Description
chair: E. Paladino
Despite the promises of superconducting qubits, their performance is presently limited by short coherence times due to defects intrinsic to materials. As a result, future quantum computers would require massive error correction circuits, which seem to be very challenging to build. Another more promising path would be to improve this coherence time, which would relax the constraints on the...
Qubit readout is an indispensable element of any quantum information processor. In this work,
we propose an original coupling scheme between a qubit and a cavity mode based on a non-perturbative
cross-Kerr interaction. This scheme, using the same experimental techniques as the perturbative cross-Kerr coupling (dispersive interaction), leads to an alternative readout mechanism for...
Traditionally, the control and measurement of superconducting quantum devices including arrays of qubits are done using room-temperature classical electronics connected to cryogenic environment via high fidelity cables. This poses daunting technical challenges to quantum system scaling as the heat load, latency, noise associated with bringing signals in and out of the cryostat rise...