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Abstract

Intracellular protein patterns govern essential cellular functions by dy-
namically redistributing proteins between membrane-bound and cy-
tosolic states, conserving their total numbers. This review presents a
theoretical framework for understanding such patterns based on mass-
conserving reaction—diffusion systems. The emergence, selection, and
evolution of patterns are analyzed in terms of mass redistribution and
interface motion, resulting in mesoscale laws of coarsening and wave-
length selection. A geometric phase-space perspective provides a con-
ceptual tool to link local reactive equilibria with global pattern dy-
namics through conserved mass fluxes. The Min protein system of
FEscherichia coli provides a paradigmatic example, enabling direct com-
parison between theory and experiment. Successive model refinements
capture both the robustness of pattern formation and the diversity of
dynamic regimes observed in vivo and in vitro. The Min system thus
illustrates how to extract predictive, multiscale theory from biochemi-
cal detail, providing a foundation for understanding pattern formation
in more complex and synthetic systems.
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1. INTRODUCTION

The physics of cellular systems poses one of the deepest challenges in modern science. While
a comprehensive theoretical framework for cellular life remains elusive, physics—particularly
theoretical physics—offers powerful tools to uncover the principles that govern cellular orga-
nization, dynamics, and function. A productive strategy in this pursuit is the reduction of
biological complexity to minimal, tractable subsystems. Experimentally, bottom-up recon-
stitution reconstructs specific cellular functions from a few well-characterized components,
enabling precise control of biochemical and physical conditions. On the theoretical side,
coarse-grained and minimal models—often formulated as reaction—diffusion systems or field
theories—isolate essential variables and interactions, and, thereby identify the underlying
physical mechanisms. Importantly, this approach raises fundamental questions: To what
extent can the spatiotemporal organization and dynamics of cellular processes be captured
by universal physical principles? Which features of biological organization emerge gener-
ically in far-from-equilibrium systems, and which reflect biochemical specificity? How far
can minimalist approaches advance a predictive theory of living matter?

In this review, we focus on intracellular protein patterns, a class of systems where such
questions can be addressed in detail. Such patterns control essential processes including
division, polarity, and intracellular transport by dynamically redistributing proteins be-
tween membrane-bound and cytosolic states (Fig. la). A common molecular motif is the
cyclic switching between inactive and active conformations with different membrane affini-
ties, driven far from equilibrium by nucleotide hydrolysis. Because protein production and
degradation are negligible on the timescales of pattern formation, these systems are well
described by mass-conserving reaction—diffusion (McRD) models. In contrast to classical
Turing-type mechanisms, where patterns arise from the balance of local synthesis and degra-
dation, McRD systems generate patterns through redistribution of the conserved protein
mass.

A paradigmatic example is the Min system in E. coli (Fig. 1b), where the interac-
tions between just two proteins—MinD and MinE—drive their robust pattern formation
(Fig. 1b). In wivo, the system produces pole-to-pole oscillation that guides division site
placement (Fig. 1c) [53, 107]. Remarkably, these dynamics have been reconstituted in vitro
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Protein pattern formation exemplified by the E. coli Min system. (a) Prokaryotic cells
comprise the membrane, cytosol, and nucleoid. Membrane-bound proteins diffuse slowly (Dp,)
compared to cytosolic proteins (D.); diffusion in the nucleoid (Dj) may differ from that in the
cytosol. Biochemical reactions (red arrows) regulate membrane association of proteins (purple).
(b) The Min system operates via ATP-driven cycling of MinC (yellow), MinD (magenta), and
MinE (cyan) between cytosol and membrane. Pattern formation requires only MinD and MinE;
MinC inhibits Z-ring formation. (c) These interactions generate pole-to-pole oscillations in vivo.
Shown is a kymograph of MinD fluorescence (white: high intensity; courtesy of Sourjik lab). (d)
In vitro, MinD (green) and MinE (red) form dynamic patterns on supported lipid bilayers,
including traveling waves [74] (scale bar: 50 pm; reproduced from Ref. [74]).

on supported lipid bilayers from purified components (Fig. 1d) [74], subsequently revealing
a rich diversity of patterns under well-controlled conditions. In the following, we offer a bio-
physical perspective on pattern formation in living systems, highlighting how core principles
of mass-conserving reaction—diffusion dynamics connect molecular interactions to mesoscale
protein patterns, with the E. coli Min system as a paradigmatic example.

2. MASS-CONSERVING REACTION-DIFFUSION SYSTEMS

To understand the self-organization of intracellular protein patterns on a mechanistic level,
we first turn to the theoretical description of McRD systems. These systems provide a gen-
eral modeling framework for protein dynamics that couple spatial redistribution of proteins
via diffusion with local reactions at the membrane—cytosol interface, under the constraint
of mass conservation (Fig. 1a). In what follows, we formulate the governing equations for
such systems. We then analyze a minimal two-component model that captures the es-
sential physics of these systems and introduces key concepts such as reactive equilibria,
mass-redistribution instabilities, and the mass-redistribution potential.
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2.1. General theoretical framework

The spatiotemporal dynamics of proteins in cells arise from their redistribution between the
cytosol and the membrane, described by concentration fields ¢(r, t) in the three-dimensional
cytosolic volume and m(o,t) on the two-dimensional membrane surface S. These dynamics
are governed by coupled reaction—diffusion equations that describe transport and biochem-
ical reactions within each compartment (see Ref. [26] for a pedagogical introduction).

8tC(I', t) = —V . cht =+ 'Rcyt(c) s la.
Om(o,t) = —Vs Jmem + Rmem(m, cls) . 1b.

Here, Jcyt and Jmem denote the cytosolic and membrane fluxes, incorporating both diffusive
and possibly advective transport. The covariant derivative Vs accounts for the membrane’s
curved geometry. The terms Rcyt and Rmem describe local biochemical reactions in the
cytosol and on the membrane. Notably, the membrane reactions explicitly depend on the
cytosolic concentration c|s near the membrane, reflecting the biochemical coupling between
both compartments, e.g., in the attachment of cytosolic proteins. This coupling also man-
ifests in the reactive boundary condition at the membrane: Jeyy - n|S = Rboundary (I, €|s).
It closes Egs. 1. and ensures local mass conservation by equating the diffusive cytosolic flux
onto the membrane (outward-pointing normal vector n) with the net reactive flux due to
protein attachment and detachment between cytosol and membrane.

2.2. Two-component mass-conserving reaction—diffusion systems

Although a full understanding of protein pattern formation requires physiological detail, key
principles emerge from minimal models. These typically describe a single protein species cy-
cling between cytosolic and membrane-bound states via biochemical reactions. By focusing
on lateral redistribution along a flat membrane and neglecting vertical cytosolic gradients,
the dynamics reduce to:

am(x,t) = D V2m + f(m,c), 2a.
dve(x,t) = D.VZe — f(m,c). 2b.

A common form of the reaction term, f(m,c) = a(m)c—d(m)m, captures self-recruitment
and enzymatic detachment via density-dependent rates a(m) and d(m). Two-component
McRD systems have become valuable conceptual models for cell polarity [21, 26, 42]. In-
spired by Rho GTPase networks, early models showed that nonlinear feedback in mem-
brane—cytosol cycling can drive symmetry breaking via diffusion-driven lateral instabili-
ties [37, 56, 98]. In parallel, the wave-pinning mechanism demonstrated how fast cytosolic
diffusion, together with mass conservation, can halt a propagating front and stabilize a po-
larized state [92]. More recently, two-compartment McRD systems have been framed within
a geometric phase-space approach that reveals how local equilibria, mass redistribution, and
diffusive coupling govern the emergence of mesoscale patterns [6, 26, 41].

2.2.1. Phase-space analysis. To clarify the geometric structure underlying mass-conserving
dynamics, it is helpful to coarse-grain space into two compartments—representing, for ex-
ample, the polar zones of an E. coli cell [5]. This minimal model retains essential spatial
coupling while enabling a stepwise phase-space analysis: first of the local reactive dynamics
in isolated compartments, then of their diffusive coupling.
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Mass-redistribution instability. (a) In a single well-mixed compartment, the reaction term f (red arrows) converts the
cytosol (¢) and membrane (m) densities into each other until a reaction equilibrium is reached. (b) During the reactive
relaxation in the single compartment, the total density p = m + c remains constant, restricting the reactive flow to
diagonals in the local phase space (grey lines). The family of reactive equilibria (black dots) for different total densities n
form the nullcline (black). (c¢) The diffusive coupling of two compartments via cytosolic exchange (neglecting membrane
diffusion) induces a lateral instability if the nullcline slope is negative. The underlying cause is a positive feedback
resulting in self-amplifying mass transport between the two compartments. (d) Including membrane diffusion, the
mass-redistribution instability occurs for total densities p € [p'2t, pl_ft] at which the slope of the nullcline is smaller than
—Dpm /D (green-shaded region). (e) The local phase space can also be analyzed using the total density n and the
mass-redistribution potential 7 as coordinates. Mass redistribution induces a lateral instability if the nullcline in the

(p, n)-phase space has a negative slope, also for finite membrane diffusion.

We begin with the reactive dynamics in a single well-mixed compartment (Fig. 2a),
which can be analyzed geometrically in the (m, c)-phase space (Fig. 2b). Local mass con-
servation constrains the dynamics to lines of constant total density m + ¢ = p, called reactive
subspaces. Within each subspace, the system relaxes toward a reactive equilibrium at the
intersection with the reactive nullcline f(m,c) = 0, where attachment and detachment bal-
ance. For simplicity, we focus on monostable kinetics, where each total density p corresponds
to a unique stable reactive equilibrium that governs the dynamics within its subspace; see
Ref. [6] for extensions to multistable systems. To examine how spatial coupling affects sta-
bility, we consider two such compartments (Fig. 2c), with local concentrations m;, ¢;, and
total densities p; = m; + ¢;, for i = 1,2. Assuming cytosolic diffusion dominates exchange
and membrane diffusion is negligible, the total densities evolve according to

Oip1 = De (c2 — 1), Oepe = —0pa, 3.
where D, is an effective cytosolic exchange rate.
To analyze the onset of instability, consider a small perturbation to a homogeneous

state with equal densities p = (p1 + p2)/2 in both compartments, such that p12 = pF Ap

www. annualreviews.org ¢ Pattern Formation Beyond Turing 5



(Fig. 2c). Assuming a separation of timescales with fast reaction kinetics and slow cytosolic
exchange, each compartment rapidly relaxes to its local reactive equilibrium before ap-
preciable mass transfer occurs. This establishes a cytosolic concentration gradient, whose
direction is determined by the slope of the reactive nullcline, 9y,c*(m). If the nullcline
slope is negative, the cytosolic concentration decreases with increasing total density, imply-
ing ¢1 > c2. Cytosolic transport then drives proteins from the left to the right compart-
ment, further increasing p2 and amplifying the initial perturbation (Fig. 2¢c). This positive
feedback constitutes a mass-redistribution instability, driven by self-amplifying diffusive ex-
change. By contrast, a positive nullcline slope implies ¢; < c2, leading to a restoring flux
that suppresses the perturbation and returns the system to homogeneity.

2.2.2. Mass-redistribution potential. The simplified compartmental treatment can be ex-
tended to spatially continuous systems, fully accounting for both membrane and cytosolic
diffusion. The essential structural feature of McRD systems is that the dynamics of the
total density p = m + ¢ can be rewritten as a continuity equation,

Otp(x,t) = D, Vzn, 4.
with the mass-redistribution potential defined as [6, 25, 56, 98]

m

n(x,t) := c(x,t) + D.

m(x,t). 5.

This implies that protein flux is given by J = —D.V1n, so the mass-redistribution potential n
governs diffusive transport analogously to a chemical potential in near-equilibrium systems,
such as in the Cahn—Hilliard model [11] for phase separation. However, unlike chemical
potentials derived from free energy functionals, 1 is not variational; it evolves dynamically
as part of the reaction—diffusion system:

n(x,t) = (Dm + D) V21 — Dy V2p — (1 = d) f(m(p,n), c(p,n)), 6.

where d = Dy, /D. < 1. Assuming that local reaction kinetics are fast relative to diffusive
transport, we apply the local quasi-steady-state (LQSS) approximation f(m,c) = 0. This
defines local reactive equilibria, with concentrations approximated by m(x,t) &~ m*(p(x,t))
and ¢(x,t) =~ c"(p(x,t)). Substituting into the continuity equation, Eq. 4, the dynamics
reduce to a closed nonlinear diffusion equation for the total density:

Oup(x,t) = De V- (01" (p) Vi 7.

which describes protein transport driven by —Vn™, resulting in an effective diffusion co-
efficient Deg(p) = D.9,n"(p). Pattern formation sets in when the uniform steady state
p(X) = pnss becomes unstable due to negative effective diffusion (Fig. 2(d,e)):

9,m*(p) <O0. 8.

In this regime, small density perturbations are amplified as mass flows from regions of lower
to higher p, reinforcing inhomogeneities. This is the hallmark of pattern formation driven by
mass redistribution. In the limiting case D,, = 0, this reduces to 9, c¢*(m) < 0, consistent
with the heuristic analysis in Sec. 2.2.1. Importantly, the slope criterion (Eq. 8) remains
valid even beyond the LQSS approximation: while the exact timescale of the instability
may differ, the sign of d,1"(p) still determines whether local reactions increase or decrease
71, and thus whether diffusive transport reinforces or counteracts density perturbations [6].
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3. THE MOLECULAR BASIS OF PATTERN FORMATION IN THE
ESCHERICHIA COLI MIN PROTEIN SYSTEM

We now turn to specific cellular systems and ask: How molecular is molecular? That is,
which features of protein interaction networks are essential to explain the emergent prop-
erties of self-organized patterns? A common view in theoretical physics holds that coarse-
grained models suffice to capture core mechanisms. And indeed, many features—such as
symmetry breaking and geometry sensing—can be understood at a phenomenological level,
without molecular detail. Yet the E. coli Min system demonstrates that specific molecu-
lar interactions are indispensable for explaining the robustness, diversity, adaptability, and
functional integration of intracellular patterns. In this section, we discuss how increasingly
detailed models, starting from the core reaction cycle and extending to conformational
switching and membrane interactions, account for the dynamic behavior of the Min system.

3.1. Core biochemical cycle and minimal reaction—diffusion models

Symmetric division in E. coli requires precise midcell placement of the FtsZ-based Z-ring.
This positioning is guided by the Min system—a self-organizing protein network (MinC,
MinD, MinE) that prevents Z-ring assembly near the poles [76].

3.1.1. ATPase-driven reaction cycle. The dynamics of the Min system are governed by a
cyclical, ATPase-driven reaction network that controls membrane attachment and detach-
ment (Fig. 1b). In its ATP-bound form, MinD dimerizes and binds cooperatively to the
membrane [50, 51, 54, 66, 88, 119-122]. Membrane-bound MinD-ATP recruits both the
division inhibitor MinC and its ATPase-activating partner MinE [17, 50, 53, 54, 66, 108,
109, 119, 147]. MinE stimulates ATP hydrolysis by MinD, triggering release of MinDE com-
plexes into the cytosol as MinD-ADP and MinE [50-52, 66, 107, 112, 119]. MinD is then
reactivated via nucleotide exchange [54], closing the cycle. Since cytosolic and membrane-
bound proteins diffuse at different rates, this reaction cycle is inherently coupled to spatial
protein redistribution.

3.1.2. From activator—inhibitor models to mass-conserving dynamics. The ATPase cycle
described above lacks a mechanism for local MinD accumulation and cannot, by itself,
explain spontaneous symmetry breaking and spatiotemporal pattern formation. Different
pattern-forming feedback mechanisms were thus discussed in theoretical models [48, 65,
86]. A key insight by Howard et al. [48] and Kruse [65] was the formulation of McRD
systems based on the observation that Min oscillations persist after inhibiting protein syn-
thesis [107]. This observation implied that patterns arise from protein redistribution rather
than synthesis—degradation cycles as assumed in classical activator—inhibitor models [86].
While models implement the core cycle of MinD membrane binding and MinE-triggered de-
tachment, they differ in the nature of the feedback mechanisms and in their assumptions on
MinE recruitment. Howard et al. [48] showed that mutual suppression of MinD and MinE
binding rates can generate oscillations, but the model did not support MinE recruitment by
membrane-bound MinD [44, 50, 109, 119]. To account for this, nonlinear feedback via MinD
self-recruitment or lateral aggregation were introduced [65, 86]. Later MinD oligomeriza-
tion has been observed in wvitro [46, 50, 90, 119] and suggested in vivo [116], providing
mechanistic support for such feedback. Particle-based models further showed that MinD
filamentation can drive oscillations [103, 126]. While these models introduced the role of

www. annualreviews.org ¢ Pattern Formation Beyond Turing



cooperative MinD interactions, they relied on phenomenological assumptions—such as bro-
ken mass conservation [86], suppression of MinE recruitment at high MinD density [65, 86],
or unrealistically high membrane mobility [65]—mnot supported experimentally [55, 107].

3.1.3. Core feedback mechanisms driving Min pattern formation. Building on these ear-
lier models, Huang et al. [55] introduced a model solely based on biochemically suggested
interactions. This framework reproduced a wide range of intracellular Min patterns, includ-
ing standing waves and MinE-ring formation. However, the model requires a nucleotide-
exchange rate lower than the experimentally suggested rate [84] and does not allow for suf-
ficient parameter variations to explain pattern formation under varying temperature [127].
To clarify the minimal set of experimentally supported interactions, the reaction network
was systematically reanalyzed [43], leading to a simplified formulation now commonly re-
ferred to as the skeleton model [23, 43]. This model retains MinD-ATP binding with
self-recruitment, MinDE complex formation, MinE-stimulated detachment, and cytosolic
nucleotide exchange—all within a McRD framework (Fig. 3a—c). It accurately captures
pole-to-pole oscillations and standing-wave patterns [43], and explains their dependence
on system parameters such as protein copy number as well as on cell geometry [43, 145,
146]. Stochastic effects, which become relevant at low copy numbers, are also well repro-
duced [23]. In addition, the model accounts for qualitative transitions between distinct
dynamic states induced by geometry [7, 41, 124, 149] and MinE mutations in vitro [33].
This model thus offers a robust baseline for theoretical and experimental investigations of
Min protein dynamics.

3.2. Functional modules of the Min system

Beyond the core reaction cycle, a set of molecular mechanisms modulate the robustness and
diversity of Min patterns. These function as regulatory modules: conformational switching
buffers MinE activity, persistent membrane binding tunes pattern morphology, and their
integration captures both in vivo and in vitro behavior.

3.2.1. Conformational switching of MinE: a robustness mechanism. The skeleton model
supports pattern formation only within a narrow range of MinE/MinD concentration ra-
tios—typically below one [43]. This is at odds with experimental findings, initially from
in vitro reconstitutions [20], which show robust pattern formation across a broad range of
MinD and MinE concentrations. This discrepancy pointed to the need for an additional
regulatory mechanism and led to the introduction of the MinE-switch model (Fig. 3(d—
f) [20]. Motivated by experimental observations that MinE adapts both a reactive and a
latent MinE conformation in which the MinD-binding interface is buried [2, 30, 101, 102],
the MinE-switch model includes these two conformational MinE states [20]. While MinE
quickly transitions into the latent conformation in the cytosol, sensing of MinD leads to the
exposure of the binding site [102], allowing for subsequent MinD binding. This intermediate
step is modeled by a strongly reduced recruitment rate of latent compared to reactive MinE.

Theoretical analysis has shown that this switching behavior acts as a buffering mech-
anism [20]. The MinD-dependent switch from the latent into the reactive conformation
ensures that only as much MinE is activated as is required to stimulate MinD hydroly-
sis. As a result, at low MinE concentrations, most MinE is in the reactive form, while at
higher concentrations, the excess MinE accumulates in the latent state [110]. This dynamic
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Figure 3

Modules of the Min interaction network. (a) The skeleton model captures the core ATPase cycle of MinD.
MinD-ATP attaches to the membrane and recruits itself. MinE is recruited as well and stimulates the ATPase activity of
MinD, leading to the detachment of both proteins. (b) The skeleton model results in pole-to-pole oscillations in in vivo
geometry (top). Simulation in filamentous cells uncovers the intrinsic wavelength of the pattern, resulting in a
standing-wave pattern (bottom). The skeleton model captures the temperature dependence of the oscillations. Adapted
from Ref. [43]. (c) In in vitro geometries, the skeleton model captures chaotic, standing-wave, traveling-wave pattern,
sensing the geometry via variations in the bulk—surface ratio. Adapted from Ref. [149]. (d) The MinE-switch model
extends the skeleton model by a conformational switch between reactive and latent MinE states in the cytosol. Reactive
MinE is recruited much more quickly by membrane-bound MinD than MinE in the latent conformation. (e) The
MinE-switch model well describes the phase diagram of Min pattern formation in filamentous E. coli bacteria. It captures
the robustness of pattern formation in protein concentrations, the pattern types, as well as the wavelengths and oscillation
periods. Adapted from Ref. [110]. (f) In vitro, mutation of the MinE protein showed that impairing its conformational
switch (reactive MinE) strongly reduces the range of pattern formation, in accordance with the prediction by the
MinE-switch model. Adapted from Ref. [20]. (g) MinE may persistently bind to the membrane via its membrane-targeting
sequence. (h) The relevance of MinE membrane binding for the Min oscillation in vivo remains to be clarified. (i) MinE
membrane-binding allows for the formation of stationary patterns observed with wild-type proteins in wvitro. Scale bars in
panels (c,f,i): 50 pm. Adapted from Ref. [140].
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regulation extends the range of MinE/MinD ratios that support pattern formation. The
conformational switch has since been shown to explain the response of Min patterns to bulk
flow [85, 143]. It also acts as a robustness module for pattern formation in vivo [110], and
furthermore, accounts for the emergence of different pattern types, including standing and
traveling waves, as well as the observed dependence of wavelength and period on protein
levels [110, 129]. These results establish the MinE conformational switch as a key molecular
feature that supports the adaptability and robustness of the Min system under physiological
and reconstituted conditions.

3.2.2. Persistent membrane binding of MinE: enhancing pattern diversity. In vitro experi-
ments have revealed a rich diversity of Min protein patterns, including traveling and stand-
ing waves, bursts, mushrooms, and labyrinthine structures [33, 34, 57, 91, 131]. Strikingly,
the position of the His-tag used for MinE purification—either at the membrane-targeting
N-terminus [49, 102] or at the C-terminus—induces marked changes in pattern morphology,
shifting the patterns from traveling waves to stationary structures such as spots, amoe-
bas, and meshes [34]. These phenotypes are not fully captured by either the skeleton [23,
43] or MinE-switch [20] models. The sensitivity to His-tag position may reflect effects on
MinE’s membrane-binding behavior, although MinD-independent MinE membrane binding
appears unaffected [34]. While not essential for robust pattern formation and the qualitative
description of patterns formed with His-MinE [20], MinE’s transient association with the
membrane increases the pattern wavelength [20, 64] and influences pattern type for MinE-
His [34, 131]. Thus, one proposed model refinement is persistent membrane binding (PMB)
of MinE. In this scenario, MinE remains transiently bound to the membrane after triggering
ATP hydrolysis and MinD detachment [4, 75, 115, 136]. This leads to the formation of a
local, membrane-associated pool of reactive MinE, capable of reengaging with MinD. In
vitro experiments have shown that MinE lags behind MinD in traveling waves, supporting
transient MinE membrane binding independent of MinD [75, 131]. Indeed, including PMB
in the skeleton model allowed to model labyrinthine patterns [27], and inclusion in the
MinE-switch model allows the robust formation of mesh patterns [140] (Fig. 3c). Future
studies should analyze the interplay of the MinE switch and persistent membrane binding
and aim for a unifying explanation of pattern formation in vivo and in vitro.

4. INTERFACE DYNAMICS AND MESOSCOPIC LAWS

The Min system illustrates how McRD systems generate large-amplitude patterns follow-
ing an initial linear instability. In the nonlinear regime, quasi-stationary patterns emerge
with sharp interfaces separating membrane regions of distinct molecular composition and
density (Fig. 4a—c). Interfaces are collective degrees of freedom, shaped by the coupling
of interface geometry, diffusion, and reaction kinetics, and have long been used to de-
scribe the slow dynamics of nonlinear patterns. A paradigmatic case is the Schlégl model
of bistable kinetics, where domain boundaries encode front motion and coarsening [114].
General interface-based theoretical approaches were developed for stationary [61, 95, 104]
and travelling [40, 105] patterns in two-component systems, motivated by the ferrocyanide-
iodate-sulfite reaction—diffusion system [68]. A growing body of work shows that also the
large-scale dynamics of mass-conserving patterns can be effectively described by mesoscopic
laws governing interface motion—laws that are largely independent of microscopic details
and reflect robust, universal features of the underlying reaction—diffusion system.
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Figure 4

Interfaces in McRD systems. (a) Two-component McRD systems form nonlinear patterns featuring interfaces between
high- and low-density plateaus (or peaks, see (e)) that undergo coarsening. (b) In three-species McRD systems,
antagonistic reactions generate distinct membrane domains (blue, red, yellow). (c) The Min system forms stationary mesh
patterns, resembling 2D liquid foams in vitro [34] and in simulations [140], where MinE-rich branches (cyan) separate
MinD-rich domains (magenta). On a sphere, MinE forms polyhedral meshes (cyan); MinD not shown. Experimental data
from Ref. [34]. (d) Interfaces arise from balanced attachment and detachment zones, forming non-equilibrium steady

states. In local (m, c¢) phase space (right), the pattern lies on the flux-balance subspace (dashed), with plateau densities
m4+ at its outer intersections with the nullcline. Balance of attachment (blue) and detachment (red) areas determines

Nstat- (€) Peak patterns occur when high-density plateaus are not reached. In phase space, the pattern ends before the
right-most intersection. Larger peaks (thin, purple) correspond to lower stationary mass-redistribution potential (area
comparison). (f) This potential dependence induces a mass-competition instability: small mass differences between peaks
self-amplify (blue arrows). (g) Weakly broken mass conservation introduces net production (smaller peak) and
degradation (larger peak) that counteract this instability (blue arrows). (h) As a result, coarsening halts above a
wavelength Astop, set by the source strength; at larger wavelengths, domain splitting occurs above Agpii¢. (i) In 2D, spatial
separation of attachment and detachment zones leads to curvature-dependent turnover, driving interface straightening
(orange arrow). (j) This curvature dependence destabilizes fourfold vertices: increased detachment in curved regions (red)
vs. flatter ones (blue) causes vertex splitting into pairs of triple junctions. Panels b,c,i,j adapted from Ref. [140].
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4.1. Stabilization of sharp interfaces via diffusive and reactive balance

Membrane diffusion tends to flatten density gradients. In McRD systems, sharp density
interfaces are maintained by localized attachment in the high-density region (attachment
zone) and detachment in the low-density region (detachment zone) of the interface, which
create a net reactive turnover along the interface (see Fig. 4d) [6, 37, 42]. This turnover
induces a diffusive counter-flux in the cytosol that balances membrane diffusion, stabilizing
the interface as a non-equilibrium steady state driven by NTPase activity. In two-component
McRD systems, these principles provide the basis for constructing the interface profile in
phase space [6]. For a planar interface, balance between diffusive fluxes on the membrane
and in the cytosol requires that the total flux perpendicular to the interface ~ V | 1 vanishes
(cf. Eq. 4). Thus, a stationary interface is characterized by a constant stationary mass-
redistribution potential, and, in the (m, c)-phase space, it lies on the fluz-balance subspace
¢+ dm = nstas (Fig. 4d).

In addition to diffusive flux balance, attachment and detachment must also balance at
the stationary interface. In phase space, the shaded regions between the nullcline and the
flux-balance subspace represent net attachment and detachment. Their balance determines
the position of the flux-balance subspace, that is, the stationary value 7sat, through an
approximate area-matching condition (Fig. 4d). This construction is reminiscent of the
classical Maxwell construction, though the underlying mechanism—based on local reac-
tive turnover between membrane and cytosol—differs fundamentally from the thermody-
namic criterion of equal osmotic pressures. From this perspective, the wave-pinning mecha-
nism [92] appears as a limiting case of interface stabilization in mass-conserving systems with
instantaneous cytosolic redistribution: the front becomes stationary when reactive turnover
at the interface balances. In the following, we show that the balance of attachment and de-
tachment fully determines the dynamics of the pattern interfaces within a quasi-steady-state
approximation for the local interface profile and mass-redistribution potential.
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4.2. Mass competition, interrupted coarsening, and pattern selection

In two-component McRD systems, small perturbations of the homogeneous state are am-
plified by a mass-redistribution instability, giving rise to patterns with a characteristic
wavelength determined by the fastest-growing linear mode [6, 41]. Over time, these pat-
terns undergo coarsening [9, 15, 36, 37, 56, 58, 98, 137]: larger domains grow at the expense
of smaller ones through mass exchange, ultimately leading to the dominance of a single
domain (Fig. 4).

4.2.1. Mass-competition instability and coarsening laws. The coarsening process can be un-
derstood in terms of a mass-competition instability—also known as winner-takes-all dynam-
ics [15, 37]—in which larger domains grow at the expense of smaller ones. This mechanism
has been analyzed both mathematically [62, 82, 133, 135] and from a physical perspective [9,
56, 98, 137]. Counsider a regime in which well-separated, quasi-stationary patterns have
formed and the dynamics are diffusion-limited. In one-dimensional (1d) systems, depend-
ing on the reaction kinetics, the emergent patterns are either mesa-shaped or peak-shaped
(Fig. 4d,e) [6]. Focusing on peak patterns, we assume that each peak is in a (regional) quasi-
steady state (QSS), such that the mass-redistribution potential satisfies 1 = nstat (M), where
M is the total mass associated with a peak (Fig. 4e). Differences in the peak masses result
in gradients of the mass-redistribution potential that drive slow mass exchange (Fig. 4f).
For two neighboring peaks at a distance A, the dynamics of mass redistribution are governed
by [9, 137]
2D, anstat
A OM

where § M is the mass difference between the peaks. The total turnover balance implies that

OOM =~ — §M, 9.

My

O nstat (M) < 0 holds for stable peak and mesa patterns in two-component McRD systems
(Fig. 4e) [9]. Thus, the symmetric pattern is unstable against the growth of one and collapse
of the other peak and these systems generically undergo uninterrupted coarsening.

The wavelength dependence of the mass-competition rate determines the long-time
coarsening law. Peak patterns exhibit power-law coarsening, reflecting scaling behavior
of the reaction term at large densities [9, 137], whereas mesa patterns coarsen logarithmi-
cally [9, 137], consistent with the coarsening of coexisting phases in 1d liquid mixtures [1,
59, 60, 96]. A similar transition between logarithmic and power-law coarsening has been
observed in thin films, where gravity-induced saturation of the droplet height leads to mesa-
like droplet profiles [31, 32, 39].

4.2.2. Wavelength selection by interrupted coarsening and domain splitting. Uninter-
rupted coarsening of two-component McRD systems is rather surprising given that two-
component systems without mass-conservation are the classical examples of Turing sys-
tems, which form patterns with an intrinsic wavelength, frequently approximated by the
wavelength of the fastest-growing mode of the linear instability of the homogeneous steady
state [77, 128]. These observations are reconciled by interrupted coarsening in systems
with weakly broken mass conservation [9, 137]. Similarly, coarsening is interrupted by cou-
pling to a third component [14, 28, 58]. In systems with broken mass conservation, net

1Depending on whether diffusive transport or reactive conversion is rate-limiting [137], the dy-
namics fall into either a diffusion-limited regime—analogous to Cahn-Hilliard dynamics [11]—or a
reaction-limited regime, resembling conserved Allen-Cahn systems [113].
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production in low-density regions and degradation in high-density domains counteract the
mass-competition instability (Fig. 4g). This stabilizes periodic patterns above a threshold
wavelength Agtop, resulting in wavelength selection by interrupted coarsening [9, 137]. At
even larger wavelengths, domain plateaus become locally unstable and split, defining an
upper bound Agpiit for stable pattern sizes. As a result, the phase diagram Fig. 4h unifies
coarsening and wavelength selection of highly nonlinear patterns based on clear physical
mechanisms. It also applies to chemically driven phase-separating binary mixtures [35, 70,
151] and Keller—Segel models [47, 63, 87, 97, 138, 139]. Intriguingly, If the two thresholds
Astop,split lie close to each other, continued coarsening and splitting lead to a spatiotempo-
rally chaotic dynamic steady state [22, 100, 138].

4.3. Effective interfacial tension and interface laws in two-dimensional systems

The mass-competition mechanism underlying coarsening in one-dimensional McRD systems
remains central in two-dimensional systems, but the dynamics are further shaped by geo-
metric effects, most notably interface curvature in two-component systems and the geometry
and dynamics of junctions and vertices in multi-species systems (Fig. 4b—c).

4.3.1. Effective interfacial tension induced by non-equilibrium fluxes. Two-component sys-
tems have been observed numerically to minimize the length of pattern interfaces, resulting
in a coarsening process [117, 123]. Mathematically, length minimization was derived in a
two-component system in the limit of infinite cytosolic diffusion [89]. Moreover, specific
forms of the reaction kinetics allow for a mathematical mapping of the two-component sys-
tems onto effective near-equilibrium phase-field models that are governed by an interfacial
tension, and thus undergo coarsening [93]. Even beyond this specific mapping, pattern
coarsening is driven by curvature-dependent mass transport [9, 140], consistent with a
Gibbs-Thomson relation and classical Lifshitz—Slyozov—Wagner (LSW) theory [71, 132].
These works suggest that patterns in two-component systems are governed by an emer-
gent nonequilibrium interfacial tension that results in curvature-driven interface motion
analogous to binary liquid mixtures, and which also appears to underlie interface-length
minimization observed in more complex protein patterning systems [29, 80].

A recent theoretical analysis provides a mechanistic explanation for this emergent in-
terfacial tension [140]. At a flat interface, the value of the stationary mass-redistribution
potential 7stat is set by the balance between attachment and detachment fluxes; see Sec. 4.1
and Fig. 4d. Interface curvature stretches and compresses the attachment and detachment
zones unevenly along the arc length due to their spatial separation within the interface,
leading to an imbalance in the integrated fluxes (Fig. 4i). This geometric asymmetry in-
duces a shift in the stationary mass-redistribution potential at weakly curved interfaces that
scales linearly with the local interface curvature « [9, 140]:

6nstat (K/) ~ gint K, 10.

where line ~ v/ Dm7r is the interface width, determined by membrane diffusivity and the
timescale of reactive turnover. This curvature-induced shift creates gradients in 1 between
differently curved regions of the pattern interface, which cause mass transport that drives
its straightening. Because 7 plays for mass redistribution and interface movement a role
analogous to a chemical potential, the resulting curvature-driven interface motion mirrors
the Gibbs—Thomson effect in equilibrium phase separation. However, the effect arises en-
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tirely from reaction—diffusion dynamics, without any underlying free energy or mechanical
surface tension. The associated effective interfacial tension scales as o ~ fint, and is ex-
pected to apply broadly to multi-component systems, provided that feedback is mediated
by slow-diffusing membrane-bound components and the interface remains monotonic [140].

4.3.2. Non-equilibrium Neumann law at triple junctions. The curvature dependence of the
mass-redistribution potential in McRD systems invites comparison of multi-species McRD
systems with multi-component phase-separating mixtures, where different domain bound-
aries can meet at triple junctions. In equilibrium mixtures, the meeting angles between
interfaces are set by the classical Neumann law, reflecting a force balance between surface
tensions [18]. Remarkably, a closely analogous relation arises in McRD systems—despite the
absence of mechanical forces—through the balance of attachment and detachment fluxes
of all species. When each protein species consists of a membrane-bound and a cytosolic
component, and mutual antagonism enforces domain segregation, the interface angles at
triple junctions are governed by a non-equilibrium Neumann law [140]:

o4 +0ac +08c = Teore, 11.

where &; is a vector parallel to the interface between domains ¢ and j and a magnitude
corresponding to an effective interfacial tension of this interface. Tcore captures the excess
reactive turnover at the junction due to cyclic non-equilibrium fluxes. This non-equilibrium
Neumann law links local biochemical interactions to global pattern geometry in multi-
species McRD systems [140], analogously as in complex liquid mixtures [78, 79].

4.3.3. Turing foams: non-equilibrium interface dynamics in the Min system. Among the
variety of stationary patterns observed in the in vitro Min system [34, 57, 91, 130, 141],
some exhibit morphologies that closely resemble two-dimensional liquid foams (Fig. 4c). In
these patterns, MinD-enriched membrane domains are separated by narrow MinE-enriched
branches that predominantly meet at triple vertices. Heuristically, we expect 4-fold and
higher-order vertices to be unstable as perturbations of their symmetric configuration in-
duces net MinD attachment and detachment around the vertex that leads to its splitting
into separate triple vertices (Fig. 4j). Moreover, the meeting angles at these vertices are
tightly distributed around 120°, consistent with Plateau’s laws for liquid foams derived from
surface-tension-driven surface minimization [134]. Simulations of the MinE-switch model
(Sec. 3.2.1), including persistent membrane binding (Sec. 3.2.2), reproduce this foam-like
geometry and vertex angle distribution [140] (cf. Fig. 4c).

This analogy extends beyond morphology to dynamics. In the early stages of pat-
tern evolution at small pattern wavelength, domain areas follow qualitatively a von Neu-
mann—type law: domains with fewer than six edges shrink, those with more than six grow,
and six-edged domains remain stationary. This behavior is captured by the relation

atAn ~ (n — 6) ) 12.

where A,, is the area of an n-sided domain. This classical result is rooted in the presence
of an (effective) interfacial tension, the 120° vertex angles, and the geometric constraint
imposed by the Gauss—Bonnet theorem, which together determine the rate of area change
in two-dimensional foams [134, 140]. These findings demonstrate that Min mesh patterns
obey mesoscopic laws analogous to those of liquid foams, motivating the term Turing foam
to underline that these patterns arise purely from the reaction—diffusion mechanism [140].
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A key difference to liquid foams is that coarsening in Turing foams is interrupted: once
domains exceed a critical size coarsening arrests, and at larger sizes domains undergo split-
ting through the growth of new MinE-rich branches [140]. This results in an intrinsic pattern
wavelength, analogous to that of two-component McRD systems with weakly broken mass
conservation. The source terms in these simpler conceptual systems can be understood as
a coupling to a third reservoir component, and it has been shown that also the coupling to
a third diffusive component can interrupt coarsening and induce domain splitting [14, 28,
58]. An important open question is how the extra components in the Min system mechanis-
tically give rise to interrupted coarsening and domain splitting. Both the collapse of small
and the splitting of large domains has been observed in mesh and amoeba patterns [57,
140], suggesting that these insights will enable a conceptual understanding of experimetally
accessible, quasi-stationary protein patterns.

5. CONCLUSION AND OUTLOOK

This review has highlighted how mass-conserving reaction—diffusion systems provide a uni-
fying framework for understanding protein-based pattern formation in living cells and re-
constituted systems. Central to this framework are the concepts of mass redistribution,
interface dynamics, and mesoscale laws such as curvature-driven coarsening and effective
interfacial tension. The E. coli Min system has served as a paradigmatic example, demon-
strating how spatial organization in cells can emerge from a small set of molecular in-
teractions governed by universal physical principles. Building on this foundation, several
key directions emerge for advancing both the mechanistic and theoretical understanding of
protein-based pattern formation:

Mechanistic reduction of complex systems. Detailed biochemical models now
quantitatively account for the dynamic behaviors of protein pattern formation across a
wide range of experimental conditions. The next step is to reduce these models to minimal
McRD frameworks that reveal core design principles. Such reductions could clarify how how
distinct molecular interactions give rise to the observed diversity of mesoscale patterns, an
expose functional redundancies in the network [8].

Coarse-graining molecular mechanisms. Although current models capture the
emergent dynamics with quantitative accuracy, essential feedbacks—such as MinD self-
recruitment—still lack a clear mechanistic derivation from microscopic processes like MinD
oligomerization or higher-order MinE interactions. Bridging this gap between molecular de-
tail and mesoscale dynamics remains a central theoretical task. Additional physical mech-
anisms, including diffusiophoretic coupling [106] and mechanochemical feedbacks such as
curvature-sensitive protein recruitment [38], may also play a role. In view of future advances
in protein engineering, such systematic connections will be central to control and design
pattern-forming feedbacks on the level of single proteins.

Geometry sensing and morphodynamics. Geometry sensing in McRD systems
arises from the coupling between bulk and boundary dynamics [29, 41, 124]. Systematic
dimensionality reduction [10] will be critical for an analytical understanding of this effect in
complex geometries. When proteins also deform the geometry, mechanochemical feedback
can generate patterns even in minimal systems [148]. Reconstituted Min patterns have been
shown to induce persistent vesicles motion [27] and drive dynamic vesicle deformations [16,
72, 111]. Moving beyond reconstitution, recent work in starfish oocytes has shown that
intracellular protein patterns, coupled to the actin cortex, can sense cell geometry and
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drive large-scale mechanical deformations of the cortex [73, 142, 144]. These examples
highlight how biochemical patterns can both sense and sculpt geometry, providing design
principles for programmable morphodynamics.

Synthetic and reconstituted systems. Beyond the Min system, spatial pattern
formation has been reconstituted in other protein networks, including Rabb [3, 12] and a
lipid kinase-phosphatase system [45]. Mitotic and Rho—-actin waves have been observed in
cell extracts [13, 67]. Fully synthetic systems have implemented predator—prey oscillations,
traveling waves, and bistable fronts using DNA circuits [99, 150]. Synthetic multicellular
systems employing morphogen gradients [118], SynNotch receptors [94], or adhesion-based
feedback [125] now enable programmable tissue architectures. Together, these platforms
support an emerging framework of synthetic developmental biology that bridges minimal
biochemistry and engineered morphodynamics [83].

Theoretical challenges in nonequilibrium physics. The emergence of effective in-
terface laws suggests that intracellular protein patterns obey universal mesoscale principles,
largely independent of molecular detail. These insights point toward a broader theoreti-
cal framework for nonequilibrium pattern formation. As effective interfacial tensions are
ubiquitous in active matter systems, and these form foam-like patterns both in theoretical
models [19, 24, 81] and experiments [69], it will be fascinating to study foam formation and
mesoscopic interface laws in non-equilibrium systems more broadly.

Pursuing these directions will not only deepen our understanding of biological self-
organization but also advance a unified theory of nonequilibrium pattern formation that
connects intracellular reaction—diffusion with active matter physics, and the design of syn-
thetic systems.
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