Understanding the Universe with neutrinos

DE CIENCIA, INNOVACIÓN <u>Y UNIVERSIDADES</u>

Energéticas, Medioambientales y Tecnológicas

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II - DIPARTIMENTO DI FISICA "ETTORE PÄNCINI"

Inés Gil Botella 8 October 2024

Outline

1. Neutrinos and Particle Physics

- 2. Neutrino detection
- 3. Messengers of the Universe
- 4. Major challenges and future discoveries
- 5. Conclusions

• The visible is only a small part of the energy and mass of the Universe

there are 1 000 000 000 neutrinos!!

• For every electron, proton and neutrino in the Universe,

• To understand the Universe, we have to understand neutrinos

4000 neutrinos per second

 $\overline{\mathbf{u}}$

and in case of

65 billion neutrinos per cm2 per second

Several billion neutrinos in 10 seconds

STATISTICS

<u> a shi ne shekara ta 1980 ha</u>

Andrew Marie Library

ARANY

300 relic neutrinos per cm3

 $\sqrt{2\pi}$

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$

 R_{μ}

Neutrinos are constantly bombarding us… **…BUT… they are harmless…**

Only 1 neutrino in several billions is intercepted when traversing the Earth

Neutral particles, almost impossible to catch them, traverse all media and they are extremely abundant

FERMIONES

BOSONES

1 Neutrinos and Particle Physics

• The last 20 years have been a **revolution for neutrino physics**

- Observation of neutrino oscillations → **non-vanishing neutrino mass** (flavor mixing)
- First evidence of physics beyond the Standard Model

- The only neutral fermion in the SM
- Very weak interaction with matter
- 3 types of neutrinos
- Only left-handed neutrinos have been detected
- Much lighter than their charged leptonic partners (in the SM they are massless)
- Together with photons, they are the most abundant elementary particles in the Universe

Neutrinos and the Standard Model

11

Main open questions

However, there are **fundamental unanswered questions**:

- ◆ What is the mass of neutrinos?
- ◆ Are neutrinos their own antiparticle? Dirac or Majorana?
- ✦ Why are neutrinos much lighter than the other fermions?
- ✦ What is the neutrino mass ordering?
- ✦ Is there CP violation in the lepton sector? CP-phase value?
- ✦ Are there any sterile neutrino states? If so, what are their masses?
- ✦ Deviations from unitarity of the PMNS matrix?

Connection with astrophysics and cosmology

- ✦ High-energy neutrino physics
- ✦ New astrophysical sources
- ✦ Core-collapse supernova and diffuse SN neutrino background
- ✦ Relic neutrinos from early Universe
- ✦ Matter-antimatter asymmetry relation
- ◆ Sterile neutrinos as dark matter?

Neutrinos as **probes of the Universe**:

Neutrino interactions

- Magnitud:
	- A GeV **proton** travels **10 cm in lead**!!
	- **Neutrinos** produced by accelerators (~GeV) travel (on average) **1.500 millions of km in lead** before interacting
	- **Neutrinos** produced by the Sun (~1000 times less energetic ~MeV) travel (on P average) **1.5 light-years in lead** before interacting
- Neutrinos only interact **with members of their own family** (electron, muon or tau)
- The identification of the partner charged particle allows us to know the type (flavor) of the neutrino

14

Neutrino disappearance

Neutrino sources

NATURAL

ARTIFICIAL

Neutrino fluxes at Earth

Neutrino detectors

Neutrino detectors

Underground laboratories

Neutrinos

Solar neutrinos

Prediction (J. Bahcall): 1 Ar atom per day Measurement (R. Davis): 1/3 of prediction!!

2/3 of neutrinos are missing !!

No explanation over 30 years

- Expected: 2 times more v_{μ} than v_{e} $2v_\mu \sim v_{\rm e}$
- Found:

 $V_{\mu} \sim V_{e}$

Atmospheric neutrinos

Kamiokande and IMB detected atmospheric neutrinos in the 80's

The idea of oscillations

This phenomenon is only possible if neutrinos have different masses

B. Pontecorvo (1957)

Quantum interference phenomenon in which a neutrino of a certain flavor is transformed into a neutrino of a different flavor

Detection of neutrino oscillations

νe**?**

νµ?

ντ?

µ

τ

e

Oscillation probability

$$
P(\nu_{\alpha} \to \nu_{\beta}) = (\sin^2 2\theta) \text{ si}
$$

$$
\Delta m^2 = m_2^2 - m_1^2
$$

COLUMNATION

For 3 neutrinos:

2 values of Δm^2 (Δm^2 ₂₁, Δm^2 ₃₂)

3 values of θ (θ ₁₂, θ ₂₃, θ ₁₃)

The discovery of neutrino oscillations (1998)

- SNO: 1000 ton heavy water (D_2O) in the Sudbury mine (Canada)
- Able to measure all types of neutrinos from the Sun
- Reaction sensitive to **all types** of neutrinos (NC)

 $|v_x + d \Rightarrow p + n + v_x|$

- $V_e + d \Rightarrow p + p + e^-$
- In case of no oscillations: $\Phi_{NC} = \Phi_{CC}$
- If neutrinos oscillate: $\Phi_{NC} \neq \Phi_C$

• Reaction only sensitive to **electron neutrinos** (CC)

Result: Φ_{CC} / Φ_{NC} = 0.301 \pm 0.033 ΦNC in agreement with SSM Part of v_e converted into v_μ and/or v_τ

Solar neutrino anomaly solved (2001)

Only νe are emitted from the Sun by fusion reactions

Neutrinos have mass!!

- Evidence that the **Standard Model of Particles is not complete**
- Can this observation open the door to new Physics beyond the SM?

The Official Web Site of the Nobel Prize

But we don't know it we us.
their value yet

Neutrino mass measurements

• **Direct measurements**:

Tritium beta decay experiments:

✦ KATRIN 2022: **m < 0.8 eV (90% CL)**

✦ KATRIN (goal): m < 0.3 eV (90% CL) in 2026

• **Neutrinoless double beta decay**:

- ✦ If measured, neutrinos are Majorana particles
- ✦ GERDA, EXO, CUORE, CUPID, NEMO-3, KamLAND-Zen: **mββ < 28-122 meV (90% CL)**

 \blacklozenge Future ton scale: m_{ββ} < 10 meV (only IO)

 \triangle N_{eff} = 2.99 $+0.34$ _{-0.33} (Planck TT, TE, EE +low E +lensing +BAO)

From oscillations: m_{ν} > 0.05 eV

• **Indirect measurements (Cosmology)**:

PLANCK 2018: A&A 641 (2020) A6

32

$$
m_{\beta\beta} = \sum_i U_{ei}^2 \cdot m_{v_i}
$$

$$
m_{v_e}^2 = \sum_i |U_{ei}|^2 \cdot m_{v_i}^2
$$

KATRIN

New KATRIN result (2024)

Other technologies (cyclotron radiation: Project-8; micro-calorimetry with holmium: ECHo, Holmes) **under development**

- **0νββ** has not been observed yet (lifetimes > 10²⁵ 10²⁶ y):
	-
	-
	- ✦ Most discussed mechanism: **light Majorana neutrino exchange**

Current status of 0ββ **searches**

Current and future sensitivity

Cosmology

$$
\sum m_{\nu}<0.072\;eV
$$

New result from **CMB** + **DESI BAO** (2024), 95%:

• Neutrinos are everywhere in the Universe and their presence and interactions must be **incorporated into astrophysical and cosmological models**.

• Cosmological neutrinos are very abundant

✦ They contribute to radiation at early times and to matter at

$$
\sum m_{\nu} > \begin{cases} 0.058 \,\text{eV} & \text{(NO)}\\ 0.10 \,\text{eV} & \text{(IO)} \end{cases} \text{from } \text{C}
$$

$$
\sum m_{\nu} < 0.21 \,\text{eV} \text{ (CMB)}
$$

$$
N_{\nu} = 2.9963 \pm 0.0074 \text{ from LE}
$$

$$
N_{\rm eff} = 2.98 \pm 0.20 \text{ (CMB)}
$$

-
- - late times
	- ✦ Cosmological observables can be used to test standard or non-standard properties
-

• Neutrino parameters: **sum of neutrino masses** (∑ mν) & **effective number of neutrinos** (Neff)

Messengers of the Universe

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

D

Earth

para na

BEEFEE

 \blacktriangleright

air shower

black

holes

AGNs, SNRs, GRBs..

Neutrinos They are weak, neutral particles that point to their sources and carry information from deep within their origins.

Cosmic rays

They are charged particles and are deflected by magnetic fields.

Neutrinos from core-collapse supernovae and DSNB

• Detection of **core-collapse supernova neutrinos** (99% SN binding energy emitted in $~10$ seconds by neutrinos) provides information about:

✦ Core-collapse explosion mechanism

✦ Neutrino properties

• Detection of **diffuse supernova neutrino background** (averaged neutrino flux from all supernovae)

✦ No detected yet

✦ Best upper limits from Super-K

Multi-messenger astronomy

High-energy neutrinos

 \rightarrow V_{μ}

 π

TV

 $\mathbf{z}^{\mathbf{s}}$

e

 \boldsymbol{e}

 \mathbf{v}_e

 $\mathsf{V}\mathrm{u}$

Astrophysical neutrinos - high-energy neutrinos

• **Atmospheric** neutrinos

✦ Up to 100 TeV

- **Cosmic** neutrinos (~TeV-PeV)
	- ✦ From AGN, GRB, SNR
- **Cosmogenic** neutrinos (PeV-EeV)
	- ✦ From cosmic ray interactions with CMB photons (not detected yet)
- Production: $p + \gamma \rightarrow n + \pi^+$ $\pi^+ \rightarrow \mu^+ + \nu_\mu$
- Detection of astrophysical neutrinos
	- ✦ Interaction with water/ice producing Cherenkov photons (shower vs tracks)

50 m

IceCube Laboratory

H.

Data from every sensor is collected here and sent by satellite to the IceCube data warehouse at UW-Madison

1450 m

Digital Optical
Module (DOM) 5,160 DOMs deployed in the ice

2450 m

DeepCore 8 extra strings

2820 m

IceCube

SECTION

bedrock

 \mathbf{z} , \mathbf{z}

IceTop

Eiffel Tower
324 m

 $\Delta = \eta_{\rm L}$

Amundsen-Scott South Pole Station, Antarctica A National Science Foundationmanaged research facility

86 strings

-
-
-
-

Future challenges and discoveries

Discovery opportunities in LBL experiments

• **CP violation**

- ✦ T2K and NOvA could reach 3σ sensitivity to CPV over the next years
- ✦ To reach discovery and precise measurement, larger detectors and (upgraded or new) beams are needed
- Neutrino **mass ordering**
	- ✦ Small preference for NO with current data (not conclusive)
- \bullet **Octant** of θ_{23}
	- \blacklozenge Maximal? $v_{\mu} \leftrightarrow v_{\tau}$ mixing symmetric? If so, why?
- Neutrino anomalies: **sterile neutrinos**?
- **Solar** neutrinos: hep neutrino flux
- **Supernova** burst and Diffuse SN Neutrino Background detection
- **Beyond the Standard Model**: nucleon-decay, testing the 3 neutrino flavor paradigm

50

Unknown parameters: mass ordering (sign of Δm^2_{31}), δ_{CP} , octant of θ_{23}

Global fit information

- Global 6-parameter fit (including $\delta_{\rm CP}$):
	- **Solar**: CI + Ga + SK(1-4) + SNO-full (I+II+III) + BX(1-3);
	- Atmospheric: SK(1-4) + DeepCore;
	- Reactor: KamLAND + Dbl-Chooz + Daya-Bay + Reno;
	- Accelerator: Minos + T2K + NOvA;
- **θ²³ octant** is **not resolved** yet (slight preference for the second octant)
- The sign of **Δm232** is **unknown** (Normal Ordering is preferred)
- **δCP unknown**: Tension between T2K and NOvA experiments for NO. CP-violation for IO at ~3σ

NuFIT 5.3 (2024)

Three large-scale projects under construction

- Next-generation Large Liquid Scintillator detector (20 kton)
	- ✦ Medium baseline **reactor experiment** (<L>=50 km) in China
	- ✦ Aim at much improved light yield and energy resolution ≈3%/√E(MeV)
	- ✦ Relatively shallow depth (700m overburden)
	- ✦ Expect to start data taking in 2025!
- ordaring determing • Design to reach 3σ precision on **mass ordering** determination after 6y + precise **solar oscillation parameters** (<0.5%) in 7y + other low-E physics

JUNO (Jiangmen Underground Neutrino Observatory)

Long-baseline neutrino accelerator experiments

 $P(\overline{\nu_{\mu}}) \rightarrow \overline{\nu_{e}}) \approx \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin}{\theta_{23}}$

 $+ \sin 2\theta_{23} \sin 2\theta_{13}$

 $+ \cos^2 \theta_{23} \sin^2 2\theta_{12}$

T2HK: Tokai to HyperK

- ✦ Minimize matter effects and maximize statistics to focus on CPV discovery (MO and other parameters must be known by other means) + non-beam physics program **▶ Measure first and second oscillation maxima to disentangle** CPV and matter effects and access to all neutrino oscillation parameters + non-beam physics program
- \triangle Narrow-band beam (~0.6 GeV; 500 kW \rightarrow 1.3 MW) and Water-Cerenkov detector (190 kt fiducial) Wide-band beam (0.5-5 GeV; $1.2 \rightarrow 2$ MW) and liquid Argon TPC (>40 kt fiducial)

DUNE: FNAL to SURF

$$
\frac{\sin^2(\Delta_{31} - aL)}{(\Delta_{31} - aL)^2} \Delta_{31}^2
$$

\n
$$
\sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \Delta_{31} \frac{\sin(aL)}{(aL)} \Delta_{21} \cos(\Delta_{31} \pm \delta_{CP})
$$

\n
$$
2 \frac{\sin^2(aL)}{(aL)^2} \Delta_{21}^2 \qquad \Delta_{ij} = \Delta m_{ij}^2 L / 4E_{\nu}
$$

\n
$$
a = \pm G_F N_e / \sqrt{2}
$$

Oscillation probability in matter

Hyper-Kamiokande

- Upgrade J-PARC neutrino beam with expected power 1.3 MW, 2.5o off-axis angle
- Baseline: 295 km
- WC Total mass: 260 kton pure water, Inner detector: 216 kton, Fiducial mass: **~200 kton (x 8 SK)**
- Between 20-40% photocathode coverage
- New cavern in a different part of Kamioka mine under construction (600 m rock overburden)
- Aiming to start operation in 2027

Hyper-Kamiokande sensitivity

-
- 1 σ resolution of δ_{CP} in 10 yrs ~20 $^{\circ}$ (6 $^{\circ}$) for δ_{CP} = -90 $^{\circ}$ (0 $^{\circ}$)
-

• Able to exclude CP conservation at 5σ for 60% of δ_{CP} values (if MO known) in 10 years for nominal power

• 4-6σ MO determination depending on sin²θ₂₃ for 10y of data taking combining beam and atmospheric neutrinos

• 70 kton (4 x 10 kt fiducial) **LAr TPC far detectors** at 1480 m depth (4300 mwe) at SURF measuring neutrino spectra at 1300 km in a wide-band high purity ν_μ beam with peak flux at 2.5 GeV operating at

- ~1.2 MW and upgradeable to >2 MW
- GAr TPC & magnetized beam monitor
- solar neutrinos, nucleon decay, Beyond Standard Model searches, non-standard interactions…

• **Near detector** (*CDR: arXiv:2103.13910*) at 560 m from the neutrino source: LArTPC, TMS/magnetized

• **Physics goals**: LBL oscillations (MO and CP violation), precise osc. measurements, SN burst neutrinos,

CERN Neutrino Platform

ProtoDUNE-HD (770 LAr ton)

ProtoDUNE-VD (770 ton LAr)

ProtoDUNE/DUNE ~1/20 Full scale DUNE FD components

ProtoDUNEs operation at CERN

SECOND PHASE PROTODUNEs (2020-2023 construction + operation ≥2024)

- ProtoDUNE-HD
	- ✦ Final technical solutions for all FD-HD subdetectors
	- ✦ Detector filled and currently taking data with charged-particle test-beam and cosmic muons at **CERN**
- ProtoDUNE-VD
	- ✦ Realization of a Module-0 detector in 2022-2023; -LAr will be transferred to ProtoDUNE-VD in

FIRST PHASE PROTODUNEs

- Construction and operation of ProtoDUNEs at CERN (2018 2020)
- Successful demonstration of the DUNE LAr TPC performance
- Several ongoing analyses (hadron-Ar cross sections…)

DUNE Phases

- **DUNE Phase I** (2026 start inst; 2029 physics; 2031 beam+ND)
	- \blacklozenge Full near + far site facility and infrastructure
	- ✦ Two 17 kt LArTPC modules
	- ✦ Upgradeable 1.2 MW neutrino beamline
	- ✦ Movable LArTPC near detector with muon catcher
	- ◆ On-axis near detector

• **DUNE Phase II**:

- ✦ Two additional FD modules (≥40 kt fiducial in total)
- ✦ Beamline upgrade to >2 MW
- ✦ More capable Near Detector (ND-GAr)

FD-HD: JINST 15 T08010 (2020)

FD-VD: arXiv:2312.03130 (2023)

DUNE Physics Program

- DUNE can determine the neutrino **mass ordering** at 5 σ in 1-3 years of data (depending on δ_{CP} value)
- Excellent resolution to θ_{23}
- resolution
- Precise measurement of all oscillation parameters
-

• **CP violation**: if maximal, 3σ (5σ) observation in 3.5y (7.5y); in long-term >3σ CPV for 75% of δ_{CP} ; 6°-16°

• Supernova and solar neutrinos + BSM (NSI, non-unitary mixing, dark matter, sterile neutrinos, nucleon decay,…)

Conclusions **5**

- neutrinos acquire their mass?)
- (beyond the Standard Model)
- and measure with precision all neutrino oscillation parameter
- detectors
- Many opportunities for **Beyond SM** with neutrinos (heavy neutrinos, NSI, …)
- Neutrino **mass** measured is a spefully around the corner (in the lab and in cosmology)
- range \rightarrow an important technological step will be needed to explore lower masses
- The beginning of a golden era for **high-energy neutrino** detection (and multi-messenger astronomy)

• Neutrinos are **massive** particles - breakthrough in Particle Physics → SM newlated by bextended (how do

• Neutrino **oscillations** are still one of the most important topics, vicinties in Particle and Astroparticle Physics

• Neutrino oscillations are under intense study in **next generation** of experiments with more capable detectors and powerful (anti-)neutrino beams are in discover CP violation, de ermine the neutrino mass ordering **Extendium Started Action**
 Extendium Started Action
 Extendium Started Action
 Extendium Started Action
 Extending neutrino beams
 Exterdibulged Action
 Extending neutrino beams
 Exterdibulged Action
 Exter physics are study to the most important to the study of the study of Particle and Astrolated Model)
 physics are under intense study to heavy discover CP vialation of experimente in Particle and Astro-
 physics provid

• More precise **started we hova** neutrino measurement will be provided by bigger and complementary

• **Majorana or Dirac** neutrinos: intensive neutrinoless double beta experimental campaign trying to cover the IO

