Pseudomagic quantum states: when physics meets computer science

Lorenzo Leone

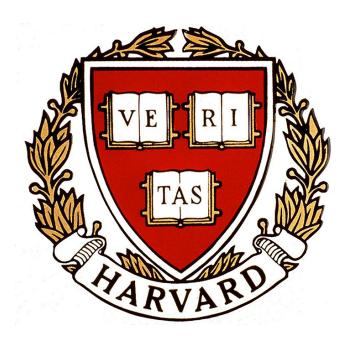
Freie Universität

Joint work with...

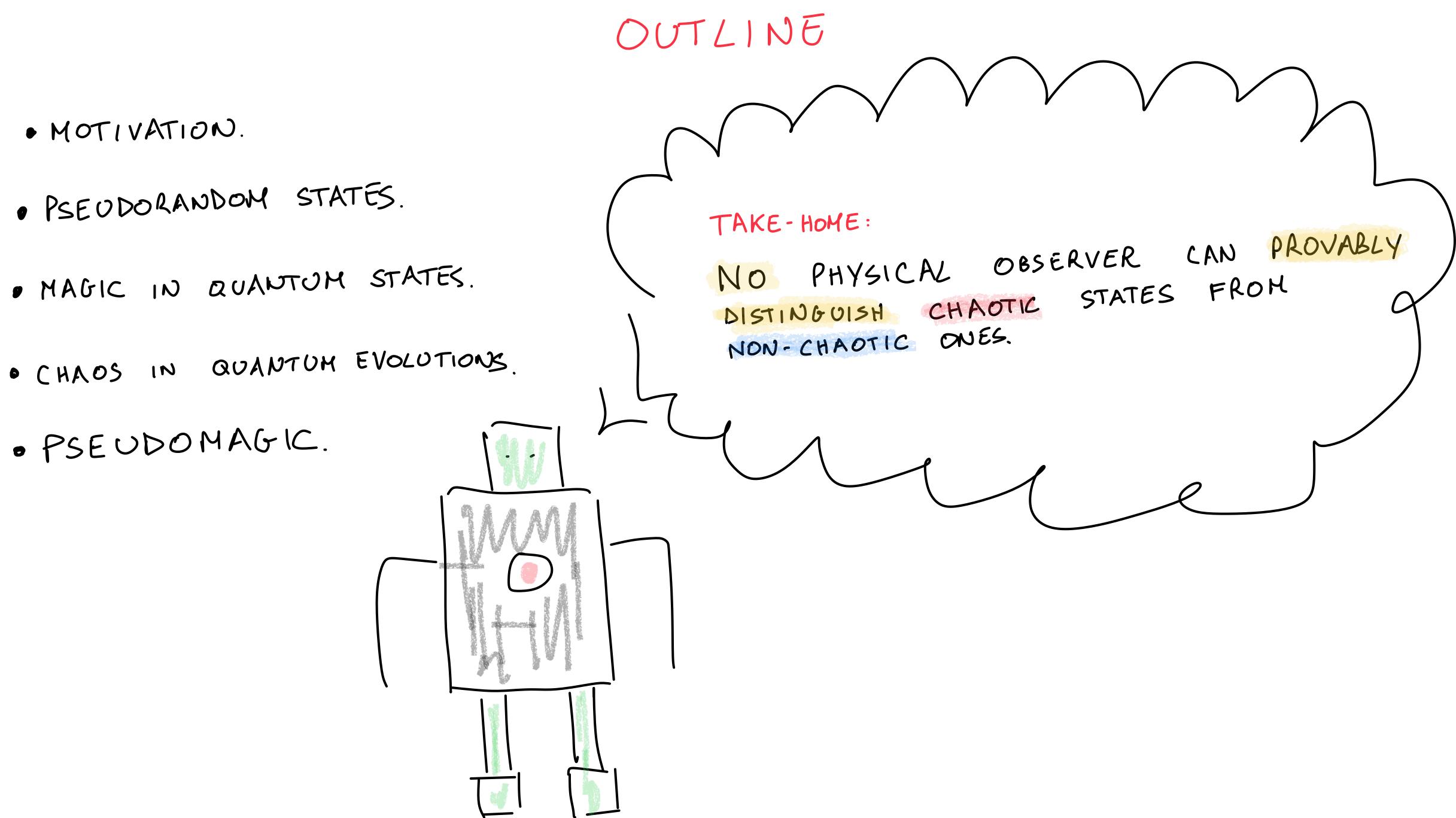
Pseudomagic quantum states

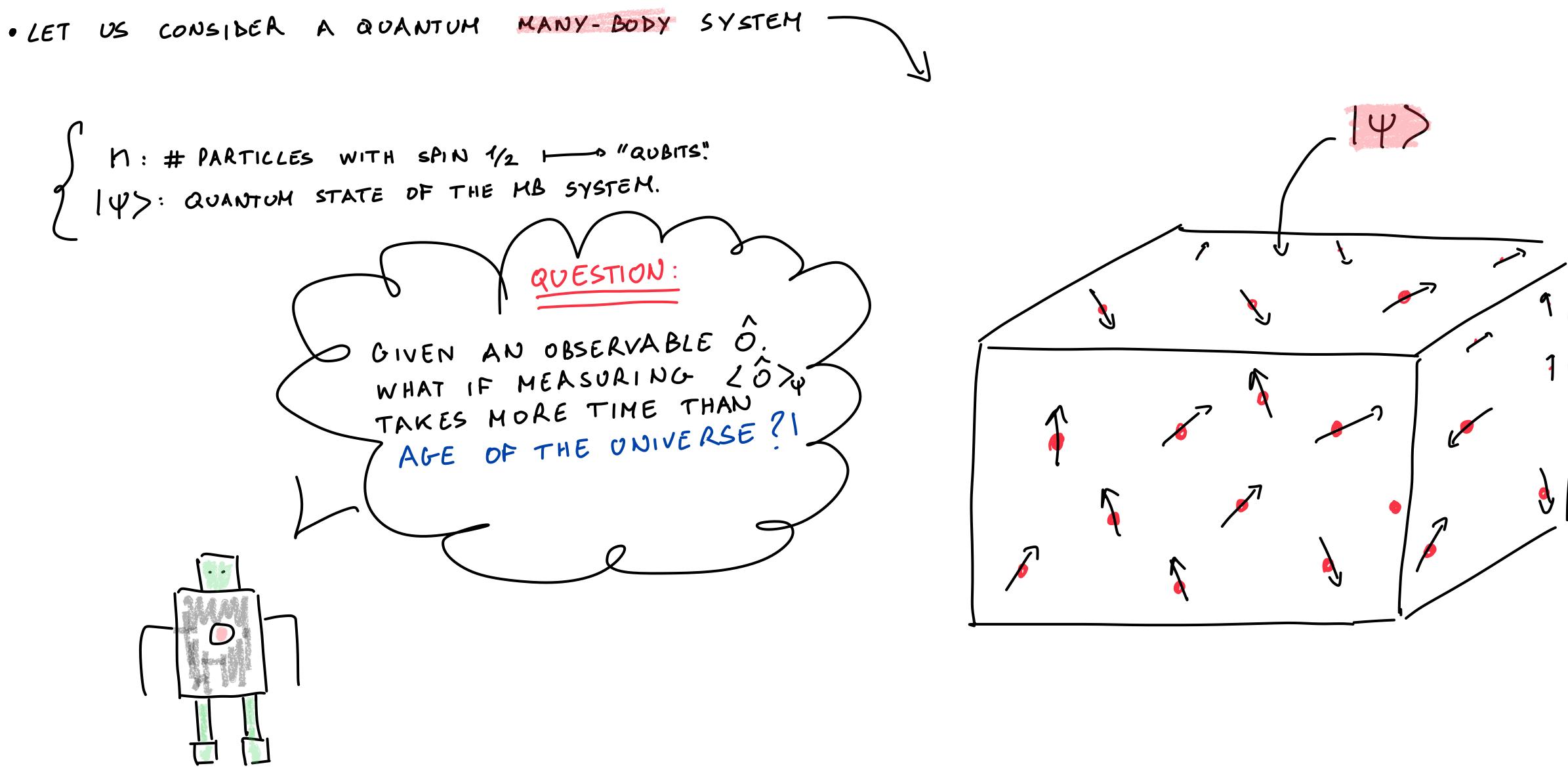
Andi Gu,¹ Lorenzo Leone,^{2,3} Soumik Ghosh,⁴ Jens Eisert,^{3,5,6} Susanne F. Yelin,¹ and Yihui Quek^{1,7}
 ¹Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
 ²Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
 ³Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
 ⁴Department of Computer Science, University of Chicago, Chicago, Illinois 60637, USA
 ⁵Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
 ⁶Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany
 ⁷Department of Computer Science, Harvard John A. Paulson School Of Engineering And Applied Sciences, 150 Western Ave, Boston, MA 02134

Notions of nonstabilizerness, or "magic", quantify how non-classical quantum states are in a precise sense: states exhibiting low nonstabilizerness preclude quantum advantage. We introduce 'pseudomagic': ensembles of quantum states that, despite low nonstabilizerness, are computationally indistinguishable from those with high nonstabilizerness. Previously, such computational indistinguishability has been studied with respect to entanglement, introducing the concept of pseudoentanglement. However, we demonstrate that pseudomagic offers fresh insights into the theory of quantum chaos: it uncovers states that, even though they originate from non-chaotic unitaries, remain indistinguishable from random chaotic states to any physical observer. Additional applications include new lower bounds on state synthesis problems, property testing protocols, and implications for quantum cryptography. Our findings suggest that nonstabilizerness is a 'hide-able' characteristic of quantum states: some states are much more magical than is apparent to the (computationally-bounded) observer. From the physics perspective, our study supports the idea that only quantities which can be measured in a computationally efficient manner are physically significant.



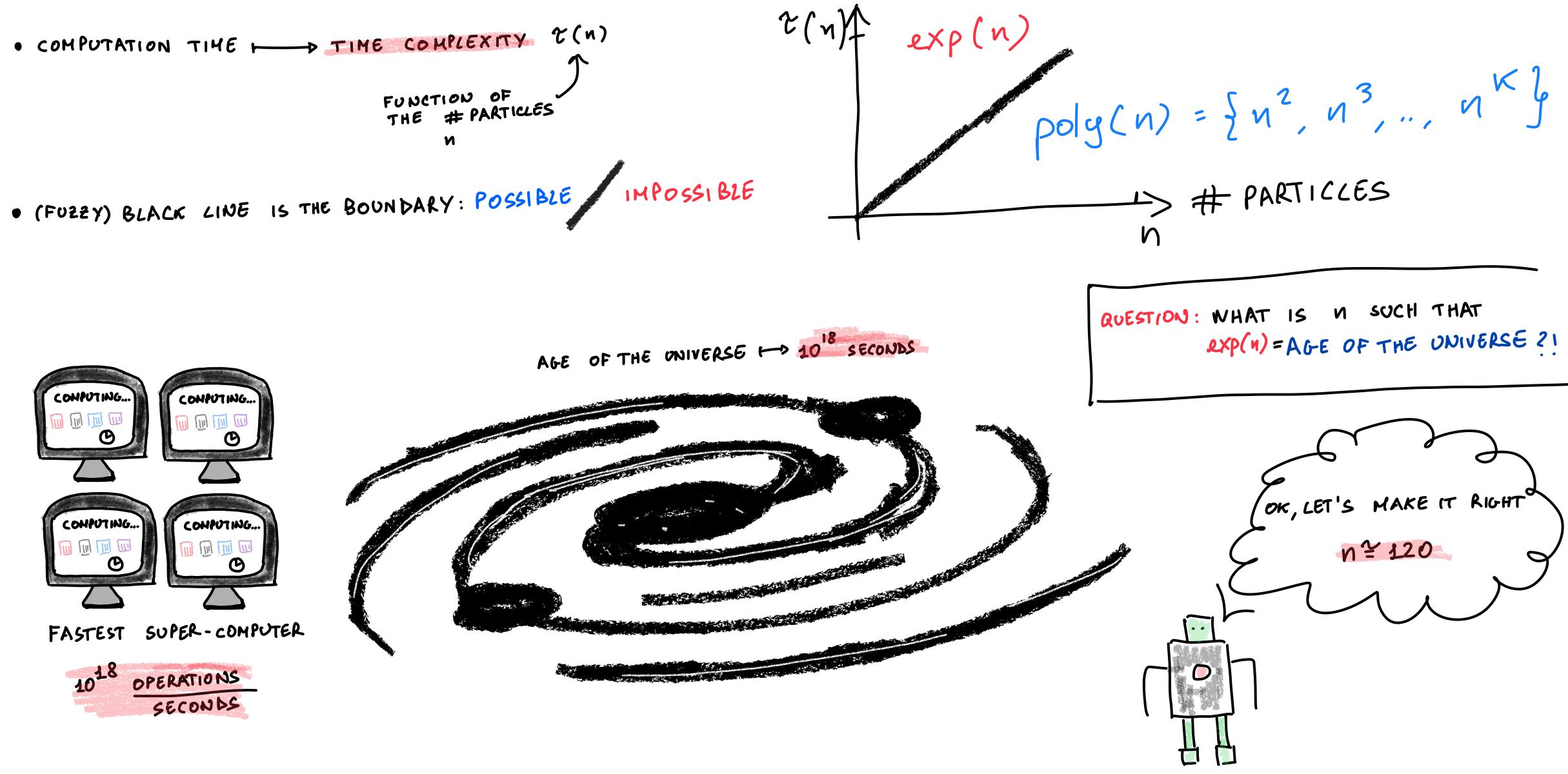
Freie Universität

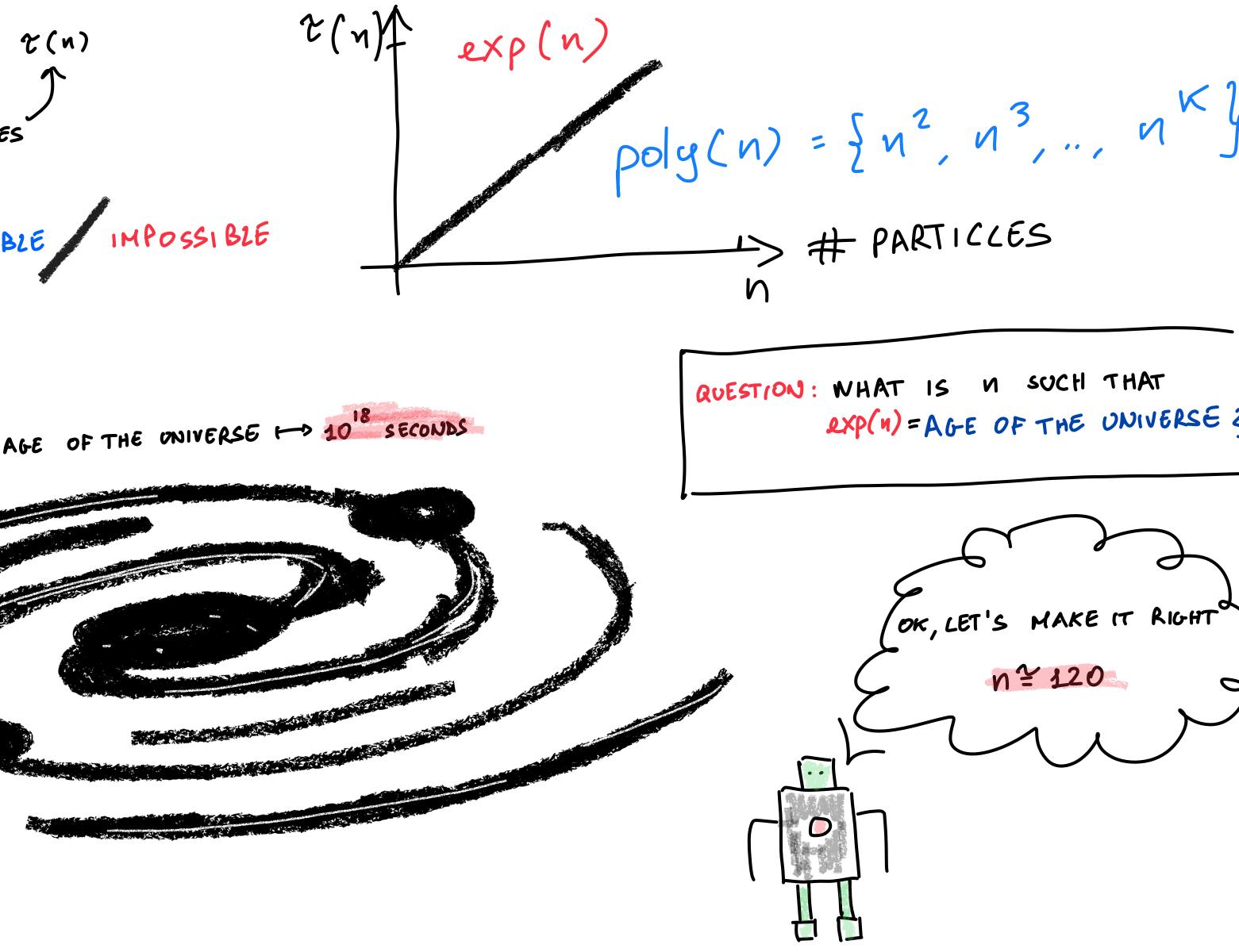


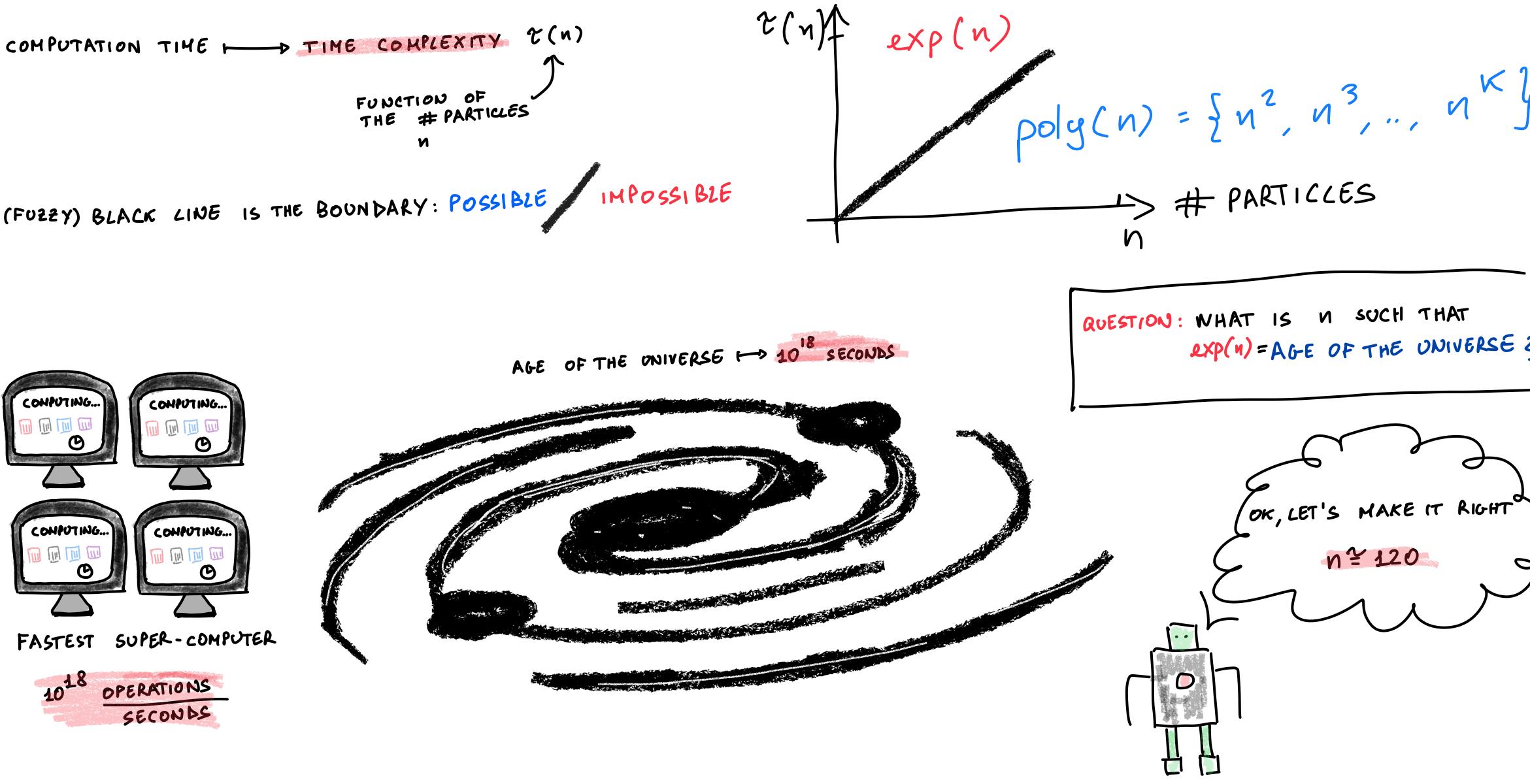


MOTIVATION

• EVERY MEASUREMENT SCHEME IS A (QUANTUM) ALGORITHM



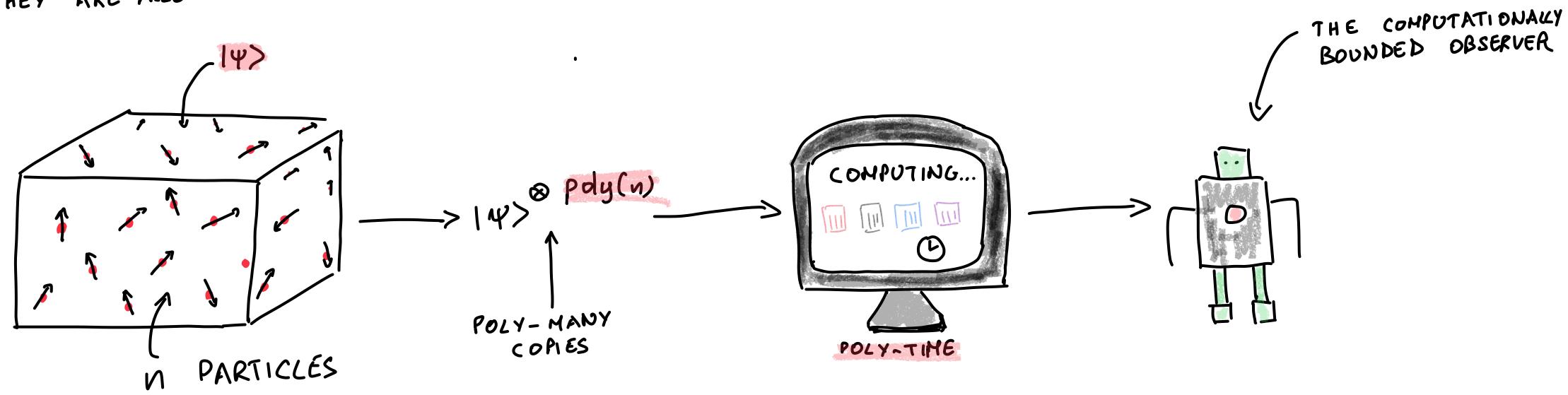




BORROWING NOTIONS FROM CS

EXAMPLE : SUBSET STATES (X>: BITSTRING LG X=0101...1 2ⁿ possible Bitstrings xe{0,1}ⁿ SUBSET S 5 {0,15ⁿ

• THERE EXIST STATES WHICH ARE PSEUDORANDOM ----- D CANNOT BE DISTINGUISHED CONSEQUENCE:



- HE (SHE / THEY ARE ALLOWED TO USE A POLY-TIME BOUNDED MEASUREHENT SCHEME

THE COMPUTATIONALLY BOUNDED OBSERVER

BY PURELY RANDOM STATES

$$M_{S} = \frac{1}{\sqrt{|S|}} \sum_{x \in S} |x\rangle$$

= $\frac{1}{\sqrt{|S|}} \sum_{x \in S} |x\rangle$
= $\frac{1}{\sqrt{|S|}} \sum_{x \in S} |x\rangle$

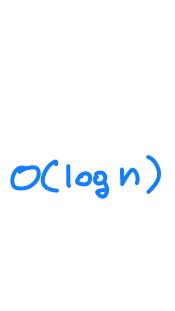
• MAGIC IS THE "FUEL" THAT PREVENTS CLASSICAL SIMULABILITY OF QUANTUM STATES. ۲

• IT CAN BE DEFINED AS ENTROPY THROUGH PAULI MATRICES

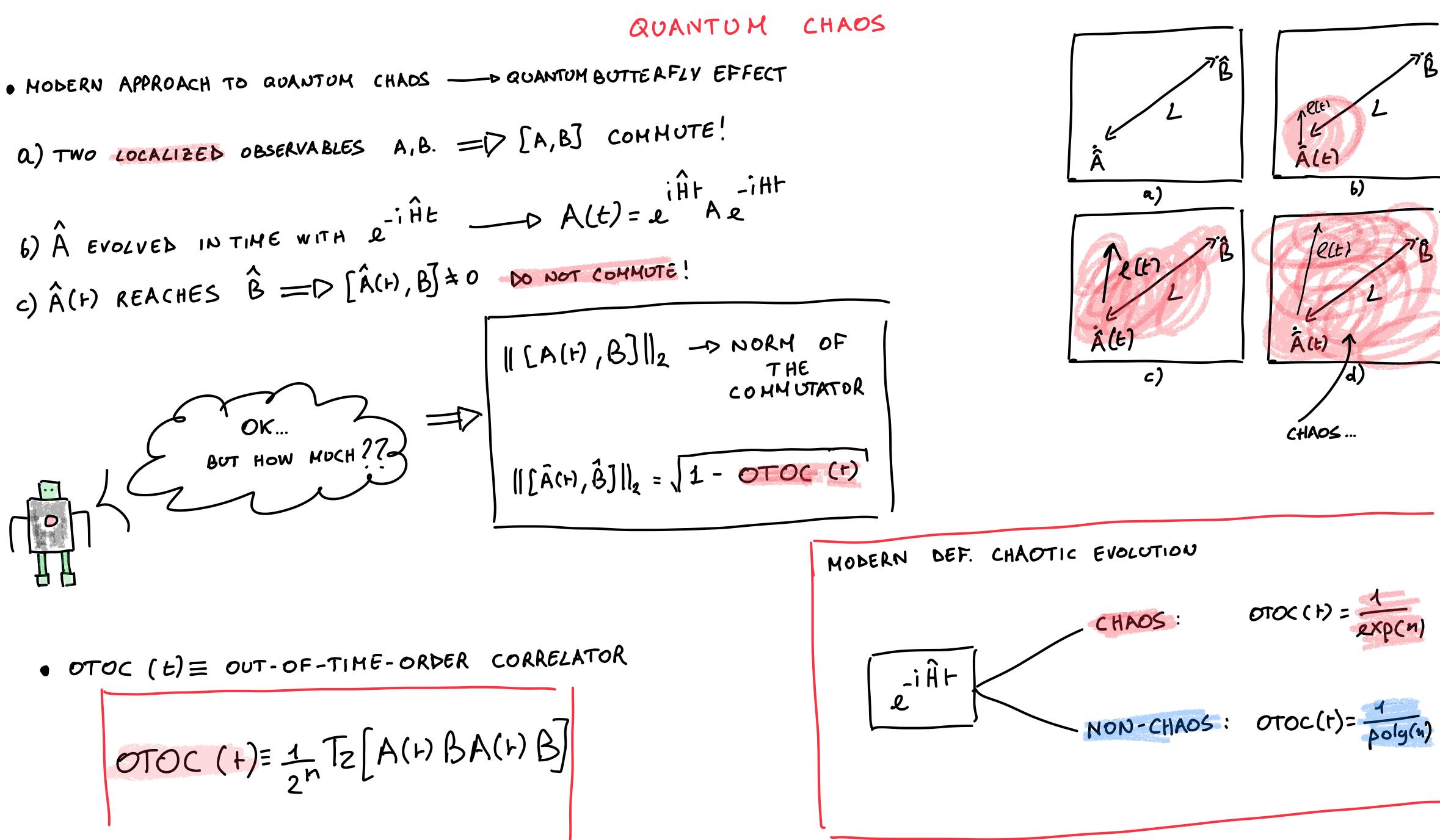
$$I = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}; X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; Y = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; Z = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix};$$

1)
$$2\sum_{p}^{n} c_{p}^{2} = 1$$
 NORMALIZED
2) $C_{p}^{2} \ge 0$ POSITIVE

MAGIC IN QUANTUM STATES

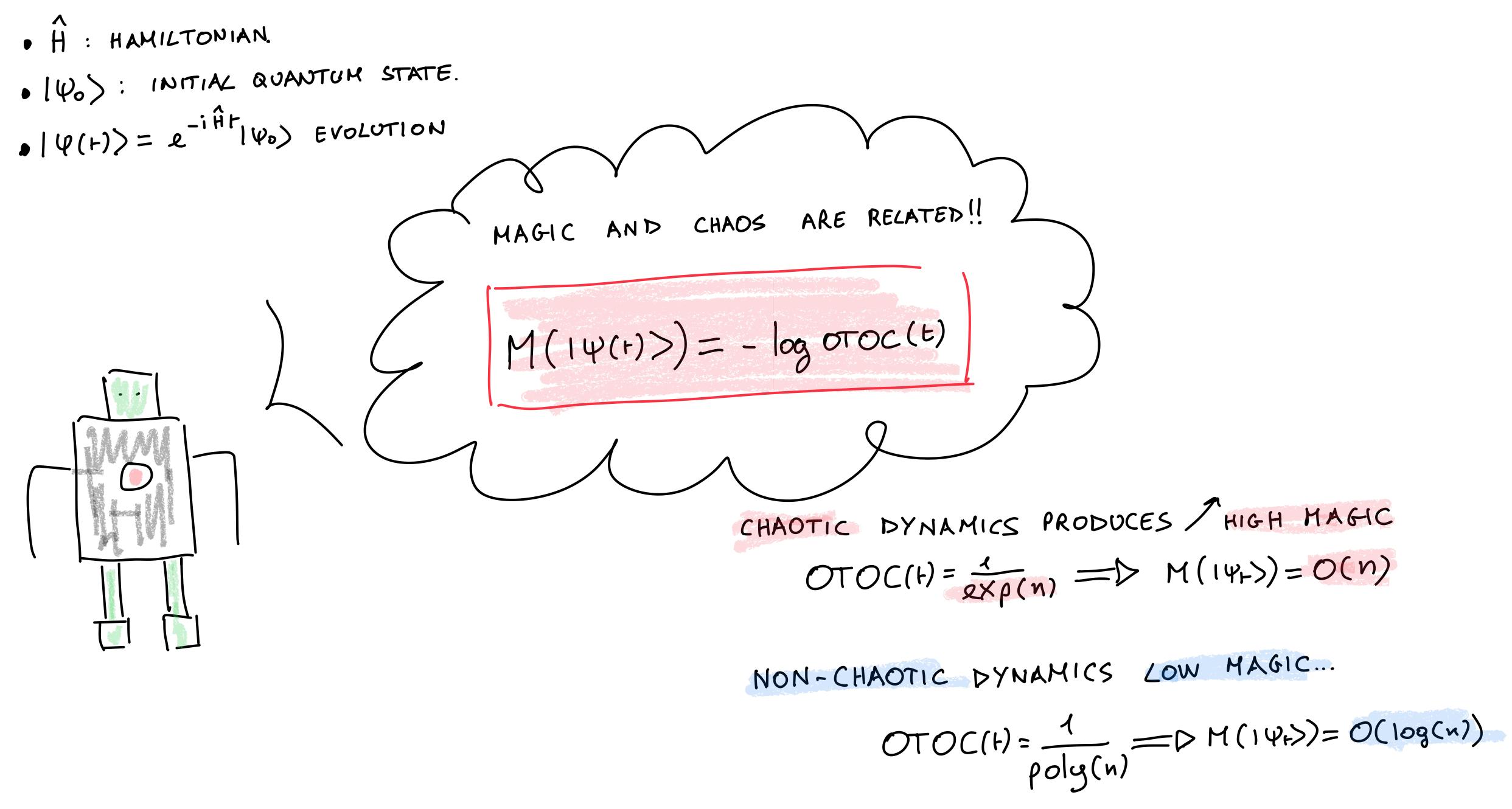


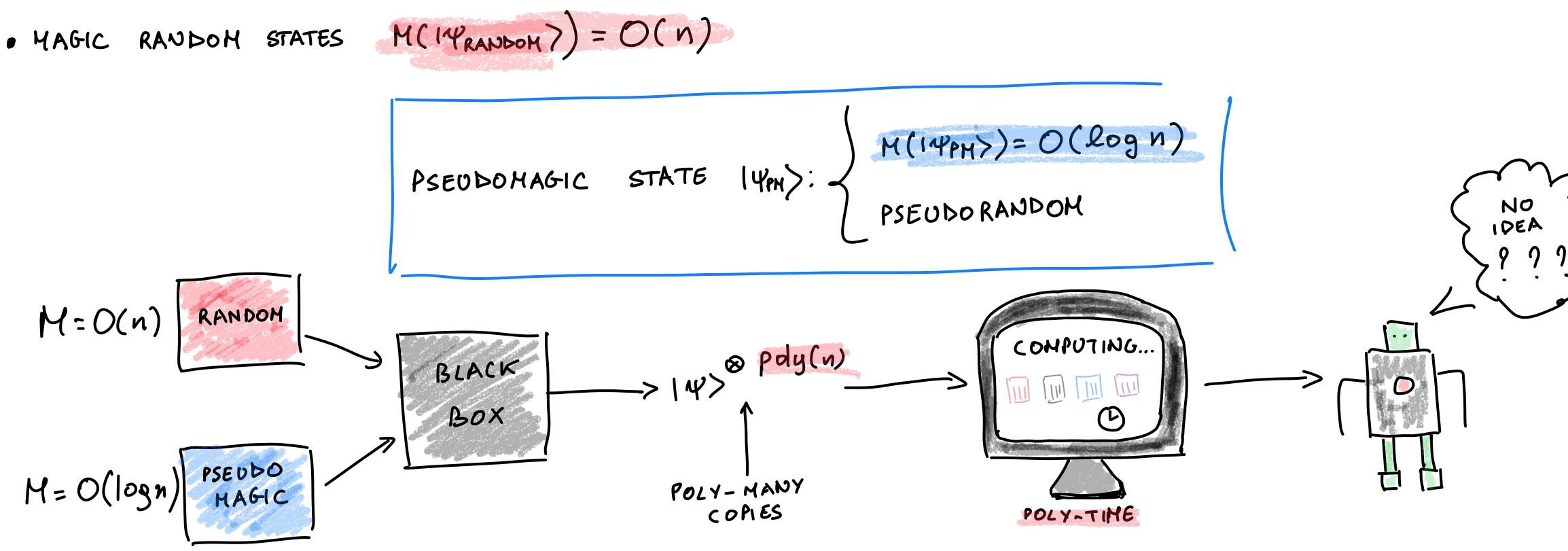




$$OTOC(+) = \frac{1}{2^{n}} T_{Z} [A(+) BA(+) B]$$

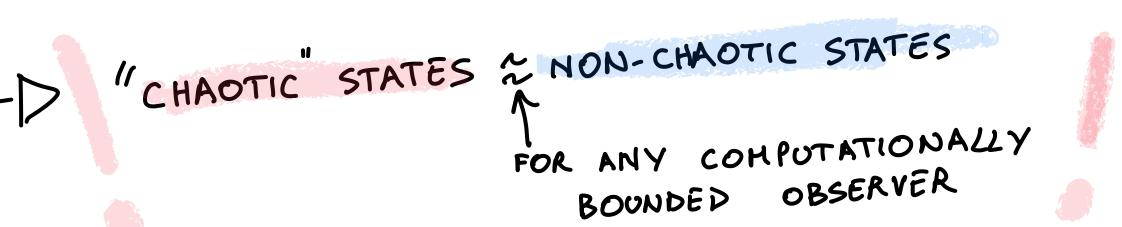
MAGIC IN QUANTUM STATES = CHAOS IN QUANTUM DYNAMICS





CONSEQUENCES : 1) TOO MUCH "FUEL" IS MAYBE USELESS O(logn) ≈ O(n) 2) CHALLENGE QUANTUM CHAOS

PSEUDOMAGIC QUANTON STATES



Thanks.