







## Searching for TeV-emitting candidates among the X-ray bright blazar population

Antonio Iuliano (INFN Sezione di Napoli), Stefano Marchesi, Paolo Da Vela, Davide Miceli, Elisa Prandini, Michele Doro, Roberta Zanin

18 Dicembre 2024 Re[Incontri] di Fisica Partenopea, Napoli









## Introduction

- Blazars: Active Galactic Nuclei (AGN), with the jet direction closely aligned to the line of sight of the observer
- Emission over a wide range of wavelengths, from radio-waves to gamma-rays
- Important targets for multiwavelength observations, and theoretical modeling of their spectrum distributions











# **Goal of the project**

- Investigate currently available observations of known blazars, with a complete and unbiased approach
- TeVCat: an online catalog for TeV Astronomy, listing sources from all available observations
- Due to limited Field of View, input of candidate positions needed for pointing of Cherenkov telescopes, to detect new TeV sources
- Currently, high uncertainty in predicted number of detectable sources. Two main approaches:
  - Extrapolation of Fermi-LAT results (Abdollahi, 2020)
  - Combination of IR and X-ray information (Arsioli, 2015)
- Focusing on the latter approach in this presentation



Map of TeVCat sources http://tevcat2.uchicago.edu/









## The 5BZCAT catalogue

- Goal: find TeV-emitting candidates from currently available X-ray observations of known blazars
- Starting point: the Roma Multifrequency catalog of blazars, 5th edition: https://www.ssdc.asi.it/bzcat/ 3561 blazars, selected on the basis of their radio emissions
- Four classes, according to multiwavelength properties: 5BZB, 5BZG, 5BZQ, 5BZU (colors as in sky distribution dots)
- Dividing the set of blazars in two groups, according to the presence or not of a counterpart in the Fermi-LAT 4FGL-DR4 catalog https://fermi.gsfc.nasa.gov/ssc/data/access/lat/14yr\_catalog/



sky distribution in galactic coordinates of the blazars in the 5BZCAT catalogue, from paper Astrophys Space Sci 357, 75 (2015)









## List of X-ray catalogs for cross-match

- XMM-Newton Catalog (>1300 deg<sup>2</sup>; 4XMM-DR13) http://xmm-catalog.irap.omp.eu/)
- Chandra (~560 deg<sup>2</sup>; CSC 2.0) https://cxc.cfa.harvard.edu/csc/)
- Swift-XRT (~3800 deg<sup>2</sup>; 2SXPS) https://heasarc.gsfc.nasa.gov/W3Browse/swift/swift2sxps.html
- NuSTAR (~6 deg<sup>2</sup>; NuBlazar) https://www.ssdc.asi.it/nustarblaz/

### eROSITA-DE (20627 deg<sup>2</sup>; eRASS1) https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/682/A34

### eRASS1 coverage,

From Vizier page, Acknowledgement: Andrea Merloni, am@mpe.mpg.de



Iuliano - VHE Blazars

### Missione 4 • Istruzione e Ricerca

←lon Galactic









# 5BZCAT sources detected in catalogs of X-ray sources

Marchesi S., Iuliano A. et al. accepted for publication at A&A

### https://doi.org/10.1051/0004-6361/202451924

| Catalog                | X-ray Instrument | Area Covered     | Sources | With <i>Fermi</i> -LAT | Without Fermi-LAT |
|------------------------|------------------|------------------|---------|------------------------|-------------------|
|                        |                  | $\mathrm{deg}^2$ |         |                        |                   |
| 4XMM-DR13              | XMM-Newton       | 1328             | 313     | 181~(58~%)             | 132~(42%)         |
| 2CSC                   | Chandra          | 560              | 218     | 131~(60%)              | 87~(40%)          |
| 2SXPS                  | Swift- $XRT$     | 3790             | 1666    | 1191~(71~%)            | 475~(29%)         |
| eRASS1                 | eROSITA          | 20627            | 1379    | 726~(52%)              | 653~(48%)         |
| NuBlazar               | NuSTAR           | 6                | 114     | 88(77%)                | 26~(23%)          |
| 4XMM-DR13 or 2CSC      |                  |                  | 464     | 271~(58%)              | 193~(42%)         |
| 2SXPS, no 4XMM or 2CSC |                  |                  | 1347    | 968~(72%)              | 379~(28%)         |
| eRASS1 only            |                  |                  | 624     | 189(30%)               | 435(70%)          |
| Overall                |                  |                  | 2435    | 1428~(59~%)            | 1007~(41~%)       |
| Of which in TeVCAT     |                  |                  | 77      | 77~(100%)              | 0(0%)             |









# **The Firmamento Platform**

- Web browser tool with an updated version of the VOU-Blazars software (Chang+19)
- Available on the web: https://firmamento.hosting.ny u.edu
- Accesses data from catalog at all wavelengths, in order to obtain SED distribution
- Resulting file can be used as input for fitting and extrapolation to TeV emission



#### Iuliano - VHE Blazars









# **Structure and peaks of a SED**

Marchesi S., Iuliano A. et al. accepted for publication at A&A

### https://doi.org/10.1051/0004-6361/202451924

- Presence of two peaks: Self Synchrotron Compton (SSC) and Inverse Compton (IC)
- First peak used for blazar classification, Low or High Synchrotron peaked
- Peak frequency provided with a BLAST fit (Glauch et al. 2022)





Iuliano - VHE Blazars









## **Multiwavelength distributions**

- First, studied the properties of the 464 sources matched by either the XMM-Newton or the Chandra catalog
- Compared multi-wavelength properties of Fermi-detected and not detected sources
- On average, lower x-ray flux and higher redshift for blazars without a Fermi-LAT counterpart



Marchesi S., Iuliano A. et al. accepted for publication at A&A

https://doi.org/10.1051/0004-6361/202451924

**Iuliano - VHE Blazars** 









## **Blazar classes separation**

- Adding the information from the 2SXPS catalog
- Breaking down the sample according to the blazar classes (FSQR, BLL, BLL + host, BCU)

- Here, showing sources without a Fermi-LAT counterpart
- Added TeVCAT for comparison reference from detected blazars
- Presence of a Fermi-undetected population overlapping with the TeVCAT region, mostly BL Lac class blazars



Marchesi S., Iuliano A. et al. accepted for publication at A&A

https://doi.org/10.1051/0004-6361/202451924

Iuliano - VHE Blazars









## X-ray to radio flux ratio

- Efficient predictor of TeV detectability
- Significant population of sources with high peak, high x-ray to radio flux ratio
- Weaker x-ray flux, not already detected in gamma by Fermi-LAT



Marchesi S., Iuliano A. et al. accepted for publication at A&A

https://doi.org/10.1051/0004-6361/202451924



#### Iuliano - VHE Blazars





= 2311.6



10-2

 $10^{-5}$ 

 $10^{-11}$ 



10<sup>13</sup>

1045

# **SED** selection and analysis

- Selecting sources with high x-ray to radio flux ratio = 10<sup>-11</sup> (ratio > 2000) Ņ
- Adding:
  - Light curve from the Zwick Transient Facility, a wide field survey of the optical transient sky (https://irsa.ipac.caltech.edu/Missions/ztf.html)
  - A template from Markarian 501, rescaled to the data of our source
  - Note: Swift data labelled in pink





Time (MJD)

Firmamento RA=179.289708 Dec=28.366861 Energy<sub>observer frame</sub> [eV]

 $10^{7}$ 

 $10^{10}$ 









# **SED** selection and analysis

- Selecting sources with high x-ray to radio flux ratio (ratio > 2000)
- Adding:
  - Light curve from the Zwick Transient Facility, a wide field survey of the optical transient sky (https://irsa.ipac.caltech.edu/Missions/ztf.html)
  - A template from Markarian 501, rescaled to the data of our source













## **Constraints from Fermi non detection**

- A reliable modeling of the Source SED needs to include not only the measured data from the X-ray and other bands, but also the upper limits from the Fermi in the gamma range
- To compute the upper limits, performed analysis with the user-friendly EasyFermi GUI-based tool

R. de Mezenes, Astronomy and Computing, (2022) **40**, 10069, doi: 10.1016/j.ascom.2022.100609

• Allows to perform all the steps of a Fermi-analysis, from data selection up to SED plotting









[σ]

Significance



# **Example of EasyFermi upperlimits**

- For source 5BZBJ0250-2129
- Same time range of the Fermi 4FGL-DR4 catalog (4 August 2008 to 2 August 2022)
- Energy range 100 MeV 1 TeV





Iuliano - VHE Blazars







eRASS1

1115709.5+282201

eRASS1

025018.8-212942



## **Current data and CTAO sensitivity**

- Public Instrument Response Functions (IRF) from the Cherenkov Telescope Array Observatory (CTAO, prod5 version v0.1):
  - https://www.ctao.org/for-scientists/performance/
  - https://doi.org/10.5281/zenodo.5499840
- To do:
  - Discarding sources with predicted TeV emission below sensitivity
  - Identifying possible candidates detectable by CTAO after 50 h of observations











# Conclusions

Next steps:

- Model spectral distributions of interesting sources
- Possible application of Machine Learning tools
- Provide a catalog of sources with detectable TeV emission Special thanks:
- CTA+ Project, in particular my local responsible Carla Aramo
- The CTAO EGAL Working Group for their kind suggestions
- Paolo Giommi, for his kind assistance with the VOU-Blazars code and Firmamento









## Thank you for your attention



**Iuliano - VHE Blazars** 









## **Backup slides**



**Iuliano - VHE Blazars** 









## NuBlazar and eRASS1 catalogues

- NuBlazar (MNRAS 514, 2022): catalog of 124 sources from NuStar measurements
- Already included in VOU-Blazars catalog lists used in our analysis
- Making an independent check of building SEDs directly from NuBlazar list
- From NuBlazar (orange) list, returned 54 sources with eRASS1 data (red)





Ministero dell'Università e della Ricerca



Finanziato dall'Unione europea NextGenerationEU

## **SED of outliers**



In red: data from the eROSITA eRASS1 catalogue In blue: data from other catalogues

Iuliano - VHE Blazars

Missione 4 • Istruzione e Ricerca

INAF

ISTITUTO NAZION

DI ASTROFISICA









## Fit parameters MMDC (Soprano)

| Parameter                                    | Units        | Symbol            | Minimum    | Maximum   | Type of distribution |
|----------------------------------------------|--------------|-------------------|------------|-----------|----------------------|
| Doppler boost                                | -            | δ                 | 3          | 50        | Linear               |
| Blob radius                                  | cm           | R                 | $10^{15}$  | $10^{18}$ | Logarithmic          |
| Minimum electron injection<br>Lorentz factor | -            | $\gamma_{ m min}$ | $10^{1.5}$ | $10^5$    | Logarithmic          |
| Maximum electron injection<br>Lorentz factor | -            | $\gamma_{ m max}$ | $10^{2}$   | $10^{8}$  | Logarithmic          |
| Injection index                              | -            | p                 | 1.8        | 5         | Linear               |
| Electron luminosity                          | $erg.s^{-1}$ | $L_e$             | $10^{42}$  | $10^{48}$ | Logarithmic          |
| Magnetic field                               | G            |                   | $10^{-3}$  | $10^{2}$  | Logarithmic          |









## Outlier SEDs and Light Curves



Colors according to energy band: Red: x-ray Blue: Optical Green: Infrared Cyan: Radio Violet: UV

Iuliano - VHE Blazars









## **Modeling of blazar SEDs**

- Selected a subsample of blazar candidates with high X/radio ratio
- In order to estimate TeV emissions, modelling the SED with the online platform Markarian Multiwavelength Data Center (MMDC): https://mmdc.am/
- Publicly available tool, employing Convolutional Neural Networks
- Employing the Self Synchrotron Compton (SSC) model to perform a fit with seven free parameters, provided the SED and the redshift

### D. Bégué et al 2024 ApJ 963 71











# Synchroton peaks with and without eROSITA

- Synchrotron peaks computed by BLAST for eRASS1 counterparts of 5BZCAT, without a Fermi detection and the 5BZQ component
- Comparing the peak before and after the addition of new eROSITA data
- Consistent distributions for most of the data, except for a few high peak sources
- Cross-checking SEDs of outliers



Histogram of Synchrotron peaks from Blast

### Iuliano et al. (in prep.)









### 5BZBJ1357-0146

### **Outlier SEDs and Light Curves**













### **Outlier SEDs and Light Curves**



- Since eRASS1 data are more recent, difference may be explained with blazar variability in the X-ray band
- However, only a few points in the X-ray band, and far in time