

Fisica freelance

Fernando Gargiulo

Re[Incontri]

Physics Department "Ettore Pancini", University of Naples "Federico II"

December 19th, 2024

Self Introduction

Fernando Gargiulo

Theoretical Physicist, got my **MSc in 2011 from "Federico II**", supervisors: Prof. Carmine Antonio Perroni, Prof. Vittorio Cataudella, and lamented Prof. VIncenzo Marigliano Ramaglia

<u>2011-2015</u>: PhD in Computation Physics of Condensed Matter on electronic transport, École Polytechnique Fédérale de Lausanne

<u>2016-2017</u>: developer and project manager for an EPFL-incubated startup (AiiDA)

2017-2021: Enel and EnelX (Rome and U.S.):

- 1. Data Scientist at first (Energy and Commodity Market forecasts)
- 2. Computational Scientist later on (optimizing smart grid operations)

2022: Post-Doc at Enrico Fermi Institute (Rome) in Development Economy

2023-present: high-school teacher of Math and Physics

2022-present: freelance Physicist

Google Scholar, Linkedin

SPSI. AiiDA enel enel x CENTRO RICERCHE

Teaching Physics (Part-time) at the high-school

Public High-School Don Lorenzo Milani, Gragnano (Naples)

Physics at the high-school

Current situation:

3 hours per week (out of a 30 hours' timetable), in which you should/could fit:

- 1. theory
- 2. experiments in the lab
- 3. technology
- cross-disciplines activities 4.

(including "civics")

5. students' evaluation

Is this anyhow achievable?

My very personal answer is: **clearly no**!

Verso le equazioni di Maxwell					Le formule		
	Le proprietà fondamentali del campo magnetico sono riassunte in due equazioni:				Il teorema di Gauss per il campo magnetico e il teorema di Ampère		
		e corrispondenti che rigi		o, esse formano l'insieme lla ricorda il loro signifi-	$\Phi_{s}(\hat{B}) = \hat{B} \cdot \hat{S}$ $\Phi_{\alpha}(\hat{B}) = \sum_{i=1}^{n} \hat{B}_{i} \cdot \Delta \hat{S}_{i}$	piana è il prodotto scalare del vettore campo magnetico B per il vettori	
EQUAZIONE	GRANDEZZA	CHE COSA DICE	CHE COSA SIGNIFICA	CHE COSA COMPORTA	1/2-	un campo magnetico \hat{B}_i (per $i = 1, 2,, n$) circa uniforme;	
Teorema di Gauss per il campo elettrico: $\Phi_{\alpha}(\hat{E}) = \frac{Q_{ac}}{\epsilon_0}$	Flusso $\Phi_0(\hat{E})$ del campo elettrico attraverso una superficie chiusa Ω nel vuoto.	elettrico che esce da	Le cariche elettriche sono sorgenti di campo elettrico. Le linee del cam- po elettrico sono aperte, escono dalle cariche positive e entrano su quelle negative. Le cariche esterne a una superficie chiu- sa non contribuisco- no al fusso netto da essa uscente.		 rappresentando ogini parte con un vettore superficie ΔŠ, uscenter faccia fissata di Ω; sommando gli n prodotti scalari B̃, AŠ, L'unità di misura del flusso del campo magnetico è li weber (Wb). 		
					$\Phi_{\alpha}(\hat{B}) = 0$	Il teorema di Gauss per il campo magnetico: il flusso di campo magnetico uscente da una superficie chiusa è sempre nullo. + p. 42	
					$\Gamma_{\mathcal{L}}(\hat{B}) = \sum_{j=1}^{n} \hat{B}_{j} \cdot \Delta \hat{I}_{j}$	La circuitzatione del campo magnetico lungo una linea L, chiusa e orientata, si calcola: • suddividende L in n piccoli spostamenti A ¹ ₂ (per j = 1, 2,, m), a ciascunc dei quali corrisponda un campo magnetico B, circa uniforme: • sommando dui prodotti spatia B; a ¹ ₂ .	
rorema della recuitazione per il mpo elettrostatico: $_{c}(\tilde{E}) = 0$	$\begin{array}{l} \text{Circuitazione} \ \Gamma_{\mathcal{L}}(\hat{E}) \\ \text{del campo elettrostati-} \\ \text{co lungo una linea} \ \mathcal{L} \\ \text{(chiusa e orientata).} \end{array}$	La circuitazione del campo elettrostatico è nulla, qualunque sia la linea chiusa e orientata lungo cui è calcolata.	Il campo elettrostatico è conservativo.	Permette di definire il potenziale elettrico.	d d	Una corrente concatenata con una linea £ chiusa e orientata: • passa attraverso una superficie qualsiasi, piana o curva, contornata da £ • positiva, e uguale all'intensità di corrente i, se il campo magnetico da essa generate è orienta nel verso dl £:	
Teorema di Gauss per il campo magnetico: $\Phi_{\pm}(\bar{B}) = 0$	Flusso $\Phi_n(\hat{B}) del campo magnetico attraverso una superficie chiusa \Omega.$	Il flusso di campo magnetico che esce da qualunque superficie chiusa è nullo.	Le linee del campo ma- gnetico non hanno nè inizio nè fine.	Esclude l'esistenza di poli magnetici isolati (monopòli): ogni ma- gnete ha sempre un polo nord, attraverso cui le linee di campo escono, e un polo sud, attraverso cui le linee di campo rientrano per chiudersi.	$i_{int} = \sum_{k=1}^{n} i_k$		
					$\begin{split} \Gamma_{\mathcal{L}}(\vec{B}) &= \mu_0 i_{tot} \\ & \cos \mu_0 = 4\pi \times 10^{-7} \frac{N}{A^2} \end{split}$	Il teorema di Ampère: la circuitazione del campo magnetico, calcolata lunge una linea chiusa \mathcal{L} posta nel vuoto, è uguale al prodotto della permeabilità magnetica del vuoto μ_i per la corrente totale $i_{i,a}$ concatenata con \mathcal{L} . + p. 42	
eorema di Ampère: $_{\mathcal{L}}^{\ell}(\tilde{B}) = \mu_0 i_{tot}$	$\begin{array}{l} & \text{Circuitatione } \Gamma_{\mathcal{L}}(\tilde{\mathcal{B}}) \\ \text{del campo magnetico} \\ \text{statico lungo una linea} \\ \mathcal{I} (chiusa e orientata) \\ \text{nel vuoto,} \end{array}$	La circuitazione del campo magnetico lungo qualunque linea chusa \mathcal{L} è diretta- mente proporzionale alla corrente totale concatenata, cioè alla corrente che attraversa una superficie delimi- tata da \mathcal{L} -	 Il fatto che Γ_k(β) dipenda dalle correnti indica che le correnti iono sorgenti di campo magnetico. Il fatto che Γ_k(β) possa esserte diversa da zero indica che il campo magnetico non è conservativo. 	Determina il modulo del campo magnetico generato da correnti elettriche con parti- colari simmetrici, per esempio dalla corrente che percorre un con- dutore cilindrico in- finito e da quella di un solenoide infinito.	$B = \frac{\mu_0}{2\pi} \frac{i}{R} r (\text{per } 0 \le r \le R)$ $B = \frac{\mu_0}{2\pi} \frac{i}{r} (\text{per } r \ge R)$)) Una corrente omogenea lungo un cilíndro infinito di raggio R genera un campo magnetico 8 cui modulo 8: • si può calcolare applicando li teorema di Ampère; • alindrema, per los ≤ R è deiratamente proporzionale all'internistà di comente i e alla distanza ra d'all'asso: all'estema per per R è descrito calla legge di Biot-Savart, ossià è direttamente proporzionale a r. e p. ez direttamente proporzionale a r. e p. es direttamente p	

Physics at the high-school

Problem: I have to make the yearly planning of my educational activities realistic!

Consequence 1: I need to make drastic choices (*I have time to fit a small fraction of the whole menu*)

Consequence 2: I need to ask myself what are the goal of physics class at high-school, what I am reasonably capable to teach.

Consequence 3: We, the teachers, need to continually experiment, get feedback and act consequently

Hard truth: We fail all the time....but sometimes we don't. I am here to talk about one time I didn't fail.

Computational Physics at the high-school?

Computational Physics (as I see it) is: using numerical methods to find approximate solutions to physics equations, that is:

- 1. you choose a problem
- 2. ... choose the equation that describe the problem
- 3. ... realize it is too hard or just impossible to solve those equations
- 4. ... choose a technique to approximate the solution
- 5. ... implement the solving algorithm
- 6. ... look at the results and figure out whether they make any physical sense
- 7. ... they won't...so you go back to point 4
- 8. ... eventually everything will make sense

- 1. something you like!
- 2. ...ask yourself what the equations mean
- 3. ...understand science has limits to overcome
- 4. ...do some research and make decisions!
- 5. ...code (well, GPT will help, nowadays)
- 6. ... give physical sense to tables, plots,
- 7. ... understand research is an iterative process
- 8. ... get a boost of self-esteem!

But Computational Physics is hard, isn't it?

Well...a newborn feels at ease in the water much more than a kid!

Think of Euler's method for ordinary differential equations:

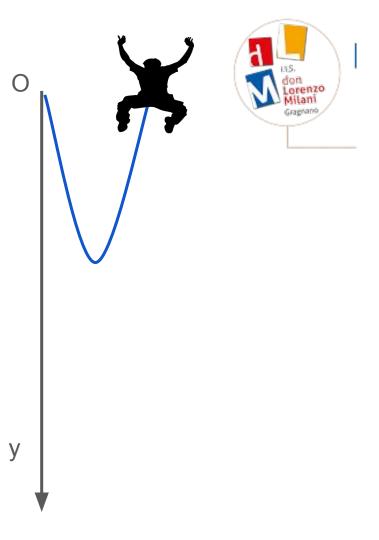
 $F = m \frac{\Delta v}{\Delta t}$ but they'll understand this:

Students won't understand this: $\mathbf{F} = m \frac{d\mathbf{v}}{dt}$

Some cool problem

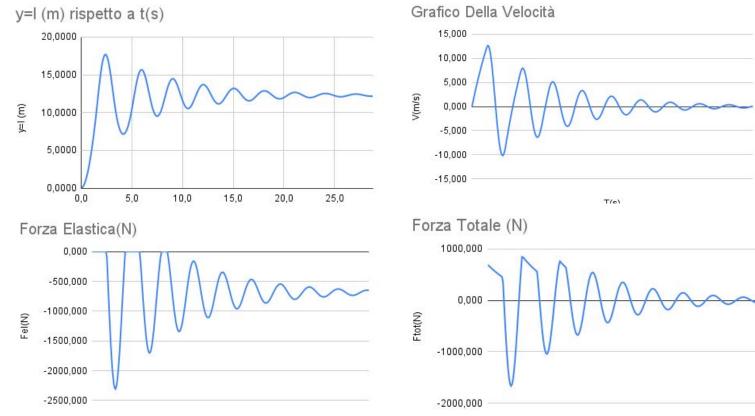
Prof. Fernando, can we simulate **bungee jumping** with viscous damping?

Eeehhmmm.... weeeeellll....


sure!

The problem

- 1. $y(t + \Delta t) = y(t) + v(t)^* \Delta t$ (position)
- 2. $v(t + \Delta t) = v(t) + a(t)^{*}\Delta t$ (velocity)
- 3. a (t) = F(t) / m *(acceleration)*
- 4. $F(t) = mg + F_{elastic} (t) + F_{viscous} (t) (force)$
- 5. $F_{elastic} = -k * (y(t)-I_0) \text{ if } y>I_0 \text{ else 0 (elastic)}$
- 6. $F_{viscous} = -k v(t)$ (air friction)



Computational implementation on a spreadsheet

Bungee Jumping - Computational treatment

Final plots (credits to Vincenzo Somma, 3B SA 2023/2024)

T(s)

T(s)

Fisica freelance

What can a Physicist do as a freelance?

My personal short answer is:

any modelling that a consolidated standard software does not do (or does not do as well as you would do)

Freelance topic for a Physicist

Modelling:

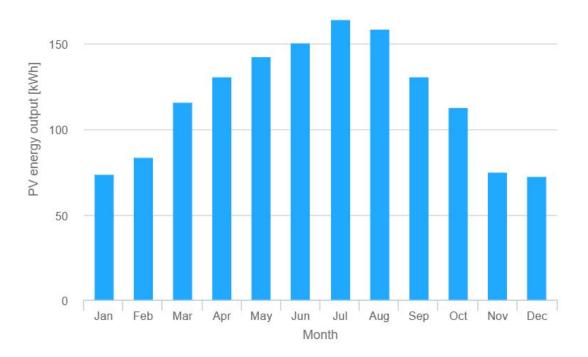
. . .

- 1. Thermal modelling
- 2. Acoustic
- 3. Renewable energy modelling
- 4. Energy consumption optimization
- 5. Factory processes' simulations

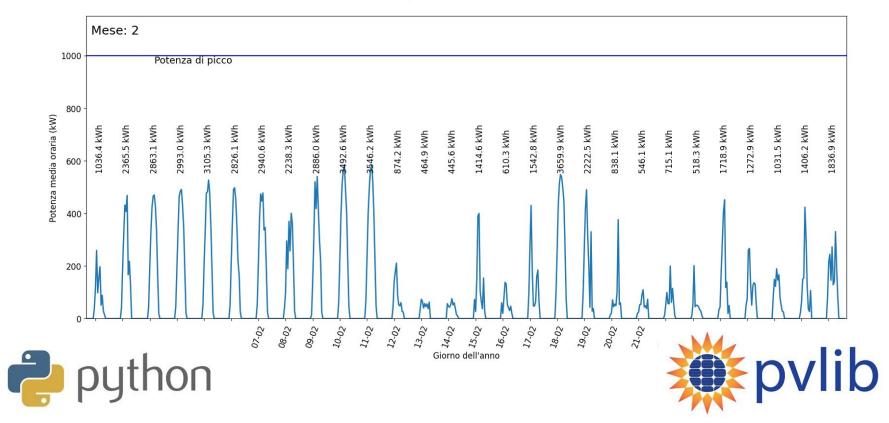
Physics-related activities requiring a certificate issued by an authorities

Es:

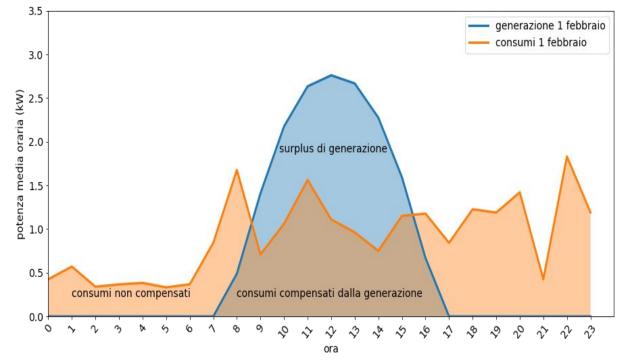
- 1. Phonometry
- 2. Thermography
- Esperto in Gestione dell'Energia (EGE)
- 4. Relazioni tecniche per bandi di finanza agevolata


Simulating a photovoltaic solar plant

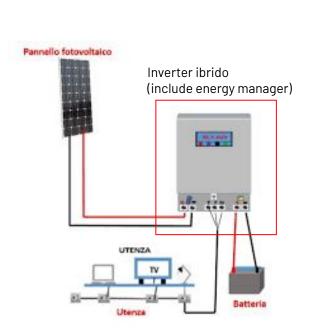
Isn't there any software that does that out of the box?

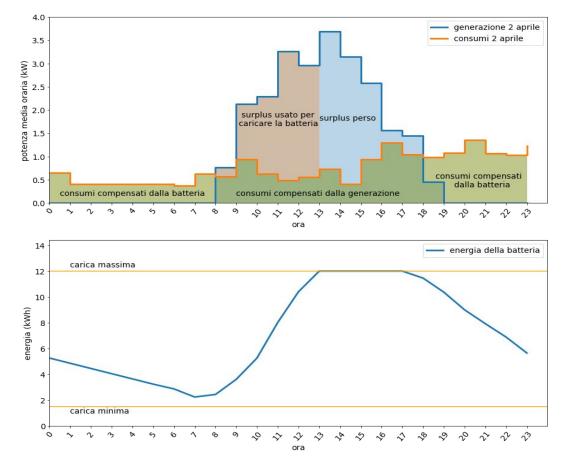

They generally provide you with the some very **aggregated value of energy** generated by the plant

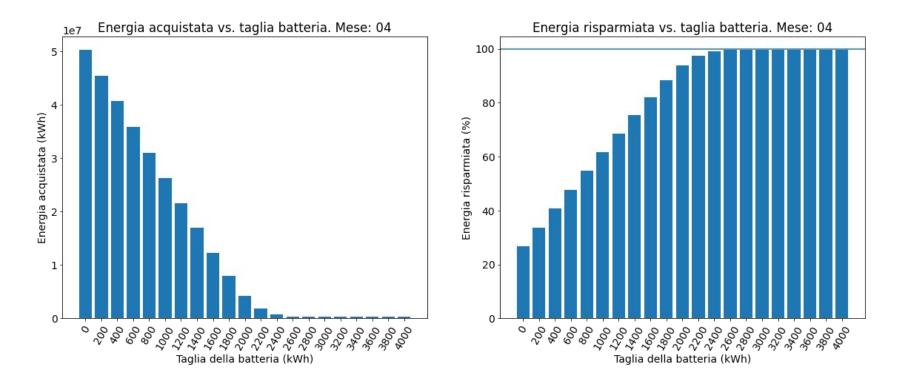
Sure! There's quite a few, but


. . . .

Custom-time-resolved PV generation




Time overlap between Load and PV Generation


N.B. Since 2022, it is possible to download your electricity consumption data with 15-minute resolution from <u>e-distribuzione.it</u>

Same as before but with storage

Year-round simulation

La figura dell'esperto in gestione dell'energia (EGE)

Estratto dalla norma UNI-CEI 11339:

L'EGE è la figura professionale che:

- 1. **gestisce** l'uso dell'energia in modo efficiente
- 2. coniugando conoscenze nel campo energetico (ivi comprese le ricadute ambientali dell'uso dell'energia)
- 3. con competenze gestionali,
- 4. economico-finanziarie
- 5. e di comunicazione,
- 6. mantenendosi continuamente e costantemente aggiornata sull'evoluzione delle tecnologie, delle metodologie e della normativa energetico-ambientale.

In tal modo, l'EGE si pone l'obbiettivo di migliorare il livello di efficienza energetica e/o di ridurre i consumi di energia primaria e le emissioni di gas clima-alteranti legate all'utilizzo dell'energia, *di incrementare in qualità e/o in quantità i servizi forniti comunque attinenti all'uso razionale dell'energia.*

CORSO Esperto in Gestione dell' Energia Ph.D. Fernando Gargiulo