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Jordan-Einstein Frames

« Old paper: Dicke (Phys. Rev. (1962) 125, 6 2163-2167)

Suppose the proton mass is 77y, in mass units 777, anfi, in “natural
units”, we scale the unit of measurement by a factor A~ ~ (length)!

My = A_lmu . In the new unit the proton mass T?Lp = A_lmp.

* Confronting the measurement of the proton mass in the two mass units

(Faraoni and Nadeau 2007)
mp  Atm,  my
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Jordan-Einstein Frames

. L
* Since dS = Ads and ds = (gij dx'dx’ ) 2, then the covariant metric
functions scales as

Juv = )‘29;w

* Invariance under rescaling of units of measurement implies Weyl (conformal)
invariance of the metric tensor

* The starting frame 1s called “Jordan” frame and the conformal transformed
the “Einstein Frame”. One observable can be computed in both frames. Its
measure, obviously different in the two frames, is related by conformal
rescaling according to the observable’s dimensions.(e.g, My = A™ "My, ).



Scalar-Tensor Theory

* In general, one starts from a scalar-tensor theory, with GHY-like boundary term, in the Jordan Frame

n 1 uv _ n—1
s= [ ovg (FOR- PO 0000 - V) +2 [ e VROK

M
* and passes to the Einstein Frame with the transformation

Guv = (167TGf(¢)) %glﬂ/ ;

® therefore, the action becomes

_ n _ ~ 1 »J ~ v . L n—1,/7 1
S = /Md xﬁ< R — A($)§"*8,40,¢ V(gb)) + 25 8Md hK

16mG
1 (M@ n—1(f(9)) U
A9 = T6rc (2f(d>) T2 29) )’V(‘b) = 6mGT (9] =

* Itis assumed that if (gp,y (-T), ¢(33)) is solution of the E.O.M also (g,w (CE, ¢), Qb(fC)) is

solution (True?). This reasoning seems to address that the transformation from the Jordan to the Einstein
trame look like a canonical transformation in the Hamiltonian theory.



Brans-Dicke Theory

* Brans-Dicke, with GHY boundary term, is a particular case of Scalar Tensor theory ( f(¢) = ¢)

S = / d*z\/—g ((/5 ‘R - C—dg“’”a“¢8y¢ — U(¢)) + 2 / BzvVhoK
M ¢ oM

Deruelle, Sendouda, Yousset PRD 80, (2009).

They still claim that the transformations are

* How to perform canonical analysis of this theory? o _
Hamiltonian canonical

~ ~ ~ ~ 3
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* N.B. ADM metric:
g=—(N?— N;N")dt ® dt + N;(dz* ® dt + dt ® dz") + h;;dz* ® dz’



Brans-Dicke Theory

* The Hamiltonian Weyl (conformal) transformations from the Jordan to the Einstein frames are

~ 1~ ~ ™
N = N(167G¢p)2 ; N; = N; (167G @) ; hy; = (167wG@) h;; ;T = 3
(167G¢) (167G)  hij = (167G9) hij 17 = sy

ij
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(167G¢)" "~ 167G = 05Ty = E(m“’ =)

* They are not Hamiltonian canonical

87GN (2)6C) (z — z')

N (), 74z = N, (z),74(z')} = 167GN;(2)6®) (z — 2/
(N (@), 7)) 2D 40, (o) 7)) = G ()5 ) £0,
o SGm@Oe ) 2o @)
{An(z),7g(z")} = — #0,{7"(z),Ty(z")} = — w0 (x—1x') #0
N : (167Go(z))? ¢ (16wG¢?)

* The Dirac’s constraint analysis of the Hamiltonian theory has to be done, independently, in the
Jordan and Einstein frames. We have studied the Hamiltonian constrained theory in Jordan and

L 3 3 3
Einstein frames for both cases w # — > and , w = — 5 In the case w = — Z—the theory has an

extra Weyl(conformal) symmetry with an associated primary first class constraint Cy,



Hamiltonian Analysis of BD for w # —%

in Jordan Frame

in Einstein Frame

constraints

TR0 ~0;H~0;H; ~0;

constraints

T 0w ~0;H~0;H; =0;

constraint algebra
{m,m} =0;{m,H} = 0;{m,H;} = 0; {m;, H} = 0;
{mi, H;} = 0; {H(z), Hi(a")} = —H(2")0;6(z, 2');

{Hi(z), Hj(z)} = Hi(2")0;6(z, z") — H;(x)0; d(z, '
{H(z), H(z)} = H'(2)09;0(x, 2") — H' ()96 (x, 2");

N—"

.

constraint algebra
(7,7} = 0;{F, H} = 0; {F, "} = 0; {Fi, H} = 0;
(7o 1y} = 05 {H(@), Hilw') } = —H(2)0jo(z, 2");
{Hi(z), Hj(z')} = Hi(2");6(z, z') — Hi(2)i'6(z, ')
{H(x), H(z')} = Hi ()00 (z, 2') — H ()0 (x, 2');

S




BRANS-DICKE PARTICULAR CASE w = —

3

* The BD action for w = — S s (for consistency reasons here U()=ap? a is a
constant)
3 gt
S(=3/2) — / d*z\/—g (qu + 29 5 60,06 — cvqbQ) + 2 / BzvVhoK .
M 2 ¢ oM

* [t is invariant under this conformal transformations

~ z_ 9
g/-“/ — Q2g,u,1/ ¢ = m
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BRANS-DICKE PARTICULAR CASE w = —

* Clearly the Hamiltonian and momenta constraints are

H(3/2) = \/E{ [ 3R+ — (w"jm-j - W—’LQ)] — 2 Di¢Di¢+2D'Dig + U(¢)}

N | W

oh 2 20
3/2
7-[( /2) = 2Dj7r + D;¢my
* We also have a further primary constraint due to conformal invariance

ngEﬂ'h—qbﬂ'qb%

* All the constraints (shown through lengthy and technically complicated calculations) are
first class .



Hamiltonian Analysis of BD for w = 3

in Jordan Frame

2
in Einstein Frame

constraints
N ~ 07t 0;Cy ~ 0;H T3 O;H§_3/2) ~ 0;

constraints
TN~ 0,7~ 0;Cy = —d7g ~ 0; HT3/2) 0 HE_B/Q) ~ 0;

constraint algebra
{rn,mi} = {mn, HOD} = {an, HT¥ D) = 0;
{mi, HOD} = {mi, 157} = 0;
{Co@), HTP (@)} = ~0l8(2,5')Cs (')
{Col@), HD (@)} = FHED) (@)3 (2, 2');
{H(—3/2)(x), 7‘[5_3/2)(%/)} — —H(_3/2) (:c’)aéé(x, {Bl);
(M @), 1 @) ) = 1P (2)0;8(z, 2')
—H T ()i 8(x, 2');
{H 2 (2), H 2 (@)} =
HTD (2)0'0(x,27) — HTYP (2)0 6 (z, ')+
[D* (log ¢(2))] Cy(2):6(z, 2')
— [D*(log ¢(2"))] Cs(2')0;6(2, 2");

constraint algebra
{Fn, 7} = {Fn, HO¥P} = 0, {7n, HY P} = 05
{%i,ﬁ(_B/z)} = {%i,ﬁg_?)/z)} = 0;
Co(x), 1P (@)} = 0;
5¢(w),’ﬁ‘3/2)(w’)% = 0;

{ﬁ(—:’,/z) (x),ﬁ§_3/2)(x’)} = 32 (5006, 2);
{H{2 (2), 7y (2')} = H{TV P (2)0;6(x, o)
—H{ P (2)0)/8(z, 2');

{ﬁ(—3/2) (x),ﬁ(—3/2) (z')} =
H D (2)0'8(x,2') — HT? (2) 056 (, ')




FLLAT FLRW Brans-Dicke theory

T JF - >EF ~
2 2 2 2 3 1 '
ds? = —N2(t)dt? + a2 ()dx
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N /\N;} 0 g;  (167Gg)E 2022w +3) ( @ 2"5> | "
™ =-—1=U, . N7 Ty Ta
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2a(2w +3) \ 3¢ a )’ ' N <W7Ta . )
ar— 2, (3)
. N wrZ  2m, Ty 3¢7T35 ) 202w +3) \ 3¢ a
fla ™ " 2a2(2w + 3) ( 6¢ LR ) —3Na'U(9), () N N Wi | 2MaTy 3¢m3 B )
v ) Ta & 2022w +3) \ 66 + . e 3Na*U(9), (4)
(&% 22(2—3 (_ﬂ'a + ﬂ) 5 (5) . N 2¢ﬂ'¢
a?(2w + 3) a PN <—7ra+—>, (5)
9 9 2022w + 3) a
o~ = : (Wa ! E) N (6) N wr? U H



LOOKING FOR CANONICAL EQUIVALENCE

* Gauge fixing of the lapse N implemented as secondary constraints

Xo=N—cp=0 ; x1=7mny~0 become second class constraints in the JF

Yo=N—co (167rG¢)% ~0; x1 =7n ~ 0 are also second class constraints in EF

* We define Dirac’s Brackets (in the Jordan and Einstein frames)

{,Yoe={,}-{ x}Cos{xs -} Cop = {Xa» X5}

* Using Dirac’s brackets, the dynamics stays on the manifold defined by second class
constraints

Xo = A{N —co,Hr}pp =0 Xo ™ {N - 00(167TG¢)%7FI’_,T}DB

x1~{7rn,Hr}pp ~0 X1 {%N,ff}} ~ 0

~ ()



E.OM IN J.FE. AND E.F. WITH DIRAC’S BRACKETS

* We dertve the equations of motions using Dirac’s brackets, then we impose strongly
the second-class constraints both in Jordan and Einstein frames

i (50T). R 0
. co wr?  2mmy 3¢S . 1 2rG)m 3(87FG)%¢$2
Ta ¥ 922w + 3) ( 6¢ a  a Ta &~ co(16mGe)* | = (2w + 3)as
—3ca’U(¢), (2) —3a*V(¢)] (2)

. 2 . 1 a2

b~ sty () ® b o~ eionGe) U ®
. c wrs T dU . [ 16rGR2e L av
T = _2a(2a?+ 3) <6¢2 + a_§> - c0a3% . (4) Ty ~ —co(l6nGo)2 (2w7r+ 7;()%3 as dq(bd)) (4)

* The transformation from Jordan to Einstein frame, having eliminated the Lapse N
and 1ts conjugate momenta T, 1s Hamiltonian canonical. The JF equations of
motion are equivalent to the EF equations of motion.



CANONICAL EQUIVALENCE OF JF AND EF VIA GAUGE FIXING

* Following the flat FLRW case, we gauge-fix the lapse N and the shifts N;in the JF and EF
X0=N—-com0, xi=Ni—c;~0, 3y=N—c(161G¢)? , X; = N; — ¢; (167G¢) |
. .

Xa =N ~0, Xita=Em =0 TN , Xita =T

* These constraints are second class. Then, we define suitable Dirac’s brackets, verify that the
Hamiltonian and momentum constraints stay first class.

* The dynamics remains on the second-class constraint manifold both in JF and EF

V ~ ~ 7. ~ {N. ~ Xo =~ {Xo, H, zO,;’-z{ ,H} ~ 0,
N =~ {N HT}DBNO ] NzN{NzyHT}DBNO Xo {XO T}DB Xi Xi T DB

~ H 2t [t | ~ 0 ~i 17
iy ~{nn,Hr}pp =0 , 7' =~{r",Hr}pp WNN{WN,HT}DB%() N{WyHT}DB%O



CANONICAL EQUIVALENCE OF JF AND EF VIA GAUGE FIXING

* The evolution of the other variables are calculated implementing the Dirac’s bracket

(Db)

* Once calculated the e.o.m. by the Db, we solve the second-class constraints and
substitute them 1n the e.o.m.

* On this reduced phase space, without the lapse and the shifts variables, the
transformation from the Jordan to the Einstein frame 1s Hamiltonian canonical.

* The equations of motion are completely equivalent , on the reduced phase space in
the two frames.

* Does it mean that JIF and EF are physically equivalent?



CANONICAL EQUIVALENCE AND PHYSICAL
EQUIVALENCE

Harmonic Oscillator (Goldstein )

Canonical transformations (not symmetry of the system...)

| 2P
q= %sz’nQ .0 = V2mwPcos@Q

Therefore the Hamiltonian becomes

H =wP

and then,

P =

E . OH 2FE |
o Q—a—P—w, Q=wt+a, q(t)= mw2sm(wt+a)

Notice that the harmonic oscillator is mapped into a free particle



ANTI-GRAVITY TRANSFORMATIONS

(Canonical Transtormations)

* There exist Hamiltonian Canonical Transformations on the extended phase space:
The Anti-Gravity transformations

N . = — . _ CoskE L Pk .
N*=N ;7N =7nN ;N =N; ;7" =7"; hz-j = (16wGo)h;; ; Q!
%.,* ’I,j T J l Post-Newtonian

= (167C9)} ;b =¢;7T¢=¢(</>7T¢—7rh); L

Carrolian Minkowskian
Gravity,
* In two dimensions, they look like G- o ,c =0
2 _ 2 2 2_ Anti-Newtonian
ds® = —dt® + Adz"; A > 1 M. Niedermaier 2019

* Since this theory is canonically equivalent to B-D theory, the constraint algebra of
secondary first class constraints ?H, H.,) is like B-D theory’s one.



Anti-Newtonian frame

»

e The ADM Hamiltonian in the Anti-Newtonian “frame ” is

\/zﬁ/*(@% 35, (167G)? (.. Th
Hapm = (167G) 5 — "R+ = (7r ITij — 7)
(w+3) i 64(rG)%¢% _, =

—2N* D;7 + N* 8,47

* Since this theory 1s canonically equivalent to BD theory, the constraint algebra of
secondary first-class constraints H ,H,;) is like that of BD theory.

* Is this theory, in the Anti-Newtonian frame, physically equivalent to BD theory?



CANONICAL EQUIVALENCE AND PHYSICAL
EQUIVALENCE

« BD-Theory in JF is canonical equivalent, via gauge-fixing of Lapse N and shifts N; ,
to Einstein-GR, minimally coupled to a scalar field, in EE.

* JE-EF transformation preserves the light-cone structures (Weyl (conformal) transformation
conserves the angles )

* BD-theory in JF is canonical equivalent to the “Anti-Newtonian” gravity, in the Anti-Newtonian
frame. (light cone structure modified by Anti-Newtonian transformation).

* BD-theory cannot be equivalent to two physically inequivalent theories. Therefore, Hamiltonian
canonical transformation represents, in our opinion, a mere mathematical equlvalence This
transformation maps solutions of e.o.m in one frame into solutions of e.o.m in the other frame.



CONCLUSIONS

* The transformations from the Jordan to the Einstein frames, in the extended
phase space, are not Hamiltonian canonical transformations.

* Gauge-fixing the Lapse N and the Shifts N; and implementing the Dirac’s
Brackets, Hamiltonian canonical transformations do exist from JF to EE

* This very fact does not mean, necessarily, that the two frames are “physically”
equivalent.

* The equivalence of the physical observables in JF and EF remains still to be
studied.
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