at high temperature

Synchrotron X-ray absorption spectroscopy (XAS)

- ✓ high element specificity
- ✓ limited sample preparation
- ✓ high level of expertise
- ✓ high detection limits

Bioaccessibility vs bioavailability of soil contaminants

The International Union of Pure and Applied Chemistry (IUPAC) defines as <u>bioaccessible</u> a substance *'able to come in contact with a living organism and interact with it'* and <u>bioavailable</u> a substance *'able to be absorbed by living organisms'*

Source: Kumpiene et al., 2017. Pedosphere 27(3): 389-406

Methodological complexity of in-vitro assays

KC

NaH₂PO₄

KSCN

Na₂SO₄

NaCl

CaCl₂ NH4C

NaHCO₃

KH₂PO₄

MgCl₂

NaOH (1M)

HCI (37%)

Urea

Glucose

Glucuronic acid Glucosamine hydrochloride Alpha amylase

Mucin

Uric acid

Bovine Serum Albumin

Pepsin

CaCl₂

Pancreatin Lipase

Bile

I+O

Inorganic (I)

Organic (O)

Enzymes

pН

448

444

100

285

149

-

-

-

0.9 mL

100 mg

72.5 mg

25 mg

7.5 mg

6,5 +/- 0,5

1,1 -

				r	/ Mix, end-over-end for 1 hour at 37 °	c
Gastric (G)	Duodenal (D)	Bile (B)	Volume (mL)		\downarrow	
412	282	188		Add 27mL of	Vac Check the pH yes	Stop the gastric
133	-	-		duodenal fluid (D) —	- res - (1.2 <ph<1.5) -<="" res="" th=""><th>samples</th></ph<1.5)>	samples
-	-	-		Add 9mL of hile		
-	-	_			I	
					No	
1376	3506	2630		Adjust the pH to		
200	-	-	250	6.3±0.5		
153	-	-				
-	2803.5	2893		Mix, end-over-end for		
-	40	-		4 hours at 37 °C	↓	
-	25	-			Restart the test from	
-	-	-		Stop the gastro-	the beginning	
4.15 mL	90 uL	90 uL		intentingleutrection	the beginning	
42.5	50	125		Intestinal extraction		
325	-	-				
10	-	-	250	Note the final nH		
165	-	-				
-	-	-	•			
1500	-	-		Centrifugation		Centrifugation
-	-	-		at 4500 g (15 min)		at 4500 g (15 min)
500	500	900				
500	-	-	250+250=			
-	100	111	500	Add 1.0 mL HNO ₃		Add 0.5 mL HNO ₃
-	1500	-		(67%)		(67%)
-	250	-		Constant Instantional	ANALISIS	Caratala comunica
-	-	3000		Gastro-Intestinal		Gastric samples
L,1 +/- 0,1	7,4 +/-0,2	8 +/- 0 .2	-	samples		

0.6g of soil

Add 9.0 mL of Saliva (S)

Add 13.5 mL of, Gastric fluid (G)

Adjust the pH to 1.2 ± 0.05

Mix by hand (10 s)

Highly-contaminated case studies

6 ha of <u>farmland</u> currently confiscated by the Italian Judiciary due to past illegal burial of industrial wastes

Main pollutants: <u>Cr</u> (max 4500 ppm) and <u>Zn</u> (1850) and <u>hydrocarbons C>12</u> (1800) **3.5** ha of <u>industrial</u> <u>soil</u> inside an automobile-battery recycling plant in operation since 1970

Main pollutants: <u>Pb</u> (max 80000 ppm), <u>Sb</u> (1475), <u>As</u> (312) and <u>Cd</u> (235)

Soil characterization and phytoremediation plants

 \checkmark

 \checkmark

✓ Sampling grid: **20 x 20 m**

0-20, 30-60, 70-90 cm

Depths at site A:

Depths at site B:

0-10, 10-40 cm

IMPLEMENTATION OF ECO-COMPATIBLE PROTOCOLS FOR AGRICULTURAL SOIL REMEDIATION IN LITORALE DOMIZIO-AGRO AVERSANO NIPS (LIFE11/ENV/IT/275 – ECOREMED)

Phytoremediation plants consisting of poplar trees (Populus nigra L.) and permanent grass cover, assisted by compost amendment and irrigation system, were then implemented on both sites years ago

Site A

Benchmark lab-based technique

Portable-XRF technique

Microwave-assisted soil digestion by *aqua regia* $(3:1 \text{ v/v}, \text{HCl to HNO}_3)$, followed by analysis of metal-containing extracts by AAS or ICP-OES/MS (ISO standard 54321, USEPA method 3051A), determines the **pseudo total content** of the analysed elements

Aqua regia does not produce a complete soil digestion because the least acid-soluble components as **metal-bearing silicates are not completely dissolved** and are thus not included within the analytical measure

The X-ray fluorescence (XRF) analysis is based on the excitation of inner electrons and the emission of photons after they relax to their ground state (fluorescence)

In short time, pXRF provides accurate total elemental contents in soil samples (USEPA method 6200), although it does not have very sensitive detection limits

Main soil pollutants

From pXRF metal contents in soil ...

... to AR-extractable metal contents

* Italian screening values for agricultural (site A) and industrial (site B) soils (M.D. 46/2019 and L.D. 152/2006, respectively)

Science of the Total Environment 643 (2018) 516–526 Contents lists available at ScienceDirect

Monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations according to metal properties and sources

Antonio G. Caporale ^{a,*}, Paola Adamo ^{a,b}, Fiore Capozzi ^c, Giuliano Langella ^{a,b}, Fabio Terribile ^{a,b}, Simona Vingiani ^{a,b}

^a Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy ^b Interdepartmental Research Centre on the "Earth Critical Zone" for Supporting the Landscape and Agroenvironment Management (CRISP), University of Naples Federico II, Portici, Italy ^c Department of Biology, University of Naples Federico II, Naples, Ruly

* Risk trigger values obtained by site-specific risk assessment

Best linear regression fits

Multielement linear regressions

Metal-dependent and site-specific models

The comparison among different regression parameters revealed that regression models were strongly site-specific and metal-dependent

I_{geo} and EF

The magnitude of the anthropogenic fraction in soil metal contents was estimated by the geoaccumulation index (I_{geo}) and metal enrichment factor (EF)

.geo	As	Ca	Cr	Cu	K	Ni	Pb	Sn	Zn		
\mathbf{I}_{geo} site A	-0.10 (0)	1.09 (2)	3.03 (4)	2.13 (3)	0.34 (1)	ND	0.30 (1)	ND	1.84 (2)		
I _{geo} site B	1.66 (2)	0.44 (1)	-0.25 (0)	2.83 (3)	-0.17 (0)	0.24 (1)	4.80 (5)	1.04 (2)	0.94 (1)		
	Fe	Mn	Nb	Rb	Sr	Th	Ti	U	V	Y	Zr
\mathbf{I}_{geo} site A	-0.72 (0)	-0.19 (0)	-0.50 (0)	-0.11 (0)	-0.46 (0)	-0.46 (0)	-0.79 (0)	-0.21 (0)	-0.76 (0)	-0.50 (0)	-0.48 (0)
I _{geo} site B	-0.62 (0)	-0.77 (0)	-0.73 (0)	-0.03 (0)	-0.28 (0)	-0.74 (0)	-0.97 (0)	ND	-0.88 (0)	ND	-0.80 (0)

EF

EF site A EF site B Anthropogenic pollution categories:(Igeo≤0) practically uncontaminated(0<Igeo≤1) uncontaminated to moderately contaminated</td>(1<Igeo≤2) moderately contaminated</td>(2<Igeo≤3) moderately to heavily contaminated</td>(3<Igeo≤4) heavily contaminated</td>(4<Igeo<5) heavily to very heavily contaminated</td>

(Igeo≥5) very heavily contaminated

 $EFs = \frac{C/Fe_{(sample)}}{C/Fe_{(earth's crust)}}$

As	Ca	Cr	Cu	K	Ni	Pb	Sn	Zn
.40 (<2)	3.19 (2-5)	12.22 (5-20)	6.56 (5-20)	1.91 (<2)	ND	1.84 (<2)	ND	5.37 (5-20)
.84 (2-5)	2.09 (2-5)	1.29 (<2)	10.95 (5-20)	1.36 (<2)	1.81 (<2)	42.61 (>40)	3.15 (2-5)	2.94 (2-5)

	Fe	Mn	Nb	Rb	Sr	Th	Ti	U	V	Y	Zr
EF site A	0.91 (<2)	1.32 (<2)	1.06 (<2)	1.39 (<2)	1.09 (<2)	1.09 (<2)	0.87 (<2)	1.30 (<2)	0.89 (<2)	1.06 (<2)	1.07 (<2)
EF site B	1.00 (<2)	0.90 (<2)	0.93 (<2)	1.51 (<2)	1.27 (<2)	0.92 (<2)	0.79 (<2)	ND	0.83 (<2)	ND	0.88 (<2)

Site A: soil properties, and bioavailability to plants of main contaminants

SOIL PROPERTIES	RANGE
Texture	Sandy-loam
pH in H_2O (R=1:2.5)	7.4 – 8.0
O.M. (g kg⁻¹)	8 – 50
Carbonates (g kg ⁻¹)	1 – 79
C.E.C. (cmol ₍₊₎ kg ⁻¹)	18 – 29

✓ Aliphatic hydrocarbons C₁₉-C₃₆

- ✓ Aliphatic hydrocarbons C₉-C₁₈
- ✓ Other hydrocarbons (PAHs < 0.2%)

Reference \rightarrow Agrelli, Caporale, Adamo, 2020. Agronomy 10, 1440

EU-BCR Sequential Extraction

Step 1: easily extractable fraction (soluble, exchangeable, associated to carbonates)

Step 2: reducible fraction (associated to Fe and Mn oxides) **Step 3:** oxidasable fraction (associated to organic matter)

Step 4: residual fraction (occluded in non-siliceous minerals)

At the Enriched Stable Isotopes of the University of Oviedo (Asturias, Spain)

Cr(VI) % of tot Cr 1.2 12 12 10 10 Cr(VI) in soil (mg kg⁻¹) Cr(VI) in soil (mg kg⁻¹) Cr(VI) / total Cr (%) 0.9 8 8 6 6 0.6 4 Δ y = 0,0014x + 2,0211 $R^2 = 0,6833$ 0.3 2 2 0 0 0 2500 5000 7500 0 Soil samples Soil samples * Italian screening value for Total Cr (mg kg⁻¹) agricultural soils (M.D. 46/2019)

Site B: soil properties, and PTE bioavailability to plants

SOIL PROPERTIES	RANGE
Texture	Sandy-loam
pH in H_2O (R=1:2.5)	7.4 – 8.5
O.M. (g kg⁻¹)	13 – 31
Carbonates (g kg ⁻¹)	2 – 151
C.E.C. (cmol ₍₊₎ kg ⁻¹)	9 – 27

Step 4: resi	idual	fraction
(occluded	in	non-siliceous
minerals)		

Site B: PTE-distribution in soil particle-size fractions

Lung bioaccessibility test

Bars indicate mean PTE relative bioaccessibility ± SE

* Asterisks indicates significant differences (p<0.05) by one-way ANOVA

 $HQ_{inh} = \frac{ADD_{inh}}{RfD_{inh}}$ $HQ_{der} = \frac{ADD_{der}}{RfD_{der}} \qquad NCR = HI = \sum HQs$ $HQ_{ing} = \frac{ADD_{ing}}{RfD_{ing}}$

	Pb		Cd		Sb		As		Cu		_
					mg	kg⁻¹					
в1 20-50 μ m	4773	52 d)*	31.1	(88 a)	84.5	(43 d)	4.9	(9 c)	117	54 b)	
в1 10-20 µm	5087	71 a)	35.1	(84 b)	96.3	(53 b)	4.7	(9 c)	141	58 a)	
в1 2-10 µm	5393	60 b)	50.0	(72 c)	131	48 c)	9.7 (13 b)	200	53 b)	
в1 <2 µm	6563	(55 c)	63.3	(65 d)	216	61 a)	29.4	(24 a)	238	(50 c)	

* Values in parenthesis refer to relative bioaccessibility (%). Different letters indicate significant differences (p<0.05) by one-way ANOVA

CARCINOGENIC RISKS

 $CR = ADD \times CSF$

 $CR_{total} = CR_{ing} + CR_{inh} + CR_{der}$

Urban soil environment

Soil is a crucial compartment of the urban ecosystem, threatened by anthropic activities, infrastructure sprawl and sealing

Sustainable management strategies of urban soil are strongly encouraged by policy-makers, to preserve urban soil from anthropic degradation/contamination, to enhance its ecosystem functions and services, to produce safe and quality food, and promote social aggregation

 ✓ Progetto PRIN 2022 (da ottobre 2023): Innovative approach enabling soil and food quality in vegetable gardens of the metropolitan area of Naples (<u>HealthySoil4QualityFood</u>).

 ✓ Programma per il Finanziamento della Ricerca di Ateneo (FRA) UniNA, bando 2020, linea d'intervento A (gennaio 2021 - dicembre 2022): Studio multidisciplinare per promuovere la sostenibilità del suolo urbano, per proteggere le sue funzioni e servizi ecosistemici, e per migliorare la sicurezza e la qualità dei prodotti da agricoltura urbana (<u>UrbanSoilGreening</u>).

Urban soil quality

PHYSICO-CHEMICAL INDICATORS	MIN	MEDIAN	ΜΑΧ	Sign. (among study areas)	PTE or PAH	MIN	MEDIAN	МАХ	Sign. (among study areas)	M.D. 46/2019
Sand (g kg ⁻¹)	623	728	744	ns	Zn (mg kg ⁻¹)	80	97	276	***	300
Silt (g kg ⁻¹)	160	171	349	***	Cu (mg kg ⁻¹)	28	93	139	***	200
Clay (g kg ⁻¹)	70	97	185	**	Pb (mg kg ⁻¹)	38	57	267	**	100
pH (in $H_{2}0$: SSR: 1.2.5)	6.81	7.69	8.03	***	V (mg kg ⁻¹)	55	67	110	***	90
$EC(in H 0: dS m^{-1}: SSP : 1.5)$	0.08	0.11	0.12	*	Cr (mg kg ⁻¹)	5	14	45	***	150
$100 \text{ (mm}_2^20, 0.0 \text{ mm}_2^2, 0.0 \text{ mm}$	0.08		0.13		As (mg kg ⁻¹)	11	15	16	***	30
Carbonates (g kg ^{-⊥})	0.5	7.4	11.2	* * *	Ni (mg kg⁻¹)	5	10	20	***	120
Organic C (g kg ⁻¹)	15.5	17.7	28.3	**	Cd (mg kg ⁻¹)	0.2	0.3	0.4	***	5
Total N (g kg ⁻¹)	1.2	1.7	2.2	*	Σ total DAHs (mg kg-1)	<0.1	0.3	л 1	***	10
C/N	9.6	11.0	14.2	***	2 total PARS (Ing kg -)	<0.1	0.5	4.1		10
Total S (g kg ⁻¹)	0.57	0.64	0.88	***	Benzo (a) pirene (mg kg ⁻¹)	<0.01	0.05	0.48	***	0.1
CEC (cmol+ kg ⁻¹)	12.8	18.1	23.1	***	∑ heavy/total PAHs (%)	90	96	100	***	-
Available P (Olsen; mg kg-1)	21.1	46.0	50.2	***	∑ cancerog/total PAHs (%)	0	48	57	***	-

One-way ANOVA, Tukey's HSD post hoc test (* p<0.05; ** p<0.01; *** p<0.001; ns: not significant)

- Sandy-loam textured soils, with neutral or sub-alkaline pH, low EC, medium-high content of organic matter, bioavailable macro and micronutrients
- ✓ Enhanced soil fertility in organic/synergistic vs. conventional horticultural systems
- ✓ Low-to-moderate soil contamination and bioavailability of PTEs

Horticultural food quality and safety

ELEMENTAL PROFILE	Ν	К	Са	S	Р	Mg	Na	Fe	Zn	Mn	Cu	Pb	V	Cr	Ni	As	Cd
	g kg ⁻¹ DW								mg kg ⁻¹ DW								
Mean	25.5	24.5	10.7	5.0	3.1	1.9	0.7	219	23.1	21.4	7.0	0.6	0.5	0.4	0.15	0.11	0.05
Area	ns	**	ns	ns	ns	* *	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Species	* * *	***	***	**	***	***	* * *	*	* * *	**	**	ns	*	*	* *	**	***
Area x Species	ns	ns	*	ns	ns	* *	**	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns

Two-way ANOVA, Duncan's multiple-range test (* p<0.05; ** p<0.01; *** p<0.001; ns: not significant)

Extraterrestrial environments

Bioregenerative life support systems (BLSS)

In situ resource utilization (ISRU)

→ use of native materials and waste as primary resources

- ✓ <u>Simulants/amendments</u> and their mixtures: physico-hydraulic, mineralogical and chemical properties, nutrient biovailability assessment
- ✓ <u>Plant biomasses</u>: biometric and physiological data, productivity, and nutritional/nutraceutical quality

Evidence of Potential Organo-Mineral Interactions during the First Stage of Mars Terraforming

Beatrice Giannetta ¹0, Antonio G. Caporale ²0, Danilo Olivera de Souza ³0, Paola Adamo ²0 and Claudio Zaccone ^{1,4,4}0

Soil Systems, 2023, 7, 92.

Stabilisation of exogeneous OM by minerals (e.g., Fe oxides) over time is of paramount importance

References

- Caporale A.G.*, Adamo P., Capozzi F., Langella G., Terribile F., Vingiani S. (2018). Monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations according to metal properties and sources. Science of the Total Environment 643, 516-526, https://doi.org/10.1016/j.scitotenv.2018.06.178
- ✓ Caporale A.G.*, Agrelli D., Rodríguez-González P., Adamo P., Alonso J.I.G. (2019). *Hexavalent chromium quantification by isotope dilution mass* spectrometry in potentially contaminated soils from south Italy. Chemosphere 233, 92-100, https://doi.org/10.1016/j.chemosphere.2019.05.212
- Adamo P., Agrelli D., Caporale A.G., Rocco C. (2017). Analisi della biodisponibilità di metalli potenzialmente tossici. In: Manuale Operativo per il Risanamento Ecocompatibile dei Suoli Degradati - Progetto LIFE 11 ENV/IT/275 EcoRemed. Editor: Fagnano M., Ediguida
- Caporale A.G., Porfido C., Roggero P.P., Di Palma A. Adamo P., Pinna M.V., Garau G., Spagnuolo M., Castaldi P., Diquattro S. (2023). Long-term effect of municipal solid waste compost on the recovery of a potentially toxic element (PTE)-contaminated soil: PTE mobility, distribution and bioaccessibility. Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-023-30831-y
- Adamo P. and Caporale A.G. (2023). Il suolo urbano. In: Agricoltura urbana. Tecnologie, sistemi e innovazione. Editors: Orsini F., Pennisi G., Prosdocimi Gianquinto G. Edagricole, Milano, Italy, ISBN: 978-88-506-5627-1
- Duri L.G., Caporale A.G.*, Rouphael Y., Vingiani S., Palladino M., De Pascale S., Adamo P. (2022). The potential for Lunar and Martian regolith simulants to sustain plant growth: a multidisciplinary overview. Frontiers in Astronomy and Space Sciences 8, 747821, https://doi.org/10.3389/fspas.2021.747821

Take-home messages

- ✓ The mitigation of soil threats and the sustainable soil management are paramount to keep soils in a good health for both agriculture and environmental needs
- ✓ The cultivation systems would be resilient to climate change and oriented toward site-specific models, leading to a better use of resources and the enhancement of soil fertility, biodiversity and food quality/safety

✓ You all for your kind attention!