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Notions of nonstabilizerness, or “magic”, quantify how non-classical quantum states are in a precise sense:
states exhibiting low nonstabilizerness preclude quantum advantage. We introduce ‘pseudomagic’: ensembles
of quantum states that, despite low nonstabilizerness, are computationally indistinguishable from those with
high nonstabilizerness. Previously, such computational indistinguishability has been studied with respect to
entanglement, introducing the concept of pseudoentanglement. However, we demonstrate that pseudomagic
neither follows from pseudoentanglement nor implies it. In terms of applications, the study of pseudomagic
offers fresh insights into the theory of quantum chaos: it uncovers states that, even though they originate from
non-chaotic unitaries, remain indistinguishable from random chaotic states to any physical observer. Additional
applications include new lower bounds on state synthesis problems, property testing protocols, and implications
for quantum cryptography. Our findings suggest that nonstabilizerness is a ‘hide-able’ characteristic of quantum
states: some states are much more magical than is apparent to the (computationally-bounded) observer. From the
physics perspective, our study supports the idea that only quantities which can be measured in a computationally
efficient manner are physically significant.
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MAGIC 1IN KRUANTOM STATES
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MAGIC IN QUANTOM STATES = CHAOS IN RUANTOM DYNAMICS
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